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Abstract
Autonomous agents operating in policy-governed environments can exhibit varying degrees of policy compliance,
from full adherence to complete non-conformance. This paper introduces a framework that enables controllers of
autonomous agents to define these different compliance attitudes, referred to as “behavior modes.” The framework
demonstrates its utility by simulating agent decision-making processes when selecting plans to achieve their
goals. It leverages the policy specification language AOPL by Gelfond and Lobo and is implemented using Answer
Set Programming (ASP). Experimental results in two example domains showcase the potential of this framework
to simulate diverse agent attitudes.
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1. Introduction

Autonomous agents are becoming pervasive in a variety of aspects of daily life, including healthcare and
elderly care, manufacturing, or self-driving transportation. In order to ensure that such agents exhibit a
safe and secure behavior that is appropriate for the environment in which they act, for their interactions
with humans, and the tasks that they are supposed to solve, it is expected that they operate within
the boundaries of given policies (or norms). Policies may be specified by the creators or controllers of
autonomous agents and can include specification about actions that the autonomous agents are required
to perform (or not perform) in specific situations, and actions they are allowed (or not) to perform. The
former are referred to as obligation policies, while the latter are authorization policies. An autonomous
agent may be built so that it can decide whether to abide by these policies or not, at different points
in time, depending on the priorities set for it by its controller and the situation at hand. In normal
scenarios, compliance with policies would take precedence over all other aspects, but situations may
arise when agents may need to switch to a less compliant behavior, due to higher level objectives, such
as when the agent participates in a rescue operation. The issue of different agent attitudes towards
policy-compliance and how that affects the plan selection process is also relevant to policy makers.
Simulating human agents with a range of behavior modes towards policy-compliance can help policy
makers to better assess the consequences of their policies.

In this paper, we propose a framework for the specification of behavior modes for an autonomous agent
that guide the plan selection process. In our framework, agent behaviors are defined by setting preferences
and constraints for several metrics related to policy compliance and plans. Reasoning about compliance
and planning with behavior modes is achieved using Answer Set Programming (ASP).
In order to reason about policy compliance, an autonomous agent needs to have a model of the

changing environment in which it acts, a representation of policy statements, and reasoning algorithms
for determining policy compliance. We use action language AL𝑑 [1, 2] for the encoding of the agent’s
environment. AL𝑑 has a concise syntax and incorporates established solutions to the ramification and
qualification problems in its semantics, which is defined via a translation into ASP. For the specification
of a policy, we employ language AOPL [3]. AOPL allows the description of complex policies, which are
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not limited to role-based access control. Policy statements of AOPL can be either strict or defeasible,
thus allowing for exceptions to be specified. The policy compliance of an agent action is computed by
translating the AOPL policy into ASP, adding compliance checking modules, and checking the solutions
(i.e., answer sets) of the resulting logic program.

In the original work by Gelfond and Lobo, only plans consisting of actions at the same level of
compliance were considered (e.g., plans consisting only of actions explicitly known to be compliant).
Harders and Inclezan [4] introduced a finer-grained qualification of plans consisting of a mix of actions
at different levels of compliance. In the current work, we define how behavior modes can be specified
by an agent’s controller, based on a variety of metrics. To illustrate the importance of defining different
behavior modes and analyzing the resulting plans, let’s consider the following example:

Example 1. We assume a configuration in which there are six rooms, 𝑟1, … , 𝑟6, with the layout shown in
Figure 1. The autonomous agent 𝑎 is in room 𝑟1 and wants to get to room 𝑟3. The agent is able to go from
one room to an adjacent room (i.e., perform action 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟) – agent 𝑎 enters room 𝑟). Some of the agent’s
possible actions are indicated by arrows in Figure 1. Assume that the agent is governed by a consistent and
unambiguous policy and that all actions are compliant with respect to obligations. However, with respect to
authorization policies, some actions are known to be compliant (called strongly-compliant and labeled by
“s” in the picture); others are unknown to be compliant or non-compliant (called underspecified actions
labeled by “u”), and finally some are known to be non-compliant (labeled by “n”).
Let’s consider four of the plans that would accomplish the goal:

𝛼1 = ⟨𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟4), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟5), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟6), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟3)⟩,
𝛼2 = ⟨𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟4), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟5), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟2), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟3)⟩,
𝛼3 = ⟨𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟2), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟3)⟩, and
𝛼4 = ⟨𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟2), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟5), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟6), 𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟3)⟩.
According to Gelfond and Lobo’s definitions [3] included in Section 2, 𝛼1 is strongly-compliant while

𝛼1, 𝛼2, 𝛼3 are weakly-compliant (i.e., consisting solely of actions not known to be non-compliant). For con-
sistent and unambiguous policies, weakly-compliant actions include strongly-compliant and underspecified
actions as shown by Inclezan [5]. Nothing can be said about 𝛼4 because its actions are not at the same level
of compliance. Note that 𝛼1 is both strongly- and weakly-compliant because the class of weakly-compliant
actions includes strongly-compliant actions in consistent and unambiguous policies [5].
This classification of plans does not allow the controller of an agent enough flexibility to specify desirable

behavior modes for its agent. Instead, we want to allow a controller to specify behavior modes in terms of
preferences such as “prioritize compliance over plan length.” In that case 𝛼1 would be the best plan, followed
by 𝛼2 and 𝛼3. Plan 𝛼4 may not even be considered to be an option due to the inclusion of a non-compliant
action. If a behavior mode is defined in which plan length is prioritized over compliance (which may be
useful in emergency rescue operations assuming that plan length correlates to plan execution in real time),
then 𝛼3 would be the best, followed by 𝛼1 and 𝛼2. Note that 𝛼1 and 𝛼2 have the same length, but all actions
of 𝛼1 are guaranteed to be compliant (i.e., they are strongly-compliant), whereas one action of 𝛼2 is not
explicitly stated to be compliant but it is not non-compliant either (i.e., it is underspecified).

Figure 1: Moving between Rooms (Authorization: s - strongly-compliant action; u - underspecified action; n -
non-compliant action. Obligation: all actions are compliant.)

The main contributions of this paper are as follows:



1. The formalization of a framework (leveraging ASP, action language AL𝑑, and policy language
AOPL) in which a controller can specify behavior modes based on a collection of metrics related
to policy compliance and other aspects

2. A description of its implementation in ASP
3. Experimental results on the application of this framework to example domains.

In what follows, we start with preliminary information about the policy specification language AOPL.
We analyze issues related to policy compliance relevant to planning in Section 3 and introduce our
framework in Section 4. We discuss our ASP implementation in Section 5 and report experimental
results in Section 6. We investigate related work in Section 7 and end with conclusions.

2. Background: Policy Specification Language AOPL

We assume that readers are familiar with language ASP [6, 7, 8, 2] and ASP solvers such as Clingo1 or
DLV2 [9, 10], including concepts such as choice rules and aggregates. In what follows, we give a brief
introduction to the policy specification language AOPL.
While several logic-based languages for the specification of policies (or norms) exist [11, 12, 13],

we use Gelfond and Lobo’s Authorization and Obligation Policy Language (AOPL) [3] in our work due
to its close connection and seamless coupling with ASP and action languages [14]. AOPL is designed
for the specification of policies that should govern the behavior of an intelligent agent acting in a
dynamic environment. Policies are statements about permissions and prohibitions (called authorizations
in AOPL), as well as obligations and dispensations (simply called obligations).
AOPL works in conjunction with a dynamic system description of the agent’s environment written

in an action language, such as AL𝑑 [1, 2]. The signature of the dynamic system description includes:
sorts (i.e., types, classes) of objects in the domain; fluents (i.e., domain properties that may be changed
by actions); and (elementary) actions.
Strict policies of AOPL are specified using predicates 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 for authorization policies, 𝑜𝑏𝑙 for

obligation policies, and statements of the form:

𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 (𝑒) if 𝑐𝑜𝑛𝑑
¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 (𝑒) if 𝑐𝑜𝑛𝑑

𝑜𝑏𝑙 (ℎ) if 𝑐𝑜𝑛𝑑
¬𝑜𝑏𝑙 (ℎ) if 𝑐𝑜𝑛𝑑

(1)

where 𝑒 is an elementary action; ℎ is a happening (i.e., an elementary action or its negation3); and 𝑐𝑜𝑛𝑑
is a (possibly empty) collection of atoms of the signature, except prefer atoms. In addition to the strict
policy statements, AOPL supports defeasible statements and priorities between them:

𝑑 ∶ normally 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) if 𝑐𝑜𝑛𝑑 (2a)

𝑑 ∶ normally ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) if 𝑐𝑜𝑛𝑑 (2b)

𝑑 ∶ normally 𝑜𝑏𝑙(ℎ) if 𝑐𝑜𝑛𝑑 (2c)

𝑑 ∶ normally ¬𝑜𝑏𝑙(ℎ) if 𝑐𝑜𝑛𝑑 (2d)

prefer(𝑑𝑖, 𝑑𝑗) (2e)

where 𝑑𝑖 and 𝑑𝑗 in (2e) are labels for defeasible rules (similar to the label 𝑑 in statements of the form (2a)
- (2d)) and statement (2e) says that rule 𝑑𝑖 overrides rule labeled 𝑑𝑗. We call 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 and 𝑜𝑏𝑙 predicates
appearing to the left of the keyword if the head of a policy rule. Strict rules override defeasible rules
with the opposite head; prefer predicates are used between defeasible rules with opposite heads to
describe exceptions to the overridden defeasible rule (e.g., exceptions to 𝑑𝑗 in (2e)).

1https://potassco.org/clingo/
2https://www.dlvsystem.it/dlvsite/
3If 𝑜𝑏𝑙(¬𝑒) is true, then the agent must not execute 𝑒.



Reasoning about the compliance of an agent to a policy is defined via an ASP translation of the policy
and dynamic system description. The 𝑙𝑝 translation function is straightforward for atoms, literals, and
strict rules. In (3), (4), and (5) we indicate the 𝑙𝑝 translation for defeasible rules (2a), (2b), and preference
rule (2e) respectively:

𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) ← 𝑙𝑝(𝑐𝑜𝑛𝑑), not 𝑎𝑏(𝑑), not ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) (3)

¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) ← 𝑙𝑝(𝑐𝑜𝑛𝑑), not 𝑎𝑏(𝑑), not 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) (4)

𝑎𝑏(𝑑𝑗) ← 𝑙𝑝(𝑐𝑜𝑛𝑑𝑖) (5)

where 𝑎𝑏 stands for abnormal w.r.t. a default statement and is a common way of representing exceptions
to defaults in ASP methodology [2]. Similarly for defeasible obligation policies of forms (2c) and (2d).
As an example, a policy for the scenario in Example 1 may consist of the statements:

𝑑1 ∶ normally 𝑜𝑏𝑙(¬𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟)) if 𝑓 𝑖𝑟𝑒(𝑟)
𝑑2 ∶ normally ¬𝑜𝑏𝑙(¬𝑒𝑛𝑡𝑒𝑟(𝑎, 𝑟)) if 𝑓 𝑖𝑟𝑒(𝑟), 𝑤𝑒𝑎𝑟 𝑖𝑛𝑔_𝑝𝑟𝑜𝑡_𝑒𝑞𝑢𝑖𝑝(𝑎)

prefer(𝑑2, 𝑑1)

The first policy prohibits entering a room where there is an active fire; the second statement together
with the preference rule cancel the first policy out whenever the agent is wearing protective equipment.

Given a policy 𝑃 and a state 𝜎 of the (transition diagram associated with the) dynamic system D,

𝑙𝑝(𝑃, 𝜎) =𝑑𝑒𝑓 𝑙𝑝(𝑃) ∪ 𝑙𝑝(𝜎)

Gelfond and Lobo define a policy as consistent if, for every state 𝜎 of D, the logic program 𝑙𝑝(P, 𝜎)
is consistent (i.e., has an answer set). A policy is categorical if 𝑙𝑝 has exactly one answer set for every
state 𝜎 of D, i.e., it is unambiguous. We show below the definitions of compliance for actions and paths,
introduced by Gelfond and Lobo [3]. Note that 𝑐𝑎 denotes a compound action, while 𝑒 refers to an
elementary action. By 𝑙 ∈ P(𝜎) we indicate that 𝑙𝑝(P, 𝜎) ⊧ 𝑙; by 𝑙 ∉ P(𝜎) we mean 𝑙𝑝(P, 𝜎) ̸⊧ 𝑙.

Definition 1 (Compliance for Authorizations). (Definitions 4 and 5 in the original paper)

• An event ⟨𝜎 , 𝑐𝑎⟩ is strongly compliant with authorization policy P if for every 𝑒 ∈ 𝑐𝑎 we have that
𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) ∈ P(𝜎) (i.e., the logic program 𝑙𝑝(P, 𝜎) entails 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒), 𝑙𝑝(P, 𝜎) ⊧ 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒)).

• An event ⟨𝜎 , 𝑐𝑎⟩ is weakly compliant with authorization policy P if for every 𝑒 ∈ 𝑐𝑎 we have
that ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) ∉ P(𝜎) (i.e., the logic program 𝑙𝑝(P, 𝜎) does not entail ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒), 𝑙𝑝(P, 𝜎)
̸⊧ ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒)).

• An event ⟨𝜎 , 𝑐𝑎⟩ is non-compliant with authorization policy P if for every 𝑒 ∈ 𝑐𝑎 we have that
¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) ∈ P(𝜎) (i.e., the logic program 𝑙𝑝(P, 𝜎) entails ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒), 𝑙𝑝(P, 𝜎) ⊧ ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒)).

• A path ⟨𝜎0, 𝑐𝑎0, 𝜎1, … , 𝜎𝑛−1, 𝑐𝑎𝑛−1, 𝜎𝑛⟩ is strongly (weakly) compliant with authorization policy P if
for every 0 ≤ 𝑖 < 𝑛 the event ⟨𝜎𝑖, 𝑐𝑎𝑖⟩ is strongly (weakly) compliant with P.

Definition 2 (Compliance for Obligations). (Definition 9 in the original)
An event ⟨𝜎 , 𝑐𝑎⟩ is compliant with obligation policy P if

• For every 𝑜𝑏𝑙(𝑒) ∈ P(𝜎) we have that 𝑒 ∈ 𝑐𝑎, and
• For every 𝑜𝑏𝑙(¬𝑒) ∈ P(𝜎) we have that 𝑒 ∉ 𝑐𝑎.

Definition 3 (Compliance for Authorization and Obligations). An event ⟨𝜎 , 𝑐𝑎⟩ is strongly (weakly)
compliant with arbitrary policy P (i.e., a policy that may contain both authorization and obligation state-
ments) if it is strongly (weakly) compliant with the authorization component of the policy and compliant
with the obligation component of P.

Note that compliance for paths is only defined for authorization policies (Definition 1), but it could
be extended to obligation policies in a similar manner. However, such definitions are coarse-grained
and do not allow distinguishing, for example, between two weakly-compliant paths. Also, AOPL does
not discuss interactions between authorization and obligation policies referring to the same action, for
instance situations when both 𝑜𝑏𝑙(𝑒) and ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) are entailed by 𝑙𝑝(P, 𝜎).



3. Planning and Policy Compliance

Planning problems have as an input: (1) a description of the dynamic system in which the autonomous
agent is acting, including information about actions the agent can execute, (2) an initial state, and (3)
a desired set of fluents (or goal) to be achieved by the agent. A solution to a planning problem is a
sequence of actions to be performed by the agent in order to achieve the goal state. Answer Set Planning
[15] refers to the use of ASP to solve planning problems by reducing them to the computation of answer
sets of a logic program. Each answer set corresponds to a possible plan. An ASP planning problem is
defined as a triple ⟨𝐷, Γ, Δ⟩ where D is the ASP encoding of the dynamic system, Γ is a collection of
fluent literals that hold in the initial state, and Δ is the set of fluent literals representing the goal.

The dynamic system description may be non-deterministic, in which case a computed plan may take
the agent to the desired goal state after executing the plan, but this is not guaranteed [16]. Information
about the initial state may also be incomplete. This defines the so-called class of conformant planning
problems [16, 17, 18], which has a higher complexity than classical planning [19]. Since we focus
on simulating an agent’s behavior modes and plan selection w.r.t. to compliance to policies, we limit
ourselves to deterministic dynamic system descriptions and complete knowledge about the initial state.
This removes some of the complexities that are orthogonal to policy-compliance behavior modes. If a
planning problem ⟨𝐷, Γ, Δ⟩ satisfies these properties, then Γ is a state of D (not just a subset of a state)
and a solution to the planning problem is a sequence of agent actions 𝛼 = ⟨𝑎0, … , 𝑎𝑛−1⟩ that guarantees
to reach a state 𝜎𝑛 such that Δ ⊆ 𝜎𝑛.

3.1. Authorizations

Inclezan [5] showed that (1) a division of paths into strongly- and weakly-compliant is too coarse to
compare plans; (2) the label “weakly-compliant” is not specific enough to create a relative priority
order between plans, because all strongly-compliant events are also weakly-compliant; and (3) there
are interactions between authorizations and obligations that require more attention. In what follows,
we will make use of the definitions below borrowed from work by Inclezan.

Definition 4. An event ⟨𝜎 , 𝑐𝑎⟩ is underspecified with respect to authorization policy P if for every 𝑒 ∈ 𝑐𝑎
the logic program 𝑙𝑝(P, 𝜎) entails both “not 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒)” and “not ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒)” (i.e., 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) and
¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒) are absent from every answer set of 𝑙𝑝(P, 𝜎)).

In what follows we consider categorical (i.e., unambiguous) policies (the program 𝑙𝑝(P, 𝜎) has exactly
one answer set for every state 𝜎 of D), since categoricity is a property that policies should strive towards
[3]. This will be relevant to plan selection, as it will facilitate creating an ordering between plans. Given
a categorical policy, Inclezan [5] proved that the actions in a plan can be divided into three disjunctive
sets with respect to authorization: strongly-compliant, underspecified, and non-compliant events, in
this order in terms of desirability. For two plans with the same length (and equivalent in terms of their
obligation compliance), requirements can be imposed on the number of actions in each category, or an
ordering can be introduced based on the percentage of actions of each kind.

3.2. Obligations

From the point of view of obligation policies, the cases that require attention are captured in Table 1.
Note that we continue to focus on categorical policies. Moreover, we assume that the obligation policies
are non-conflicting, i.e., 𝑙𝑝(P, 𝜎) does not entail both 𝑜𝑏𝑙(𝑒) and 𝑜𝑏𝑙(¬𝑒) (i.e., obligation to execute and to
not execute 𝑒) for an action 𝑒. Cases when 𝑙𝑝(P, 𝜎) entails ¬𝑜𝑏𝑙(𝑒) or ¬𝑜𝑏𝑙(¬𝑒) represent the absence of
an obligation, and therefore it is not relevant whether action 𝑒 is planned to be executed in state 𝜎 or
not. Out of the combinations that count towards compliance, situations when 𝑙𝑝(P, 𝜎) entails 𝑜𝑏𝑙(¬𝑒)
and 𝑒 is not planned to be executed in state 𝜎 tend to abound, as this is the case at every time step
when an action other than 𝑒 is planned to be executed. Thus, we will track instead the occurrence of
non-compliant actions with respect to obligations.



Event ⟨𝜎 , 𝑐𝑎⟩ s.t. 𝑙𝑝(P, 𝜎) ⊧ 𝑜𝑏𝑙(𝑒) 𝑙𝑝(P, 𝜎) ⊧ 𝑜𝑏𝑙(¬𝑒)
𝑒 ∈ 𝑐𝑎 compliant non-compliant
𝑒 ∉ 𝑐𝑎 non-compliant compliant

Table 1
Compliant vs non-compliant situations w.r.t. obligations

Inclezan [5] discussed possible interactions between obligations and authorizations that require
further attention from the policy writer, and which were not considered by Gelfond and Lobo. One
example is when there is an event ⟨𝜎 , 𝑐𝑎⟩ such that 𝑒 ∈ 𝑐𝑎 and 𝑙𝑝(P, 𝜎) ⊧ {𝑜𝑏𝑙(𝑒), ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒)} or 𝑙𝑝(P, 𝜎)
⊧ {𝑜𝑏𝑙(¬𝑒), 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒)}. Such events are called modality ambiguous [11], as they reflect an ambiguity
that arises at the intersection between twomodalities, obligation and authorization. Including amodality
ambiguous event ⟨𝜎 , 𝑐𝑎⟩ in a plan should be avoided. Such situations can be accounted for by counting
how frequently they occur and either prohibiting them altogether or minimizing their occurrence.

4. Behavior Mode Specification Framework for Planning

At the foundation of our behavior mode specification framework lie a series of metrics (i.e., functions)
that can be prioritized in different ways by the planning agent.

• the plan length, 𝑙(𝛼) = 𝑛
• the number of modality ambiguous events, 𝑛_𝑚𝑎(𝛼)
• the number of non-compliant events w.r.t. obligation, 𝑛_𝑛𝑜(𝛼)
• the number of strongly-compliant events w.r.t. authorization, 𝑛_𝑠𝑎(𝛼)
• the percentage of strongly-compliant events w.r.t. authorization, 𝑝_𝑠𝑎(𝛼) =𝑑𝑒𝑓 𝑛_𝑠𝑎(𝛼)/𝑙(𝛼)
• the number of underspecified events w.r.t. authorization, 𝑛_𝑢𝑎(𝛼)
• the percentage of underspecified events w.r.t. authorization, 𝑝_𝑢𝑎(𝛼) =𝑑𝑒𝑓 𝑛_𝑢𝑎(𝛼)/𝑙(𝛼)
• the number of non-compliant events w.r.t. authorization, 𝑛_𝑛𝑎(𝛼)
• the percentage of non-compliant events w.r.t. authorization, 𝑝_𝑛𝑎(𝛼) =𝑑𝑒𝑓 𝑛_𝑛𝑎(𝛼)/𝑙(𝛼).

To allow a human controller to specify preferences between the metrics above, we introduce a
language BMSL (Behavior Mode Specification Language). Expressions of BMSL have the form:

maximize 𝑚
minimize 𝑚 (6)

where 𝑚 is one of the metrics stated above, 𝑚 ∈ {𝑙, 𝑛_𝑚𝑎, 𝑛_𝑛𝑜, 𝑛_𝑠𝑎, 𝑝_𝑠𝑎, 𝑛_𝑢𝑎, 𝑝_𝑢𝑎, 𝑛_𝑛𝑎, 𝑝_𝑛𝑎}. The
first expression is a directive to maximize the value of metric 𝑚, while the second is a directive to
minimize 𝑚. Statements of BMSL have the form:

𝑒𝑥𝑝𝑟1 < ⋯ < 𝑒𝑥𝑝𝑟𝑘 (7)

𝑚 ∘ 𝑣 (8)

where 𝑒𝑥𝑝𝑟𝑖, 1 ≤ 𝑖 ≤ 𝑘 are expressions of the form (6), 𝑣 is a numeric value, and ∘ is a comparison
operator such that ∘ ∈ {=, <, ≤, >, ≥}. Statement (7) denotes that 𝑒𝑥𝑝𝑟_𝑖 is preferred to 𝑒𝑥𝑝𝑟_𝑗 (i.e., 𝑒𝑥𝑝𝑟_𝑖
should be prioritized). Statement (8) is a strict requirement for a metric to compare in a specific way to
a given value. A specification S of BMSL is a collection of statements of the form (7) and (8).
In practice, we want BMSL specifications to meet certain expectations, which we outline in the

definition below.

Definition 5. Let S be a specification in BMSL. Let 𝐺(S) be a directed graph whose nodes are expressions
of the type (6) in S and arcs are pairs of the form (𝑒𝑥𝑝𝑟𝑖, 𝑒𝑥𝑝𝑟𝑗) for every statement of the form 𝑒𝑥𝑝𝑟𝑖 < 𝑒𝑥𝑝𝑟𝑗
in S.



• S is well-defined if 𝐺(S) is a directed acyclic graph.
• If S is well-defined, then by 𝑇 𝑆(S) we denote the topological sort of S (obtained by breaking ties
lexicographically if needed).

• S is consistent if it is well-defined and there is no contradiction between statements of the form (8)
in S.

Predefined Behavior Modes

In our framework, we define some built-in behavior modes by providing their description in language
BMSL. Note that the specifications for all of these predefined behavior modes are consistent according
to Definition 5. Other behaviors and preferences can be similarly specified in BMSL by the controller of
an autonomous agent.

Paranoid Behavior

A paranoid agent only selects plans that are strongly-compliant w.r.t. authorization (by requiring that
the number of non-compliant and underspecified events w.r.t. authorization, 𝑛_𝑛𝑎 and 𝑛_𝑢𝑎 respectively,
be 0), compliant w.r.t. obligation, and contain no modality ambiguous events. Among qualifying plans,
the plan(s) with minimal length are selected. The BMSL specification is:
Sparanoid =𝑑𝑒𝑓 {𝑛_𝑛𝑎 = 0, 𝑛_𝑢𝑎 = 0, 𝑛_𝑛𝑜 = 0, 𝑛_𝑚𝑎 = 0, minimize 𝑙 }

An agent exhibiting paranoid behavior would select plan 𝛼1 from Example 1, as it is the only plan that
contains only strongly-compliant actions w.r.t. authorization.

Cautious Behavior

A cautious agent does not accept plans with non-compliant actions. It accepts plans containing under-
specified and modality ambiguous events. However it maximizes the percentage of strictly-compliant
actions (vs. underspecified) w.r.t. authorization; it minimizes the number of modality ambiguous events;
and looks for shortest plans, in this order. Here is the BMSL specification for this mode:
Scautious =𝑑𝑒𝑓 {𝑛_𝑛𝑎 = 0, 𝑛_𝑛𝑜 = 0, maximize 𝑝_𝑠𝑎 < minimize 𝑛_𝑚𝑎 < minimize 𝑙 }

A cautious agent would also select plan 𝛼1 from Example 1. While 𝛼2 also meets the imposed constraints,
𝛼1 has a higher percentage of strongly-compliant actions than 𝛼2.

Pragmatic Behavior

A pragmatic agent does not accept non-compliant plans either. It accepts plans containing underspecified
and modality ambiguous events. Contrary to the cautious agent, a pragmatic agent looks for the shortest
plans first, then it maximizes the percentage of strictly-compliant actions (vs. underspecified) w.r.t.
authorization, followed by minimizing the number of modality ambiguous events. See the BMSL
specification here:
Spragmatic =𝑑𝑒𝑓 {𝑛_𝑛𝑎 = 0, 𝑛_𝑛𝑜 = 0, minimize 𝑙 < maximize 𝑝_𝑠𝑎 < minimize 𝑛_𝑚𝑎 }

A pragmatic agent would choose plan 𝛼3 from Example 1 as the optimal plan because of its minimal
length.

Lazy Behavior

A lazy agent accepts all types of plans, as long as they comply with obligation policies. It prioritizes plans
with the smallest percentage of non-compliant actions w.r.t. authorization, then it it looks for shortest
plans, and finally it maximizes the percentage of strictly-compliant actions. The BMSL specification
looks as follows:
Slazy =𝑑𝑒𝑓 {𝑛_𝑛𝑜 = 0, minimize 𝑝_𝑛𝑎 < minimize 𝑙 < maximize 𝑝_𝑠𝑎}

A lazy agent would also choose plan 𝛼3 as the best.



Non-Conforming Behavior

A non-conforming agent acts as an agent that is not aware or does not intend to comply to policies.
It only cares about finding minimal length plans. The BMSL specification for this behavior mode is
simply:
Snon_conforming =𝑑𝑒𝑓 {minimize 𝑙 }
Although we call this type of behavior non-conforming, it may be desirable in certain situations,

depending on the goal of the agent. If the agent is tasked to save the life of a human in an emergency
situation, it may be preferable for the agent to look for the shortest plan and ignore authorization and
obligation policies, if complying with such policies may entail a longer plan that does not guarantee
the timeliness of the rescue operation. In other situations, a better name for this type of behavior is
rebel agents.

5. ASP Plan Selection Based on Behavior Modes

We reduce the problem of finding optimal plans w.r.t. policy behavior modes, to the task of computing
answer sets of a logic program. To do so, we expand existing techniques in answer set planning with an
encoding of the AOPL policy and an encoding of the BMSL specification. The resulting logic program
consists of the ASP encodings of components:

1. dynamic system description D
2. policy P
3. initial state Γ and goal Δ of the planning problem
4. a planning module
5. behavior specification S

We describe each of these components next.

5.1. ASP Encoding of System Description D

Following established methods for encoding dynamic system descriptions in ASP, a high-level action
language description given in AL𝑑 is translated into ASP by adding predicates ℎ𝑜𝑙𝑑𝑠(𝑓 , 𝑖) for fluent 𝑓
and time step 𝑖, and 𝑜𝑐𝑐𝑢𝑟𝑠(𝑎, 𝑖) for action 𝑎 and time step 𝑖. For the example in Figure 1, we have the
static relation 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑟1, 𝑟2) saying that rooms 𝑟1 and 𝑟2 are adjacent; the fluent 𝑖𝑛(𝑥, 𝑟) which means
that entity/agent 𝑥 is in room 𝑟; and action 𝑒𝑛𝑡𝑒𝑟(𝑥, 𝑟) which means that 𝑥 enters room 𝑟. Direct effects
of actions are encoded by dynamic causal laws, as in this example saying that, as an effect of entering a
room, the agent will be in that room:

ℎ𝑜𝑙𝑑𝑠(𝑖𝑛(𝑋 , 𝑅), 𝐼 + 1) ← 𝑜𝑐𝑐𝑢𝑟𝑠(𝑒𝑛𝑡𝑒𝑟(𝑋 , 𝑅), 𝐼 )
Executability conditions are rules that specify when an action cannot be performed. For example, we
can say that 𝑋 cannot enter a room in which they currently are, nor one that is not adjacent to their
current location via:

¬𝑜𝑐𝑐𝑢𝑟𝑠(𝑒𝑛𝑡𝑒𝑟(𝑋 , 𝑅), 𝐼 ) ← ℎ𝑜𝑙𝑑𝑠(𝑖𝑛(𝑋 , 𝑅1), 𝐼 ), ¬𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑅, 𝑅1)
We specify relationships between fluents via state constraints, e.g., the agent is in one room at a time:
¬ℎ𝑜𝑙𝑑𝑠(𝑖𝑛(𝑋 , 𝑅), 𝐼 ) ← ℎ𝑜𝑙𝑑𝑠(𝑖𝑛(𝑋 , 𝑅1), 𝐼 ), 𝑅 ≠ 𝑅1
The ASP encoding of the system description will also include standard rules to describe that fluents

that are not affected directly or indirectly by actions maintain their previous values (Inertia Axioms).

5.2. ASP Encoding of Policy P

The ASP encoding 𝑙𝑝 of policy P follows the approach briefly outlined in Section 2, but extends all literals
(with the exception of those obtained from static properties of dynamic system D) with an additional
parameter 𝑖 for time step. This is necessary in order to be able to reason over paths/trajectories in the



dynamic system, where an action may be permitted at one time step, but not at a later one. Thus, the
rules in (3)-(5) are re-written as:

𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒, 𝐼 ) ← 𝑙𝑝(𝑐𝑜𝑛𝑑, 𝐼 ), not 𝑎𝑏(𝑑, 𝐼 ), not ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒, 𝐼 )
¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒, 𝐼 ) ← 𝑙𝑝(𝑐𝑜𝑛𝑑, 𝐼 ), not 𝑎𝑏(𝑑, 𝐼 ), not 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑒, 𝐼 )
𝑎𝑏(𝑑𝑗, 𝐼 ) ← 𝑙𝑝(𝑐𝑜𝑛𝑑𝑖, 𝐼 )

Similarly for other rules of P.

5.3. ASP Encoding of Initial State Γ and Goal Δ

As in answer set planning, an initial state Γ is encoded in ASP via facts of the form

ℎ𝑜𝑙𝑑𝑠(𝑓 , 0) for every fluent 𝑓 ∈ Γ
¬ℎ𝑜𝑙𝑑𝑠(𝑓 , 0) for every fluent literal ¬𝑓 ∈ Γ

The goal Δ = {𝑓1, … , 𝑓𝑚, ¬𝑓𝑚+1, … , ¬𝑓𝑛} is encoded in ASP as the fact:

𝑔𝑜𝑎𝑙(𝐼 ) ← ℎ𝑜𝑙𝑑𝑠(𝑓1, 𝐼 ), … , ℎ𝑜𝑙𝑑𝑠(𝑓𝑚, 𝐼 ), ¬ℎ𝑜𝑙𝑑𝑠(𝑓𝑚+1, 𝐼 ), … , ¬ℎ𝑜𝑙𝑑𝑠(𝑓𝑛, 𝐼 )

5.4. ASP Planning Module

A planning module starts by defining a horizon (see constant 𝑛 below), which means a maximum number
of time steps by which we want the goal to be met, and specifying that time steps range from 0 to 𝑛:

#const 𝑛 = 10
𝑠𝑡𝑒𝑝(0..𝑛)

Next, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is defined as achieving the goal, and it is required to be reached:
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝑔𝑜𝑎𝑙(𝐼 )

← not 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
The agent is required to execute an action at each time step via a choice rule:

1{𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ) ∶ 𝑎𝑔𝑒𝑛𝑡_𝑎𝑐𝑡𝑖𝑜𝑛(𝐴)}1 ← 𝑠𝑡𝑒𝑝(𝐼 )
When planning, an agent can only make decisions about its own actions. We specify these by

introducing sort 𝑎𝑔𝑒𝑛𝑡(𝑎𝑔) (𝑎𝑔 is our agent) and sort 𝑎𝑔𝑒𝑛𝑡_𝑎𝑐𝑡𝑖𝑜𝑛(𝑎) (𝑎 is an action of our agent that can
be used in planning). For instance, we define which 𝑒𝑛𝑡𝑒𝑟 actions belong to our agent as follows:

𝑎𝑔𝑒𝑛𝑡_𝑎𝑐𝑡𝑖𝑜𝑛(𝑒𝑛𝑡𝑒𝑟(𝑋 , 𝑅)) ← 𝑎𝑔𝑒𝑛𝑡(𝑋), 𝑟𝑜𝑜𝑚(𝑅)
Furthermore, in order to be able to compare plans based on their length, we use an approach similar

to that outlined by Son and Pontelli [20] (see action 𝑛𝑜𝑜𝑝). We introduce an agent action called 𝑤𝑎𝑖𝑡
that has no effect on the state of the dynamic system, by adding the fact:
𝑎𝑔𝑒𝑛𝑡_𝑎𝑐𝑡𝑖𝑜𝑛(𝑤𝑎𝑖𝑡).
We also require that 𝑤𝑎𝑖𝑡 actions can only be scheduled at the end of a plan (after the goal was met)

and not simultaneously with non-𝑤𝑎𝑖𝑡 agent actions:
← 𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ), 𝐴 ≠ 𝑤𝑎𝑖𝑡, 𝑔𝑜𝑎𝑙(𝐼 )
← 𝑜𝑐𝑐𝑢𝑟𝑠(𝑤𝑎𝑖𝑡 , 𝐼 ), not 𝑔𝑜𝑎𝑙(𝐼 )

5.5. ASP Encoding of Behavior Mode Specification S

To encode a behavior mode specification S, we must first start by encoding the calculation of the metrics
described in Section 4. First, we need to introduce new predicates to track each action that is included
in the plan in terms of its classification with respect to authorization and obligation policy compliance.
Predicates 𝑠𝑡𝑟𝑔_𝑝𝑒𝑟𝑚, 𝑢𝑛𝑑𝑒𝑟𝑠𝑝𝑒𝑐, and 𝑛_𝑝𝑒𝑟𝑚 relate to authorization and refer to a planned action that
is strongly-compliant, underspecified, and non-compliant, respectively. Predicate 𝑛_𝑜𝑏𝑙_𝑐𝑜𝑚𝑝𝑙 means
that a planned action is not compliant with respect to obligations. Finally, predicate 𝑚𝑜𝑑_𝑎𝑚𝑏𝑔 means
that the action is modality ambiguous.



𝑠𝑡𝑟𝑔_𝑝𝑒𝑟𝑚(𝐴, 𝐼 ) ← 𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ), 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝐴, 𝐼 )
𝑢𝑛𝑑𝑒𝑟𝑠𝑝𝑒𝑐(𝐴, 𝐼 ) ← 𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ), not 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝐴, 𝐼 ), not ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝐴, 𝐼 )
𝑛_𝑝𝑒𝑟𝑚(𝐴, 𝐼 ) ← 𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ), ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝐴, 𝐼 )
𝑛_𝑜𝑏𝑙_𝑐𝑚𝑝𝑙(𝐴, 𝐼 ) ← 𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ), 𝑜𝑏𝑙(¬𝐴, 𝐼 )
𝑛_𝑜𝑏𝑙_𝑐𝑚𝑝𝑙(𝐴, 𝐼 ) ← not 𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ), 𝑜𝑏𝑙(𝐴, 𝐼 )
𝑚𝑜𝑑_𝑎𝑚𝑏𝑔(𝐴, 𝐼 ) ← 𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ), 𝑜𝑏𝑙(𝐴, 𝐼 ), ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝐴, 𝐼 )
𝑚𝑜𝑑_𝑎𝑚𝑏𝑔(𝐴, 𝐼 ) ← 𝑜𝑐𝑐𝑢𝑟𝑠(𝐴, 𝐼 ), 𝑜𝑏𝑙(¬𝐴, 𝐼 ), 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝐴, 𝐼 )
Note that we are able to define predicates 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑒𝑟𝑚, 𝑢𝑛𝑑𝑒𝑟𝑠𝑝𝑒𝑐, and 𝑛𝑜𝑡_𝑝𝑒𝑟𝑚 as in the rules above

because of the restrictions we made w.r.t. policy P in Section 3 where we required that it should be
categorical (i.e., 𝑙𝑝(P, 𝜎) has exactly one answer set for every state 𝜎).
Next, we show how we calculate the metrics in Section 4 using aggregates of Clingo. We start by

introducing a new metric, 𝑙, representing the plan length. If 𝑛 is the horizon of the planning problem
and 𝑁1 represents the number of 𝑤𝑎𝑖𝑡 actions in the plan, then 𝑙 is 𝑛 + 1 − 𝑁1. The rule below uses the
aggregate #𝑐𝑜𝑢𝑛𝑡 of Clingo to count the number of time steps 𝐼 at which action 𝑤𝑎𝑖𝑡 occurs.

𝑙(𝑁 ) ← #𝑐𝑜𝑢𝑛𝑡{𝐼 ∶ 𝑜𝑐𝑐𝑢𝑟𝑠(𝑤𝑎𝑖𝑡 , 𝐼 )} = 𝑁1, 𝑁 = 𝑛 + 1 − 𝑁1

Similarly, we calculate the other metrics as follows:

𝑛_𝑚𝑎(𝑁 ) ← #𝑐𝑜𝑢𝑛𝑡{𝐴, 𝐼 ∶ 𝑚𝑜𝑑_𝑎𝑚𝑏𝑔(𝐴, 𝐼 )} = 𝑁
𝑛_𝑛𝑜(𝑁 ) ← #𝑐𝑜𝑢𝑛𝑡{𝐴, 𝐼 ∶ 𝑛_𝑜𝑏𝑙_𝑐𝑚𝑝𝑙(𝐴, 𝐼 )} = 𝑁
𝑛_𝑠𝑎(𝑁 ) ← #𝑐𝑜𝑢𝑛𝑡{𝐴, 𝐼 ∶ 𝑠𝑡𝑟𝑔_𝑝𝑒𝑟𝑚(𝐴, 𝐼 )} = 𝑁
𝑛_𝑢𝑎(𝑁 ) ← #𝑐𝑜𝑢𝑛𝑡{𝐴, 𝐼 ∶ 𝑢𝑛𝑑𝑒𝑟𝑠𝑝𝑒𝑐(𝐴, 𝐼 )} = 𝑁
𝑛_𝑛𝑎(𝑁 ) ← #𝑐𝑜𝑢𝑛𝑡{𝐴, 𝐼 ∶ 𝑛_𝑝𝑒𝑟𝑚(𝐴, 𝐼 )} = 𝑁
𝑝_𝑠𝑎(𝑁 ) ← 𝑛_𝑠𝑎(𝑁1), 𝑙(𝑁2), 𝑁 = (𝑁1 ∗ 100)/𝑁2
𝑝_𝑢𝑎(𝑁 ) ← 𝑛_𝑢𝑎(𝑁1), 𝑙(𝑁2), 𝑁 = (𝑁1 ∗ 100)/𝑁2
𝑝_𝑛𝑎(𝑁 ) ← 𝑛_𝑛𝑎(𝑁1), 𝑙(𝑁2), 𝑁 = (𝑁1 ∗ 100)/𝑁2

To model a BMSL specification S, we take advantage of the topological sort 𝑇 𝑆(S) from Definition 5.
If S is a well-defined specification, then 𝑇 𝑆(S) is an ordering ⟨𝑒𝑥𝑝𝑟1, … , 𝑒𝑥𝑝𝑟𝑛⟩ of expressions in S from
the highest priority to least priority (ties are assumed to be broken lexicographically when needed). We
translate an expression 𝑒𝑥𝑝𝑟𝑖 of the form “maximize 𝑚” into ASP as:

#𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒{𝑁@𝑗 ∶ 𝑚(𝑁 )}

where 𝑚 is one of the metrics outlined in Section 4, 𝑚 ∈ {𝑙, 𝑛_𝑚𝑎, 𝑛_𝑛𝑜, 𝑛_𝑠𝑎, 𝑝_𝑠𝑎, 𝑛_𝑢𝑎, 𝑝_𝑢𝑎, 𝑛_𝑛𝑎, 𝑝_𝑛𝑎},
and 𝑗 = 𝑛 + 1 − 𝑖. This statement maximizes the metric 𝑚 and assigns priority 𝑗 to this optimization
request. Statements with higher priorities take precedence over the ones with lower priorities. Similarly
for “minimize 𝑚”:

#𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝑁@𝑗 ∶ 𝑚(𝑁 )}

Statements of S of the type “𝑚 ∘ 𝑣” where ∘ is a comparison operator, are translated as constraints:

← 𝑚(𝑁), not 𝑁 ∘ 𝑣

For example, the translation of specification Scautious into ASP looks as follows:

← 𝑛_𝑛𝑎(𝑁 ), not 𝑁 = 0
← 𝑛_𝑛𝑜(𝑁 ), not 𝑁 = 0

#𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒{𝑁@3 ∶ 𝑝_𝑠𝑎(𝑁 )}
#𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝑁@2 ∶ 𝑛_𝑚𝑎(𝑁 )}
#𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝑁@1 ∶ 𝑙(𝑁 )}

When putting together the ASP encoding of the components described in Section 5, we obtain a
logic program Π(𝐷, Γ, Δ, 𝑃, 𝑆). Answer sets of this program represent optimal solutions to the planning
problem ⟨𝐷, Γ, Δ⟩ with respect to the behavior mode S and policy P.



6. Experimental Results

We empirically evaluated our implementation on a couple of domains that are more elaborate relative
to Example 1.

Traffic Norms Domain: The first domain captures some of the traffic regulations and may be pertinent
to a self-driving car. We consider a (section) of a city with a grid street plan, different traffic signs (do
not enter, stop sign), traffic lights, speed limits, school buses, and pedestrians crossing. Some of the
policies in this domain are: The agent is obligated to stop if pedestrians are crossing. Normally, the agent
is permitted to drive if the traffic light is green or yellow, but it is obligated to stop if it is red. In areas
where the speed limit is less than 55 mph, the agent cannot surpass the speed limit by more than 5 mph.

As an example, the last policy mentioned above is written in AOPL as:

𝑟1(𝐿1, 𝐿2, 𝑆, 𝑆1) ∶ normally ¬𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑(𝑑𝑟 𝑖𝑣𝑒(𝐿1, 𝐿2, 𝑆))
if 𝑠𝑝𝑒𝑒𝑑_𝑙 𝑖𝑚𝑖𝑡(𝐿1, 𝐿2, 𝑆1), 𝑆1 < 55, 𝑆 > 𝑆1 + 5

The complete description of the domain, the full collection of policies, and experimental details are
available at: https://tinyurl.com/5n7ayekf.

We tested the ASP implementation of our framework on eleven planning scenarios. For each scenario,
we ran the planning agent in the five different modes listed in Section 4 for paranoid, cautious, pragmatic,
lazy, and non-conforming agents. Table 2 shows average times and standard deviation over 10 runs, as
well as the length of the optimal plan. All experiments were performed on a machine with an Intel(R)
Core(TM) i5-1335U CPU 1.30 GHz RAM 8GB.

Table 2
Experimental results for the Traffic Norms domain ( T - average time in s; SD -standard deviation; L -
optimal plan length)

Paranoid Cautious Pragmatic Lazy Non-Conforming

Scenario # T (s) SD T (s) SD L T (s) SD L T (s) SD L T (s) SD L

1 2.1 0.3 2.2 0.2 6 2.5 0.8 6 2.9 0.7 6 3.1 1.1 4
2 3.3 0.7 3.2 0.6 2 2.8 0.5 2 3.7 1.0 2 2.8 0.7 2
3 3.0 0.7 3.0 0.7 4 2.7 0.4 4 2.8 0.4 4 2.6 1.0 4
4 2.4 0.9 4.3 0.5 3 4.7 0.5 3 3.8 0.9 3 3.8 0.3 2
5 4.3 0.6 4.5 0.5 6 4.0 0.4 6 4.6 0.5 6 4.4 0.5 5
6 4.2 0.5 4.5 0.3 6 4.3 0.4 6 2.0 1.2 6 3.2 0.8 5
7 9.9 1.0 9.6 1.9 6 10.3 0.8 6 10.5 0.7 6 9.9 1.4 5
8 10.4 0.9 10.6 0.8 6 10.5 0.8 6 9.7 2.4 6 8.6 2.0 5
9 10.1 3.2 9.1 3.0 6 6.5 1.4 6 4.0 1.2 6 3.2 1.8 5
10 9.9 3.3 9.7 4.1 6 9.5 3.9 6 8.6 2.4 6 8.3 2.5 5
11 24.7 3.9 30.3 4.0 9 27.6 4.3 9 10.3 8.9 9 6.5 0.6 6

Given the nature of the policies, there were no plans that satisfied the paranoid behavior mode (i.e.,
plans consisting only of strongly-compliant actions). This is expected in regular domains, where the
paranoid mode may not be useful, as policies tend to specify what is not allowed instead of every single
action that is permitted. We can envision however domains with high levels of security in which this
behavior mode may actually be desirable. In terms of performance, as expected, the non-conforming
mode is the fastest, followed by the lazy mode. Generally, computing plans in the pragmatic mode
is slightly more efficient than the cautious mode. In fact, while the plans computed for the cautious,
pragmatic, and lazy modes have the same plan length, they differ in terms of performance, with the
lazy mode being the most efficient overall. We observe that as average time increases in more complex
scenarios #9-11, the standard deviation increases as well. We also notice an impact from the range of
the driving speeds to select from in different scenarios on the average run time. It is worthy to explore
more efficient ways of encoding the domain to reduce the impact on run time.

https://tinyurl.com/5n7ayekf


Discussion: This domain is important because it illustrates the need of simulating different behavior
modes as a fundamental step in the policy refinement process, similar to the use of use cases by Corapi
et al. [21]. Some of the cautious and pragmatic plans, although correct w.r.t. those behavior modes,
consist of actions that have the agent drive substantially below the speed limit (e.g., at 5 mph on a
street with a 25 mph speed limit), which would cause traffic jams and potentially unsafe actions from
other agents in real-life situations. The domain also illustrates the flexibility of the Behavior Mode
Specification Language BMSL, as it allows introducing new metrics to address this issue, such as real
time needed to accomplish an action. New behavior modes, specific to this domain, can be created by
the controller by refining the predefined modes, and adding requirements or priorities about total real
time to complete the plan (as done in other work we currently have underway).

Rooms Domain: We also tested our framework on a domain proposed by Harders and Inclezan [4],
using the same experimental setup as above. This domain assumes that an agent operates in a building
with several rooms. Rooms are connected by doors that allow unidirectional access from one room to
another. Doors can be locked and unlocked by the agent using either a key or a badge. The agent is
located in one of the rooms and wants to get to another room. The agent has information about extreme
situations such as an active fire or contamination in a room. The agent may have special protective
equipment on or not. A selection of policies in this domain are: Normally, the agent is obligated not to
enter a room where there is an active fire. However, the agent is allowed to enter (i.e., not obligated to not
enter) a room in which there is an active fire if it has a special protective equipment on. The agent is not
permitted to use its badge more than 3 times.
Due to space limitations, in Table 3 we show the results for five of the 14 tested scenarios, for the

cautious, pragmatic, and non-conforming modes. The selected scenarios are the ones that best indicate
the differences between these three behavior modes, as they produce plans of different lengths for
different modes. Results for additional scenarios and behavior modes, as well as more details about the
domain and its policies, are available at https://tinyurl.com/5n7ayekf (also see Harders [22]).

Cautious Pragmatic Non-Conforming

Scenario # T (s) L T (s) L T (s) L

1 2.7 3 2.9 3 2.6 3
3 2.4 8 2.6 6 2.7 5
5 2.9 7 3.1 7 2.9 2
8 2.5 10 2.6 4 2.8 4
14 3.3 6 3.1 4 3.1 4

Table 3
Sample experimental results for the Rooms domain ( T - average time in s; L - optimal plan length)

Discussion: As expected, optimal plans in the non-conforming mode are the fastest to compute and
the shortest in length. The cautious mode tends to find longer plans as it prioritizes strong-compliance
w.r.t. authorizations over other factors. This means that sometimes the agent goes out of its way to
execute actions that are explicitly known to be compliant (i.e., strongly-compliant actions), as if it was
looking to be awarded for good behavior. This happens in scenario #8, for example, in which the agent
takes a longer path to the goal only to unlock a door – an action that is deemed strongly-compliant by
the policy. We believe this behavior mode is still relevant to explore, especially by policy makers, as it
may illustrate a possibility on the spectrum of human behavior w.r.t. policies. In practice, the pragmatic
mode seemed to be the closest to general human behavior.

7. Related Work

The closest work to ours is the APIA architecture for policy-aware intentional agents by Meyer and
Inclezan [23]. One substantial difference between their work and ours is that APIA agents operate with
activities instead of simple plans, following the AIA architecture by [24]. By allowing sub-activities,

https://tinyurl.com/5n7ayekf


APIA agents can reason about complex scenarios, for example serendipitous cases, where a goal is
achieved because of someone else’s actions and thus the agent can drop its current plan. However,
APIA can only compare plans (or paths) according to the coarse definitions by Gelfond and Lobo [3],
and cannot characterize or compare plans that contain a mix of actions at different levels of compliance.
Additionally, it does not allow the agent’s controller to easily set preferences about what to prioritize
(e.g., compliance versus plan length), which we do in our framework. An architecture that allows
simulations of an agent’s actions when its controller (or the agent itself) is allowed to switch between
behavior modes during plan execution, for instance if an emergency arises, is reported by Glaze [25].
Such switches incur a small overhead to the runtime, but contribute to the flexibility of simulating
evolving agent behaviors, which is important especially when analyzing human behavior: an agent may
start out with a cautious behavior mode but switch to a non-conforming mode when the circumstances
involve saving someone’s life, for instance. The question of emergency situations in relation to policies
was also studied by Alves and Fernández [26] in the context of access control policies. In contrast, our
work is based on AOPL, which can express not only access control policies (i.e., authorizations), but
also obligations, both strict and defeasible, and preferences between policy statements.
Another aspect relevant to our work is answer set planning. A survey paper by Son et al. [19]

summarizes the state-of-the-art in this domain and the different special avenues of explored research:
classical planning, conformant planning, conditional planning, and planning with preferences. The
closest area of research to ours is that of planning with preferences. Son and Pontelli [20] introduced a
language 𝑃𝑃 for specifying basic preferences (state desires and goal preferences) and general preferences
among basic ones. Our work differs from Son et al.’s in that our preferences are set between different
metrics that are aggregates, for instance percentages, which is a more complex case. We are not sure
that maximization of percentage metrics can be achieved within the 𝑃𝑃 framework. Additionally, our
framework is domain-specific, as it focuses on policy compliance, and hence a simpler specification
language like the one proposed in Section 4 suffices.
Craven et al. [11] discussed issues that may arise from the analysis of a policy. Some of these are

relevant to planning, specificallymodality conflicts which occur when there are seemingly contradictory
statements in the obligation and authorization policy, for instance when an agent is obligated to perform
an action that it is not permitted to execute. Craven et al. employ Event Calculus [27] for the description
of an agent’s changing environment. In our work we use ASP and leverage existing research in the
ASP community on representing and reasoning about action and change, policy compliance, planning,
and autonomous agents.

8. Conclusions and Future Work

In this work, we introduced a framework that allows the specification of different behavior modes
of an autonomous agent in terms of plan selection w.r.t. to policy compliance. We described various
metrics that the controller can employ. The framework allows imposing constraints on these metrics
and establishing preferences in terms of which metrics should be optimized, according to the attitude
towards policy compliance that is meant to be captured. Additionally, new metrics can be included
and incorporated in the definition of new behavior modes. We described an implementation of this
framework in ASP. Experimental results for non-trivial domains were presented as well. This framework
can be useful to policy makers in practice, as a way to run simulations of different types of (human)
agents and refine policies based on any unintended consequences observed in such simulations.

In future work, we plan to extend our framework to autonomous intentional agents, which are driven
by goals and sub-goals associated with activities, by leveraging work by Meyer and Inclezan [23].
Additionally, we intend to explore other metrics that can be added to our framework. For instance,
Meyer and Inclezan proposed that less compliant actions should be scheduled later in a plan, as there is
a chance that those actions may not need to be executed if the goal is serendipitously met by someone
else’s actions. Finally, we plan to improve the efficiency of the framework and thank the anonymous
reviewers for their suggestions in this direction.
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