
A First Journey into the Complexity of Statistical
Statements in Probabilistic Answer Set Programming
Damiano Azzolini1, Markus Hecher2

1University of Ferrara, Ferrara, Italy
2Massachusetts Institute of Technology, Cambridge, United States

Abstract
Probabilistic Answer Set Programming is an efficient formalism to express uncertain information with an answer
set program (PASP). Recently, this formalism has been extended with statistical statements, i.e., statements that
can encode a certain property of the considered domain, within the PASTA framework. To perform inference,
these statements are converted into answer set rules and constraints with aggregates. The complexity of PASP
has been studied in depth, with results regarding both membership and completeness. However, a complexity
analysis of programs with statements is missing. In this paper, we close this gap by studying the complexity of
PASTA statements.

Keywords
Probabilistic Answer Set Programming, Computational Complexity, Statistical Statements

1. Introduction

Representing uncertain information with an interpretable language is currently one of the main goal of
Statistical Relational Artificial Intelligence [1]. Among the different languages, we have ProbLog [2],
Logic Programs with Annotated Disjunctions [3], and Stochastic Logic Programs [4] while some of
the possible semantics are the Distribution Semantics [5] and the Credal Semantics [6]. Answer Set
Programming [7] is a logic-based language that has been successfully applied to model combinatorial
domains. When the information is uncertain, we can adopt the Credal Semantics, that gives a meaning
to Answer Set Programs extended with probabilistic facts [2]. These programs are called Probabilistic
Answer Set Programs (PASP).

More than 30 years ago, Halpern [8] introduced the so-called “Type 1 statments”, also known as
“probabilistic conditionals” or “statistical statements”, that allow expressing statistical information about
a domain of interest. An example of such a statement is “X% of elements of a domain have the property
Y”. Recently, the authors of [9] introduced the possibility to express Type 1 statements with Probabilistic
Answer Set Programming, that are converted into a disjunctive rule and a constraint with aggregates,
and provided a framework called PASTA.

Inference in PASP has been proved hard [6, 10, 11]. For example, the inference task (i.e., the compu-
tation of the probability of a query) for propositional programs lies in the PPNP complexity class for
programs allowing disjunctive rules only, where PP represents the class of the decision problems that
can be solved in polynomial time with a probabilistic Turing machine [12]. If we add stratified negation
the complexity jumps to the PPΣp

2 class of the polynomial hierarchy [13]. Also in practice, inference in
such programs is very expensive [9, 14].

In this paper, we focus on PASP composed by a set of probabilistic facts and a set of statistical
statements only, and we study the complexity of inference in such programs. Theoretical results show
that, in such simple programs, inference can be efficiently computed.

The paper is structured as follows: Section 2 discusses some background knowledge related to Answer
Set Programming, Probabilistic Answer Set Programming and statistical statements, and Computational
Complexity. In Section 3 we study the complexity of programs with statistical statements. Section 4
surveys related work and Section 5 concludes the paper.

PLP 2024: 11th Workshop on Probabilistic Logic Programming, October, 2024, Dallas, USA.
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0/deed.en

2. Background

2.1. Answer Set Programming

Answer Set Programming [7] (ASP) is one of the possible logic-based languages suitable to model
combinatorial domains. An answer set program is composed by a set of disjunctive rules of the form

ℎ0; . . . ;ℎ𝑚 :− 𝑏0, . . . , 𝑏𝑛

where ℎ0; . . . ;ℎ𝑚 is a disjunction of atoms called head and 𝑏0, . . . , 𝑏𝑛 is a conjunction of literals called
body. We use 𝑛𝑜𝑡 to denote negation. Head and body may be empty: if the heady is empty (but the
body is not), the rule is called constraint; conversely, if the head has only one atom and the body is
empty, it is called fact. An example of disjunctive rule is 𝑎; 𝑏 :− 𝑐, where 𝑎; 𝑏 is the head and 𝑐 is the
body. Another construct often adopted in answer set programs are aggregates [15]. An aggregate has
the form 𝑡0𝜓0#𝑓{𝑒0; . . . ; 𝑒𝑛}𝜓1𝑡1, where the 𝑒𝑖s are aggregate terms of the form 𝑡0, . . . , 𝑡𝑘 : 𝜙 where
each 𝑡0 is a term and 𝜙 is a conjunction of literals, 𝑓 is an aggregation function such as 𝑐𝑜𝑢𝑛𝑡 or 𝑠𝑢𝑚,
𝜓0 and 𝜓1 are arithmetic comparison operators, and 𝑡0 and 𝑡1 are constants. An example of aggregate
is #𝑐𝑜𝑢𝑛𝑡{𝑋 : 𝑎(𝑋)} > 3.

We consider the Stable Model Semantics [16] as semantics for answer set programs. Under this
semantics, each program is associated with zero (in this case the program is often termed unsatisfiable)
or more stable models. A program is called ground when there are no variables in it. A non ground
program can be transformed into a ground program with a process called grounding. The Herbrand base
of a ground program 𝑃 is the set of all possible ground atoms that can be constructed using the symbols
defined in 𝑃 , often indicated with 𝐵𝑃 . An interpretation is a subset of 𝐵𝑃 . The reduct of a ground
program 𝑃 w.r.t. a subset 𝐼 of 𝐵𝑃 (this subset is called interpretation), denoted with 𝑃 𝐼 , is computed by
removing from 𝑃 the rules having at least one literal in the body is false in 𝐼 . An interpretation 𝐼 is
called stable model or answer set of a program 𝑃 if it is a minimal model under set inclusion of 𝑃 𝐼 . We
use 𝐴𝑆(𝑃) to denote the set of answer sets of 𝑃 . Let us clarify these definitions with an example.

Example 1. The following answer set program has two facts and three rules.

a.
b.

qa:- a.
qb:- b, not nqb.
nqb:- b, not qb.

It has two answer sets: {𝑎, 𝑞𝑎, 𝑏, 𝑛𝑞𝑏} and {𝑎, 𝑞𝑎, 𝑏, 𝑞𝑏}.

2.2. Probabilistic Answer Set Programming

To describe uncertain scenarios with Answer Set Programming, several semantics have been proposed,
such as LPMLN [17], P-log [18], and the credal semantics [11]. Here we focus on the credal semantics,
which extends an answer set program with probabilistic facts [2] of the form

Π :: 𝑎.

where Π ∈]0, 1[and 𝑎 is an atom. Intuitively, Π is the probability that 𝑎 is included in the program
and 1−Π that it is excluded. In the remaining part of the paper, we use the acronym PASP to indicate
both Probabilistic Answer Set Programming under the credal semantics and a probabilistic answer set
program interpreted under the credal semantics. Each PASP with 𝑛 probabilistic fact defines 2𝑛 world,
obtained by considering each possible selection of probabilistic facts. Let us call 𝑊 the set of all the
worlds. The probability of a world 𝑤 ∈𝑊 is computed as [5]

𝑃 (𝑤) =
∏︁
𝑎𝑖∈𝑤

𝑃 (𝑎𝑖) ·
∏︁
𝑎𝑖 ̸∈𝑤

1− 𝑃 (𝑎𝑖)

that is, by considering the probabilistic facts 𝑎𝑖 present or absent in 𝑤. In each world 𝑤 the set of
probabilistic facts is fixed, so each world is an answer set program. Thus, 𝑤 may have 0 more answer
sets but the credal semantics requires that it has at least one. In this paper, we will always assume that
every PASP has at least one answer set per world. Given a conjunction of ground literals 𝑞, often called
query, its probability 𝑃 (𝑞) is described by a range [P(𝑞),P(𝑞)] whose bounds depend on the number of
answer sets of every world with the query included. A world 𝑤 contributes to both the lower (P(𝑞))
and upper (P(𝑞)) bound for a query 𝑞 if 𝑞 is present in every answer set. Otherwise, if the query is true
only in some answer sets, 𝑤 contributes only to the upper probability bound. If the query is present in
none of the answer sets of 𝑤, 𝑤 contributes to none of the bounds. In formulas,

𝑃 (𝑞) = [P(𝑞),P(𝑞)] = [
∑︁

𝑤𝑖∈𝑊 𝑠.𝑡. ∀𝑚∈𝐴𝑆(𝑤𝑖), 𝑚|=𝑞

𝑃 (𝑤𝑖),
∑︁

𝑤𝑖∈𝑊 𝑠.𝑡. ∃𝑚∈𝐴𝑆(𝑤𝑖), 𝑚|=𝑞

𝑃 (𝑤𝑖)]

Let us discuss a clarifying example.

Example 2. The following program has two probabilistic facts, 𝑎 and 𝑏.

0.4::a.
0.3::b.

qa:- a.
qb:- b, not nqb.
nqb:- b, not qb.

q:- qa.
q:- qb.

It has 22 = 4 worlds: 𝑤0, where neither 𝑎 nor 𝑏 are present, whose probability is (1− 0.4) · (1− 0.3) =
0.6 · 0.7 = 0.42 and 𝐴𝑆(𝑤0) = {{}}; 𝑤1, where 𝑎 is present and 𝑏 is absent, whose probability is
0.4 · (1 − 0.3) = 0.4 · 0.7 = 0.28 and 𝐴𝑆(𝑤1) = {{𝑎, 𝑞𝑎, 𝑞}}; 𝑤2, where 𝑎 is absent and 𝑏 is present,
whose probability is (1 − 0.4) · 0.3 = 0.6 · 0.3 = 0.18 and 𝐴𝑆(𝑤2) = {{𝑏, 𝑞𝑏, 𝑞}, {𝑏, 𝑛𝑞𝑏}}; and
𝑤3, where both 𝑎 and 𝑏 are present, whose probability is 0.4 · 0.3 = 0.4 · 0.3 = 0.12 and 𝐴𝑆(𝑤3) =
{{𝑎, 𝑞𝑎, 𝑏, 𝑞𝑏, 𝑞}, {𝑎, 𝑞𝑎, 𝑏, 𝑛𝑞𝑏, 𝑞}}. If we are interested in computing the probability of 𝑞, we have that
𝑤0 contributes to none of the bounds since 𝑞 is present in none of its answer sets, 𝑤1 contributes to both the
lower and upper bound since 𝑞 is present in every answer set (there is only one with 𝑞 in it), 𝑤2 contributes
to only the upper bound since 𝑞 is present in only one of the two answer sets, and 𝑤3 contributes to both the
lower and upper bound since 𝑞 is present in every answer set (both have 𝑞 in it). Overall, [P(𝑞),P(𝑞)] =
[𝑃 (𝑤1) + 𝑃 (𝑤3), 𝑃 (𝑤1) + 𝑃 (𝑤2) + 𝑃 (𝑤3)] = [0.28 + 0.12, 0.28 + 0.18 + 0.12] = [0.4, 0.58].

Halpern’s statistical statements [8], also known as probabilistic conditionals, allow representing
statistical information about a domain, such as “X% of domain elements have the property Y”. The
authors of [9, 19] introduced the possibility of encoding such statements within a PASP with the syntax:

(𝐶 | 𝐴)[Π𝑙,Π𝑢]

where 𝐶 and 𝐴 are (conjunction of) atoms and Π𝑙,Π𝑢 ∈ [0, 1],Π𝑙 ≤ Π𝑢. We call 𝐶 consequent and 𝐴
antecedent. The meaning is “the fraction of 𝐴s that have the property 𝐶 is between Π𝑙 and Π𝑢”. To
perform inference, a statement is converted into a disjunctive rule with the structure 𝐶;𝑛𝑜𝑡_𝐶 :− 𝐴,
describing that the property 𝐶 may or may not hold for each element 𝐴, and a constraint with counting
aggregates imposing the specified probability bound, i.e., imposing

Π𝑙 ≤
#𝑐𝑜𝑢𝑛𝑡{X : 𝐴(X), 𝐶(X)}

#𝑐𝑜𝑢𝑛𝑡{X : 𝐴(X)}
≤ Π𝑢.

Let us clarify it by discussing the following example from [9].

Example 3 (from [9]). The following program has 3 probabilistic facts and one statistical statement.

0.4::bird(1). 0.4::bird(2). 0.4::bird(3).
(fly(X) | bird(X))[0.6,1].

The probabilistic facts indicate that the animals indexed with 1 up to 4 are birds with a probability of
0.4. The statement describes that at least 60% of the birds fly (and at most 100%, all of them). To perform
inference, this program is converted into;

0.4::bird(1). 0.4::bird(2). 0.4::bird(3).
fly(X) ; not_fly(X) :- bird(X).
:- #count{X:fly(X),bird(X)} = FB, #count{X:bird(X)} = B, 10*FB < 6*B.

If we want to compute the probability of the query fly(1), we get 0.336 for the lower and 0.4 for the upper
probability.

We can convert the program above into a program without counting aggregates, by enumerating all
the possible results of the aggregates. For examples, the program shown in Example 3 can be converted
into:

0.4::bird(1). 0.4::bird(2). 0.4::bird(3).
fly(X) ; not_fly(X) :- bird(X).
b1 :- bird(1).
b1 :- bird(2).
b1 :- bird(3).
:- b1, not fb1 .
b2 :- bird(1), bird(2).
b2 :- bird(1), bird(3).
b2 :- bird(2), bird(3).
:- b2, not fb2 .
b3 :- bird (1), bird (2), bird (3).
:- b3, not fb2.
fb1 :- fly(1).
fb1 :- fly(2).
fb1 :- fly(3).
fb2 :- fly(1), fly(2).
fb2 :- fly(1), fly(3).
fb2 :- fly(2), fly(3).

In the remaining part of the paper we refer to “PASTA programs” by programs comprising a set of
probabilistic facts as well as a set of disjunctive rules and constraints with counting aggregates.

2.3. Computational Complexity

We assume familiarity with computational complexity and use complexity classes as usual, see, e.g., [20,
21]. In particular, we use the complexity class PP for probabilistic polynomial-time problems [22] and
we rely on oracle notations as usual. A complete canonical problem for PP is to decide whether a
propositional formula has at least 𝑞 ∈ N satisfying assignments. More formally, the goal is to evaluate
whether the formula 𝜓 = #≥𝑞𝑋.𝜙(𝑋) evaluates to true, where 𝜙(𝑋) is a 3-CNF formula over variables
in𝑋 . This is the case if there are at least 𝑞 satisfying assignments of𝜙. Analogously, evaluating formulas
of the form𝜓 = #≥𝑞𝑋.∀𝑌.𝜙(𝑋,𝑌)with𝜙 being a Boolean formula in 3-DNF over variables in𝑋∪𝑌 , is
PPNP-complete. Intuitively, this requires witnessing at least 𝑞 assignments over 𝑋 , where any extension
of these assignments over variables 𝑌 , ensures that 𝜙 evaluates to true. For a detailed introduction over
this formalism and a survey on complexity results for probabilistic reasoning, see [10].

3. The Complexity of PASTA Inference

We obtain the following complexity results, which underline the simplicity of inference for PASTA
programs. As in [10], we focus here on the complexity of cautious reasoning, i.e., given a set of
ground literals 𝑄 (query), a set of ground atoms 𝐸 (evidence), and a real number 𝛾, deciding whether
P(𝑄 | 𝐸) ≥ 𝛾. As also noted in [10], the computation of the upper probability reduces to the
computation of the lower probability on the complement set of 𝑄. To lighten the notation, we simply
refer to the cautious reasoning task as inference task.

Theorem 1 (Complexity). Inference in PASTA programs under credal semantics is PPNP-complete.

Proof. Hardness: We reduce from #≥𝑞𝑋.∀𝑌.𝜙(𝑋,𝑌) with 𝜙 being a Boolean formula in 3-DNF over
variables in 𝑋 = {𝑥1, . . . , 𝑥𝑛} and 𝑌 = {𝑦1, . . . , 𝑦𝑚}. We construct a PASTA program Π, where for
every variable 𝑥 occurring in 𝑋 , we add probabilistic facts

0.5::t(𝑥).

We care about satisfied worlds, so we guess the state of satisfiability for every DNF term 𝑐

sat(𝑐) ; nsat(𝑐). sat ; nsat.

We guess the truth assignments for every universally quantified variable 𝑦 ∈ 𝑌 :

t(y) ; f(y).

For every DNF term 𝑐, every positive variable 𝑣𝑖 in 𝑐 and every negative occurrence ¬𝑣𝑗 add:

pos(𝑐, 𝑣𝑖). neg(𝑐, 𝑣𝑗).

We have satisfiability if and only if at least one DNF term is satisfied:

:- #count {C : sat(C)}=T, #count {1: sat}=S, T<S.
:- #count {C : nsat(C)}=T, #count {1: nsat}=S, S*|𝜙| >T.

For the satisfied DNF terms 𝑐 we add the following constraint:

:- #count {V : t(V), pos(𝑐,V); V : not t(V), neg(𝑐,V)}=T,
#count {1 : sat(𝑐)}=S, T<3S.

For the unsatisfied DNF terms 𝑐 we do the following

:- #count {V : t(V), pos(𝑐,V); V : not t(V), neg(𝑐,V)}=T,
#count {1 : nsat(𝑐)}=S, T=3S.

It is easy to see that #≥𝑞{𝑣1, . . . , 𝑣𝑛}.𝜙 holds, i.e., there are at least 𝑞 satisfying assignments of 𝜙 if
and only if P({𝑠𝑎𝑡}) ≥ 𝑞

2𝑛 .
Note that since 𝜙 is in 3-CNF, all constraint sizes are constant. Indeed, the aggregate body sizes are

at most 3 and we could even slightly adapt the proof to only use ground rules (i.e., without first-order
variables).

Membership: Follows directly from previous work [10, Table 1], which shows PPNP membership for
aggregates and default negation. Indeed, disjunction in PASTA programs can be directly translated to
default negation [23], as by definition there can not be a cyclic dependency between disjunctive head
atoms.

Note that disjunction or, alternatively, default negation is crucial in PASTA programs. Indeed, if we
did not allow disjunction, such programs can only capture co-NP decision complexity.

Theorem 2 (Complexity without disjunction). Inference in PASTA programs under credal semantics
without disjunctions is co-NP-complete.

Proof. Hardness: We reduce from ∀𝑋.𝜙(𝑋), where 𝜙(𝑋) is in 3-DNF over variables in 𝑋 =
{𝑥1, . . . , 𝑥𝑛}. We construct a PASTA program Π, where for every variable 𝑥 occurring in 𝑋 , we
add probabilistic facts

0.5::t(𝑥).

For every 3-DNF term 𝑐 we assume an arbitrary but fixed order among its literals 𝑙1 ∧ 𝑙2 ∧ 𝑙3. Then,
for the 𝑖-th variable 𝑣𝑖 such that 𝑙𝑖 = 𝑣𝑖 (positive occurrence in 𝑐) and for the 𝑗-th variable 𝑣𝑗 such that
𝑙𝑗 = ¬𝑣𝑗 , we add the facts:

pos𝑖(𝑐, 𝑣𝑖). neg𝑗(𝑐, 𝑣𝑗). sat.

For every 3-DNF term 𝑐, we add the following constraint which counts all satisfied 3-DNF terms
(going over all valid 23 cases):

:- #count {
C: t(V1), t(V2), t(V3), pos1(𝑐,V1), pos2(𝑐,V2), pos3(𝑐,V3);
C: not t(V1), t(V2), t(V3), neg1(𝑐,V1), pos2(𝑐,V2), pos3(𝑐,V3);
C: t(V1), not t(V2), t(V3), pos1(𝑐,V1), neg2(𝑐,V2), pos3(𝑐,V3);
C: t(V1), t(V2), not t(V3), pos1(𝑐,V1), pos2(𝑐,V2), neg3(𝑐,V3);
C: not t(V1), not t(V2), t(V3), neg1(𝑐,V1), neg2(𝑐,V2), pos3(𝑐,V3);
C: not t(V1), t(V2), not t(V3), neg1(𝑐,V1), pos2(𝑐,V2), neg3(𝑐,V3);
C: t(V1), not t(V2), not t(V3), pos1(𝑐,V1), neg2(𝑐,V2), neg3(𝑐,V3);
C: not t(V1), not t(V2), not t(V3), neg1(𝑐,V1), neg2(𝑐,V2), neg3(𝑐,V3)

}=T, #count {1 : sat}=S, T<S.

By the credal semantics, a query can only be answered positively, if there is no world without any
answer set. Consequently, we have that ∀𝑋.𝜙(𝑋) evaluates to true if and only if P({𝑠𝑎𝑡}) ≥ 1.

Membership: In order to answer a query P(𝐴 | 𝐵) ≥ 𝑝 for a given PASTA program Π, we need to
ensure that there is no world without an answer set. This is the co-problem of finding some world
without an answer set. In order to find such a world, we just guess any subset of facts and check
in polynomial time whether the guess fulfills all aggregate constraints. Observe that for the guess
the query P(𝐴 | 𝐵) ≥ 𝑝 can then be answered in polynomial time. Indeed, we do so by using the
known relationship [10, Eqs (4)] P(𝐴 | 𝐵) = P(𝐴∩𝐵)

P(𝐴∩𝐵)+P(𝐴∩𝐵)
. It is easy to see that thereby P(𝑋)

can be computed by just multiplying probabilities of the literals in 𝑋 . Consequently, we can answer
P(𝐴 | 𝐵) ≥ 𝑝 in polynomial time (without the need to go over the potentially exponential number of
worlds individually). Analogously this works for answering queries of the form P(𝐴 | 𝐵) ≥ 𝑝 instead
of P(𝐴 | 𝐵) ≥ 𝑝, as we have P(𝐴 | 𝐵) = P(𝐴 | 𝐵).

4. Related Work

Different semantics have been proposed in Probabilistic Answer Set Programming. Here we focused on
the credal semantics. However, there are alternatives such as LPMLN [24], P-log [18], smProbLog [25],
and PrASP [26]. As discussed through the paper, the complexity of PASP under the credal semantics has
been studied in depth in [6, 10, 11]. The inference task goes up several levels of the polynomial hierarchy
depending on the allowed syntactic constructs such as disjunctive rules, negation (either stratified
or non-stratified), and aggregates. However, this seems the price to pay to use a rich and expressive
language. Statistical statements are also discussed in [27], where the author provides a semantics based
on the cross entropy minimization. The approach considered in PASTA is different, since it does not
focus on a single model but it considers multiple models and lower and upper probability bounds.

5. Conclusion

In this paper, we provided an initial study of the complexity of the statistical statements provided by
the PASTA framework. These statements are represented with a probabilistic answer set program,
interpreted under the credal semantics, by means of disjunctive rules and constraints with counting ag-
gregates involved. Our results show that PASTA programs are quite rich, as we reach PPNP-completeness.
However, the hardness proof of this result in Theorem 1 relies on using disjunction (or, alternatively,
cyclic default negation), so without this language feature we can only reach co-NP completeness, as
shown in Theorem 2. As a future work we plan to extend the complexity analysis to also consider the
structure of PASTA programs.

References

[1] L. D. Raedt, K. Kersting, S. Natarajan, D. Poole, Statistical relational artificial intelligence: Logic,
probability, and computation, Synthesis Lectures on Artificial Intelligence and Machine Learning
10 (2016) 1–189.

[2] L. De Raedt, A. Kimmig, H. Toivonen, ProbLog: A probabilistic Prolog and its application in link
discovery, in: M. M. Veloso (Ed.), 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), volume 7, AAAI Press, 2007, pp. 2462–2467.

[3] J. Vennekens, S. Verbaeten, M. Bruynooghe, Logic programs with annotated disjunctions, in:
B. Demoen, V. Lifschitz (Eds.), 20th International Conference on Logic Programming (ICLP 2004),
volume 3131 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2004, pp. 431–445.
doi:10.1007/978-3-540-27775-0_30.

[4] S. Muggleton, et al., Stochastic logic programs, Advances in inductive logic programming 32
(1996) 254–264.

[5] T. Sato, A statistical learning method for logic programs with distribution semantics, in: L. Sterling
(Ed.), Logic Programming, Proceedings of the Twelfth International Conference on Logic Program-
ming, Tokyo, Japan, June 13-16, 1995, MIT Press, 1995, pp. 715–729. doi:10.7551/mitpress/
4298.003.0069.

[6] F. G. Cozman, D. D. Mauá, On the semantics and complexity of probabilistic logic programs,
Journal of Artificial Intelligence Research 60 (2017) 221–262. doi:10.1613/jair.5482.

[7] G. Brewka, T. Eiter, M. Truszczyński, Answer set programming at a glance, Communications of
the ACM 54 (2011) 92–103. doi:10.1145/2043174.2043195.

[8] J. Y. Halpern, An analysis of first-order logics of probability, Artificial Intelligence 46 (1990)
311–350. doi:10.1016/0004-3702(90)90019-V.

[9] D. Azzolini, E. Bellodi, F. Riguzzi, Statistical statements in probabilistic logic programming, in:
G. Gottlob, D. Inclezan, M. Maratea (Eds.), Logic Programming and Nonmonotonic Reasoning,
Springer International Publishing, Cham, 2022, pp. 43–55. doi:10.1007/978-3-031-15707-3_
4.

[10] D. D. Mauá, F. G. Cozman, Complexity results for probabilistic answer set programming, Interna-
tional Journal of Approximate Reasoning 118 (2020) 133–154. doi:10.1016/j.ijar.2019.12.
003.

[11] F. G. Cozman, D. D. Mauá, The joy of probabilistic answer set programming: Semantics, complexity,
expressivity, inference, International Journal of Approximate Reasoning 125 (2020) 218–239.
doi:10.1016/j.ijar.2020.07.004.

[12] J. Gill, Computational complexity of probabilistic turing machines, SIAM Journal on Computing 6
(1977) 675–695. doi:10.1137/0206049.

[13] K. W. Wagner, The complexity of combinatorial problems with succinct input representation, Acta
Inf. 23 (1986) 325–356. doi:10.1007/BF00289117.

[14] D. Azzolini, F. Riguzzi, Inference in probabilistic answer set programming under the credal
semantics, in: R. Basili, D. Lembo, C. Limongelli, A. Orlandini (Eds.), AIxIA 2023 - Advances in

http://dx.doi.org/10.1007/978-3-540-27775-0_30
http://dx.doi.org/10.7551/mitpress/4298.003.0069
http://dx.doi.org/10.7551/mitpress/4298.003.0069
http://dx.doi.org/10.1613/jair.5482
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1016/0004-3702(90)90019-V
http://dx.doi.org/10.1007/978-3-031-15707-3_4
http://dx.doi.org/10.1007/978-3-031-15707-3_4
http://dx.doi.org/10.1016/j.ijar.2019.12.003
http://dx.doi.org/10.1016/j.ijar.2019.12.003
http://dx.doi.org/10.1016/j.ijar.2020.07.004
http://dx.doi.org/10.1137/0206049
http://dx.doi.org/10.1007/BF00289117

Artificial Intelligence, volume 14318 of Lecture Notes in Artificial Intelligence, Springer, Heidelberg,
Germany, 2023, pp. 367–380. doi:10.1007/978-3-031-47546-7_25.

[15] M. Alviano, W. Faber, Aggregates in answer set programming, KI-Künstliche Intelligenz 32 (2018)
119–124. doi:10.1007/s13218-018-0545-9.

[16] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming., in: 5th International
Conference and Symposium on Logic Programming (ICLP/SLP 1988), volume 88, MIT Press, USA,
1988, pp. 1070–1080.

[17] J. Lee, Y. Wang, Weighted rules under the stable model semantics, in: C. Baral, J. P. Delgrande,
F. Wolter (Eds.), Proceedings of the Fifteenth International Conference on Principles of Knowledge
Representation and Reasoning, AAAI Press, 2016, pp. 145–154.

[18] C. Baral, M. Gelfond, N. Rushton, Probabilistic reasoning with answer sets, Theory and Practice
of Logic Programming 9 (2009) 57–144. doi:10.1017/S1471068408003645.

[19] D. Azzolini, F. Riguzzi, Lifted inference for statistical statements in probabilistic answer set
programming, International Journal of Approximate Reasoning 163 (2023) 109040. doi:10.1016/
j.ijar.2023.109040.

[20] R. Fagin, Generalized First-Order Spectra and Polynomial-Time Recognizable Sets, in: 7th Symposia
in Applied Mathematics (SIAM 1974), 1974.

[21] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[22] J. Gill, Computational Complexity of Probabilistic Turing Machines, SIAM J. Comput. 6 (1977)

675–695. URL: https://doi.org/10.1137/0206049. doi:10.1137/0206049.
[23] T. Eiter, G. Gottlob, Expressiveness of stable model semantics for disjunctive logic programs with

functions, The Journal of Logic Programming 33 (1997) 167–178.
[24] J. Lee, Z. Yang, LPMLN, weak constraints, and P-log, in: S. Singh, S. Markovitch (Eds.), Proceedings

of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, AAAI Press, 2017, pp. 1170–1177.

[25] P. Totis, L. De Raedt, A. Kimmig, smProbLog: Stable model semantics in ProbLog for proba-
bilistic argumentation, Theory and Practice of Logic Programming (2023) 1–50. doi:10.1017/
S147106842300008X.

[26] M. Nickles, A tool for probabilistic reasoning based on logic programming and first-order the-
ories under stable model semantics, in: L. Michael, A. Kakas (Eds.), Logics in Artificial Intel-
ligence, Springer International Publishing, Cham, 2016, pp. 369–384. doi:doi.org/10.1007/
978-3-319-48758-8_24.

[27] M. Jaeger, Probabilistic reasoning in terminological logics, in: J. Doyle, E. Sandewall, P. Torasso
(Eds.), 4th International Conference on Principles of Knowledge Representation and Reasoning,
Morgan Kaufmann, 1994, pp. 305–316. doi:10.1016/B978-1-4832-1452-8.50124-X.

http://dx.doi.org/10.1007/978-3-031-47546-7_25
http://dx.doi.org/10.1007/s13218-018-0545-9
http://dx.doi.org/10.1017/S1471068408003645
http://dx.doi.org/10.1016/j.ijar.2023.109040
http://dx.doi.org/10.1016/j.ijar.2023.109040
https://doi.org/10.1137/0206049
http://dx.doi.org/10.1137/0206049
http://dx.doi.org/10.1017/S147106842300008X
http://dx.doi.org/10.1017/S147106842300008X
http://dx.doi.org/doi.org/10.1007/978-3-319-48758-8_24
http://dx.doi.org/doi.org/10.1007/978-3-319-48758-8_24
http://dx.doi.org/10.1016/B978-1-4832-1452-8.50124-X

	1 Introduction
	2 Background
	2.1 Answer Set Programming
	2.2 Probabilistic Answer Set Programming
	2.3 Computational Complexity

	3 The Complexity of PASTA Inference
	4 Related Work
	5 Conclusion

