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Abstract
After presenting Sommers and Englebretsen’s Term Functor Logic, and Thompson’s statistical syllogistic, we
produce some tableaux for a fragment of Thompson’s syllogistic.
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1. Introduction

Term logics are interesting logics. They are Aristotelian in principle, rather than Fregean, and maybe
because of that, they have been disparaged in various ways, particularly since the late 19th and the early
20th; however, nowadays, far from being superseded (contra [1, 2, 3]), they are in a path of revision and
revival (v.gr. [4, 5, 6, 7, 8, 9, 10]). In this contribution we follow this path and so we offer a tableaux proof
method for statistical reasoning by using a particular term logic. More specifically, after presenting
Sommers and Englebretsen’s Term Functor Logic, and Thompson’s statistical syllogistic, we produce
some tableaux for a fragment of Thompson’s syllogistic.

2. Preliminaries

2.1. Term Functor Logic

Term Functor Logic [4, 11, 12, 6, 13] is a plus-minus algebra that employs terms and functors, in
Aristotelian fashion, rather than Fregean, first order language elements such as individual variables
or quantifiers. According to this algebra, the four categorical statements of syllogistic, 𝒮𝒴ℒℒ, can be
represented by the following syntax [6]:

All S is P := −S+ P

All S is not P := −S− P

Some S is P := +S+ P

Some S is not P := +S− P

Given this representation, Term Functor Logic, 𝒯 ℱℒ, provides a simple rule for syllogistic inference:
a conclusion follows validly from a set of premises if and only if i) the sum of the premises is algebraically
equal to the conclusion and ii) the number of conclusions with particular quantity (viz., zero or one)
is the same as the number of premises with particular quantity [6, p.167]. Thus, for instance, if we
consider a valid syllogism, we can see how the application of this rule produces the right conclusion
(Table 1).
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Table 1
A valid syllogism

Statement 𝒯 ℱℒ

1. All computer scientists are animals. −C+ A
2. All logicians are computer scientists. −L+ C
⊢ All logicians are animals. −L+ A

In this example, we can clearly see how the rule works: i) if we add up the premises we obtain
the algebraic expression (−C+ A) + (−L+ C) = −C+ A− L+ C= −L+ A, so that the sum of the
premises is algebraically equal to the conclusion and the conclusion is of the form −L+ A, rather than
+A− L, because ii) the number of conclusions with particular quantity (zero in this case) is the same as
the number of premises with particular quantity (zero in this case).1 In contrast, just for the sake of
comparison, consider an invalid syllogism that does not add up (Table 2).

Table 2
An invalid syllogism

Statement 𝒯 ℱℒ

1. All computer scientists are animals. −C+ A
2. All computer scientists are logicians. −C+ L
̸⊢ All logicians are animals. −L+ A

Now, as exposed elsewhere [14, 15], we can develop a tableaux proof method for 𝒯 ℱℒ. So, let us
say a tableau for 𝒯 ℱℒ is an acyclic connected graph determined by nodes and vertices. The node at
the top is called root. The nodes at the bottom are called tips. Any path from the root down a series of
vertices is a branch. To test an inference for validity we construct a tableau which begins with a single
branch at whose nodes occur the premises and the rejection of the conclusion: this is the initial list. We
then apply the expansion rules that allow us to extend the initial list (Figure 1).

−S± P

−S𝑖 ±P𝑖

(a)

+S± P

+S𝑖

±P𝑖

(b)

Figure 1: 𝒯 ℱℒ tableaux expansion rules

Figure 3a depicts the rule for universal statements, while Figure 3b shows the rule for particular
statements. After applying a rule we introduce some index 𝑖 ∈ {1, 2, 3, . . .}. For universal statements
the index may be any natural number; for particular statements the index has to be a new natural
number if they do not already have an index. Also, following 𝒯 ℱℒ tenets, we assume the following
rules of rejection: −(±T) = ∓T, −(±T± T) = ∓T∓ T, and −(−− T−−T) = +(−T) + (−T).

A tableau is complete if and only if every rule that can be applied has been applied. A branch is closed
if and only if there are terms of the form ±A𝑖 and ∓A𝑖 on two of its nodes; otherwise it is open. A
closed branch is indicated by writing a ⊥ at the end of it; an open branch is indicated by writing ∞. A
tableau is closed if and only if every branch is closed; otherwise it is open. So, as usual, ±T is a logical
consequence of the set of terms Γ (i.e. Γ ⊢ ±T) if and only if there is a complete closed tableau whose
initial list includes the terms of Γ and the rejection of ±T (i.e. Γ∪ {∓T} ⊢ ⊥). As an example, consider
Figure 2, which shows the inferences exposed in Tables 1 and 2.
1Although we are exemplifying this logic with syllogistic inferences, this system is capable of representing relational, singular,
and compound inferences with ease and clarity. Furthermore, 𝒯 ℱℒ is arguably more expressive than classical first order
logic [12, p.172].



−C+ A
−L+ C
⊢ −L+ A
−(−L+ A)
+L− A

+L1

−A1

−L1

⊥
+C1

−C1

⊥
+A1

⊥

(a) A valid syllogism

−C+ A
−C+ L
⊢ −L+ A
−(−L+ A)
+L− A

+L1

−A1

−C1

−C1

∞
+L1

∞

+A1

⊥

(b) An invalid syllogism

Figure 2: A pair of examples

2.2. Statistical syllogistic

Peterson [16] and Thompson [17] developed an extension of 𝒮𝒴ℒℒ by adding three intermediate
quantifiers: “few” (for predominant statements), “many” (for majority statements), and “most” (for
common statements). The result was an intermediate syllogistic, 𝒮𝒴ℒℒ+, with which we can model
inference between universal, particular, predominant, majority, and common statements. Thompson’s
Statistical Syllogistic, 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡, is an extension of 𝒮𝒴ℒℒ+ that models inference between statements
using statistical quantifiers [18]. To observe the differences among these logics, consider Table 3.

Table 3
Statements in 𝒮𝒴ℒℒ, 𝒮𝒴ℒℒ+, and 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡

Statement 𝒮𝒴ℒℒ 𝒮𝒴ℒℒ+ 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡

Universal All S are (not) P All S are (not) P 100% of S are (not) P
Predominant Few S are (not) P Almost 100% of S are (not) P
Majority Most S are (not) P More than 100% of S are (not) P
Common Many S are (not) P Much more than 0% of S are (not) P
Particular Some S are (not) P Some S are (not) P More than 0% of S are (not) P

According to Thompson, in order to specify these statements in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 we need to consider a
distribution index defined by two components:

• A limit 𝑛 ∈ ℜ such that 0 ≤ 𝑛 ≤ 100, for all the quantifiers that receive a minimal interpretation:
𝑛 is the percentual quantifier.2

• A modifier written as a subindex of the limit that measures the vagueness of a quantifier in a
given context. This modifier is expressed by way of two variables, 𝜎 and 𝜄:

– 𝜎 is a significance level. Given some context, 𝜎 is the value such that “much more than 𝑛%
of S are P” is true when the actual percentage of S that are S is (𝑛+𝜎) or more. By the way
in which “much more than 𝑛%” is defined, 𝜎 is also the value such that “almost 𝑛% of S are
P” is false when the actual percentage of S that are P is (𝑛− 𝜎) or less. 𝜎 is thus arbitrarily
defined, but if it works with its usual meaning, it cannot be less than or equal to 0 or greater
than 100, and, like the significance level of statistical tests, it is rarely greater than 5.

– 𝜄 denotes an infinitesimal positive magnitude with two properties:

2As explained in [17], a quantifier receives a minimal interpretation when it means at least a certain amount or more; a
quantifier receives a maximal interpretation when it means no more than a certain amount or less. Thus, for example, “25%
of S is P” is true if the percentage of S that are P is exactly 25%, 50%, or even 100%.



∗ (𝑛+ 𝜄) > 𝑛, and
∗ if 𝑚 < 𝑛, then 𝑚 < 𝑛− (𝑥× 𝜄), where 𝜄 is a positive infinitesimal and 𝑚, 𝑛, and 𝑥 are

real numbers.

Being greater than 0, 𝜄 is a value such that “more than 𝑛% of S are P” is true when the actual percentage
of S that are P is (𝑛+ 𝜄) or more. Consequently, 𝜄 is also a value such that nearly 𝑛% of S are P is true
when the percentage of S that are P is greater than or equal to (𝜎 − 𝜄) = 𝑛+ (𝜄− 𝜎).

With these assumptions, the next rules of distribution allow us to associate a distribution index to
each term in a given statement:

1. Distribution by quality.
a) For positive statements, the predicate term has a distribution index of 0𝜄.
b) For negative statements, the predicate term has a distribution index of 1000.

2. Distribution by quantity.
a) For statements with a quantifier of the form “𝑛%” the subject term has a distribution index

of 𝑛0.
b) For statements with a quantifier of the form “almost 𝑛%” the subject term has a distribution

index of 𝑛(𝜄−𝜎).
c) For statements with a quantifier of the form “more than 𝑛%” the subject term has a distribu-

tion index of 𝑛𝜄.
d) For statements with a quantifier of the form “Many more than 𝑛%” the subject term has a

distribution index of 𝑛𝜎 .
e) For statements with a quantifier of the form “Less than𝑛%” the subject term has a distribution

index of (100− 𝑛)𝜄.

Given these preliminary considerations, Thompson offers the following rules of validity, where 𝑀1
and 𝑃𝑝 are the distribution indices of the terms of the major premise (the middle term and the major
term, respectively); 𝑀2 and 𝑆𝑝 are the distribution indices of the minor premise (the middle term and
the minor term, respectively); 𝑆𝑐 and 𝑃𝑐 are the distribution indices of the terms of the conclusion
(the minor term and the major term, respectively); and finally, 𝑃𝑀 is the distribution index of the
predicate of the major premise and 𝑃𝑚 is the distribution index of the predicate of the minor premise.
The maximum distribution value that an occurrence of a term can receive is 1000, such that a term with
a distribution index of 100𝜄 is maximally distributed. Thus, a syllogism is valid in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 if and only
if:

1. The middle term is more that maximally distributed in the premises, i.e., 𝑀1 +𝑀2 > 1000.
2. The minor term in the premises is distributed at least to the same degree as in the conclusion, i.e.,

𝑆𝑝 ≥ 𝑆𝑐.
3. The major term in the premises is distributed at least to the same degree as in the conclusion, i.e.,

𝑃𝑝 ≥ 𝑃𝑐.
4. The number of negative premises is equal to the number of negative conclusions, i.e., 𝑃𝑀+𝑃𝑚 =

𝑃𝑐+ 0𝜄.

Thus, for example, the syllogisms in Tables 4, 5 are valid in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡, while the syllogism in Table 6
is invalid. The syllogism in Table 4 is valid because it follows all the rules. It satisfies rule 1, because
(𝑀1+𝑀2) = (1000+0𝜄) = (100+0)𝜄 = 100𝜄, and 100𝜄 > 1000, since (100−100) = 0 > −𝜄 = 0−𝜄.
It also satisfies rule 2, since 37, 20 ≥ 37, 20; and rule 3, because 0𝜄 ≥ 0𝜄. Also, vacuously, it satisfies
rule 4. The example shown in Table 5 also satisfies rule 1 insofar as (𝑀1 +𝑀2) = (27𝜄−𝜎 + 73𝜎) =
(27 + 73)((𝜄−𝜎)+𝜎) = 100𝜄. Clearly, the other rules are also satisfied. The example in Table 6 is invalid
because the middle term is not more than maximally distributed (i.e. 5𝜄 + 0𝜄 < 1000) and the major
term in the premises is not distributed to at least the same degree as the major term in the conclusion
(i.e. 𝑃𝑝 < 𝑃𝑐).



Table 4
A valid syllogism in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡

Statement 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡

1. All Greeks are human. 𝑀1 = 1000, 𝑃𝑝 = 0𝜄
2. 37,2% of philosophers are Greek. 𝑆𝑝 = 37, 20,𝑀2 = 0𝜄
⊢ 37,2% of philosophers are human. 𝑆𝑐 = 37, 20, 𝑃 𝑐 = 0𝜄

Table 5
Another valid syllogism in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡

Statement 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡

1. Almost 27% of philosophers are not friendly. 𝑀1 = 27𝜄−𝜎, 𝑃𝑝 = 0𝜄
2. Much more than 73% of philosophers are strage. 𝑀2 = 73𝜎, 𝑆𝑝 = 0𝜄
⊢ Some strange people are not friendly. 𝑆𝑐 = 0𝜄, 𝑃 𝑐 = 0𝜄

Table 6
An invalid syllogism in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡

Statement 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡

1. More than 5% of philosophers are vegan. 𝑀1 = 5𝜄, 𝑃𝑝 = 0𝜄
2. Less than 100% of philosophers are not smart. 𝑀2 = 0𝜄, 𝑆𝑝 = 1000
̸⊢ Almost 95% of smart people are vegan. 𝑆𝑐 = 95𝜄−𝜎, 𝑃 𝑐 = 1000

3. 𝒯 ℱℒ𝑠𝑡𝑎𝑡

As can be seen up to this point, 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 offers an interesting approach to model statistical syllogistic;
however, it does not offer a more general algebraic model. Given this state of affairs, in this section we
propose the logic 𝒯 ℱℒ𝑠𝑡𝑎𝑡 in order to unify the virtues of 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 with those of 𝒯 ℱℒ. To achieve this
goal we follow two steps: first, we propose an adaptation of the 𝒯 ℱℒ syntax to include the statistical
quantifiers of 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡, and then we modify the 𝒯 ℱℒ rules.

3.1. Syntax

In order to accommodate the statements of 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 within the signature of 𝒯 ℱℒ, consider Table 7.

Table 7
Syntax of 𝒯 ℱℒ𝑠𝑡𝑎𝑡

Positive statements Negative statements

𝑛% of S is P −S𝑛0+P0𝜄 𝑛% of S is not P −S𝑛0−P1000

Almost 𝑛% of S is not P −S𝑛𝜄−𝜎+P0𝜄 Almost 𝑛% of S is P −S𝑛𝜄−𝜎−P1000

More than 𝑛% of S is P +S𝑛𝜄+P0𝜄 More than 𝑛% of S is not P +S𝑛𝜄−P1000

Much more than 𝑛% of S is P +S𝑛𝜎+P0𝜄 Much more than 𝑛% of S is not P +S𝑛𝜎−P1000

Less than 𝑛% of S is not P +S(100−𝑛)𝜄+P0𝜄 Less than 𝑛% of S is P +S(100−𝑛)𝜄−P1000

3.2. Rules

Now, we say that a syllogism is valid in 𝒯 ℱℒ𝑠𝑡𝑎𝑡 if and only if i) the sum of the premises is algebraically
equal to the conclusion, ii) the number of conclusions with particular quantity (i.e., zero or one) is
equal to the number of premises with particular quantity; iii) the sum of the distribution indices of the
middle terms is greater than 1000; and iv) the distribution indices of the conclusion do not exceed the



distribution indices of the premises. To illustrate this definition, let us reconsider the previous examples
(Tables 8, 9 and 10).

Table 8
A valid syllogism in 𝒯 ℱℒ𝑠𝑡𝑎𝑡

Statement 𝒯 ℱℒ𝑠𝑡𝑎𝑡

1. All Greeks are human. −G1000+H0𝜄

2. 37,2% of philosophers are Greek. −P37,20+G0𝜄

⊢ 37,2% of philosophers are human. −P37,20+H0𝜄

Table 9
Another valid syllogism in 𝒯 ℱℒ𝑠𝑡𝑎𝑡

Statement 𝒯 ℱℒ𝑠𝑡𝑎𝑡

1. Almost 27% of philosophers are not friendly. −P27𝜄−𝜎+F0𝜄

2. Much more than 73% of philosophers are strage. +P73𝜎+S0𝜄

⊢ Some strange people are friendly. +S0𝜄+F0𝜄

Table 10
An invalid syllogism in 𝒯 ℱℒ𝑠𝑡𝑎𝑡

Statement 𝒯 ℱℒ𝑠𝑡𝑎𝑡

1. More than 5% of philosophers are vegan. +P5𝜄+V0𝜄

2. Less than 100% of philosophers are not smart. +P0𝜄−A1000

̸⊢ Almost 95% of smart people are vegan. −A95𝜄−𝜎−V1000

3.3. Tableaux

Given these ideas, we would like to offer some tableaux for 𝒯 ℱℒ𝑠𝑡𝑎𝑡. So, consider the following
expansion rules (Figure 3):

−S𝑑 ± P𝑑

−S𝑑𝑖 ±P𝑑
𝑖

(a)

+S𝑑 ± P𝑑

+S𝑑𝑖

±P𝑑
𝑖

(b)

Figure 3: 𝒯 ℱℒ𝑠𝑡𝑎𝑡 tableaux expansion rules

These rules work as expected. After applying a rule we introduce some subindex 𝑖 ∈ {1, 2, 3, . . .} as
in 𝒯 ℱℒ, but also, we use a superindex 𝑑 that represents the distribution index of a given term according
to 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡. With these assumptions, we say tableau is complete if and only if every rule that can be
applied has been applied. A branch is closed if and only if i) there are terms of the form ±A𝑑

𝑖 and ∓A𝑑
𝑖

on two of its nodes or ii) there are terms of the form ±A𝑑
𝑖 and ∓A𝑑

𝑖 and the sum of the distribution
indexes is greater than 1000; otherwise it is open. A closed branch is indicated by writing a ⊥ at the
end of it; an open branch is indicated by writing ∞. A tableau is closed if and only if every branch is
closed; otherwise it is open. Thus, again as usual, ±T is a logical consequence of the set of terms Γ if
and only if there is a complete closed tableau whose initial list includes the terms of Γ and the rejection
of ±T. As an example, consider Figure 4, which shows the inferences exposed in Tables 8, 9, and 10.



−G1000+H0𝜄

−P37,20+G0𝜄

⊢ −P37,20+H0𝜄

−(−P37,20+H0𝜄)

+P37,20−H0𝜄

+P37,20
1

−H0𝜄
1

−P37,20
1

⊥
+G0𝜄

1

−G1000
1

⊥100𝜄

+H0𝜄
1

⊥

(a) A valid syllogism

−P27𝜄−𝜎−F1000

+P73𝜎+S0𝜄

⊢ +S0𝜄−F1000

−(+S0𝜄−F1000)

−S0𝜄+F1000

+P73𝜎
1

+S0𝜄1

−S0𝜄1
⊥

+F1000
1

−P
27𝜄−𝜎

1

⊥100𝜄

−F1000
1

⊥

(b) Another valid syllogism
+P5𝜄+V0𝜄

+P0𝜄−A1000

⊢ −A95𝜄−𝜎−V1000

−(−A95𝜄−𝜎−V1000)

+A95𝜄−𝜎+V1000

+A
95𝜄−𝜎

1

+V1000
1

+P5𝜄
2

+V0𝜄
2

+P0𝜄
3

−A1000
3

∞

(c) An invalid syllogism

Figure 4: More examples

Now, before we continue with some formal results, let us consider a couple of features of this proposal.
First, we have to point out that our proposal differs from Thompson’s insofar as 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 allows
universal statements to entail particular statements, but since our proposal follows the tenets of 𝒯 ℱℒ,
we have to add another rule to the 𝒯 ℱℒ𝑠𝑡𝑎𝑡 framework: if the premises have a subject term with the
functor “−”, then the conclusion cannot have a subject term with the functor “+”. This consideration
causes inferences such as those in Table 11 to be conditionally or enthymematically correct, as in
Figure 5.

Table 11
A conditionally valid inference in 𝒯 ℱℒ𝑠𝑡𝑎𝑡

Statement 𝒯 ℱℒ𝑠𝑡𝑎𝑡

0. There are more than 63% of philosophers. +P63𝜄+P0𝜄

1. Every Greek is human. −G1000+H0𝜄

2. 37% of philosophers are Greek. −P370+G0𝜄

⊢ More than 0% of philosophers are human. +P0𝜄+H0𝜄



+P63𝜄+P0𝜄

−G1000+H0𝜄

−P370+G0𝜄

⊢ +P0𝜄+H0𝜄

−(+P0𝜄+H0𝜄)

−P0𝜄−H0𝜄

+P63𝜄
1

+P0𝜄
1

−P0𝜄
1

⊥
−H0𝜄

1

−P370
1

⊥100𝜄

+G0𝜄
1

−G1000

⊥100𝜄

+H0𝜄

⊥

Figure 5: A conditionally valid inference

Second, it seems that the expressive power of 𝒯 ℱℒ for dealing with relations can be used to produce
statistical syllogisms with relations, for example, as in Table 12 and Figure 6.

Table 12
A relational valid inference in 𝒯 ℱℒ𝑠𝑡𝑎𝑡

Statement 𝒯 ℱℒ𝑠𝑡𝑎𝑡

1. 37% of philosophers hate some logicians. −P370 + (+H0𝜄+L0𝜄)
2. More than 89% of philosophers are cynical. +P89𝜄+C0𝜄

⊢ Some cynical hates some logician. +C0𝜄 + (+H0𝜄+L0𝜄)

−P370 + (+H0𝜄+L0𝜄)
+P89𝜄+C0𝜄

⊢ +C0𝜄 + (+H0𝜄+L0𝜄)
−(+C0𝜄 + (+H0𝜄+L0𝜄))
−C0𝜄 − (+H0𝜄+L0𝜄)

+P89𝜄
1

+C0𝜄
1

−C0𝜄
1

⊥
−(+H0𝜄+L0𝜄)1

−P370
1

⊥100𝜄

+(+H0𝜄+L0𝜄)1
⊥

Figure 6: A relational valid inference

Finally, before we close this contribution, we would like to offer some formal results:

Proposition 1 (Soundness). If a syllogism is valid in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡, then its tableau is closed complete.

Proof. Notice that when the statements have indices 1000 and 0𝜄 only, the proof is trivial: the syllogisms
have closed complete tableaux because in that case 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 collapses with 𝒯 ℱℒ. For the rest of
syllogisms let us suppose, for reductio, that s is an arbitrary syllogism that is valid in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 but its



tableau is not closed complete. In other words, s satisfies the rules of 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡 but its corresponding
tableau is open.

By following the rules of 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡, we can build an exhaustive and exclusive array of arbitrary
valid syllogisms for whatever terms S, P, and M where +P𝑥 = +P0𝜄 , −P𝑥 = −P1000 , +S𝑦 =
+S{𝑘𝜄≤𝑛𝜄,𝑘𝜎≤𝑛𝜎}, and −S𝑦 = −S{𝑘0≤𝑛0,𝑘(𝜄−𝜎)≤𝑛(𝜄−𝜎)}, as in Table 13.

Table 13
An array of valid syllogisms in 𝒯 ℱℒ𝑠𝑡𝑎𝑡

I II III IV

1. −M1000 ± Px 1. −P1000 −M1000 1. −P1000 +M0𝜄 1. −M𝑛0 ± P𝑥

2. ±S𝑦 +M0𝜄 2. ±S𝑦 +M0𝜄 2. ±S𝑦 −M1000 2. +M(100−𝑛)𝜄 + S0𝜄

⊢ ±S𝑦 ± P𝑥 ⊢ ±S𝑦 − P1000 ⊢ ±S𝑦 − P1000 ⊢ +S0𝜄 ± P𝑥

V VI VII VIII

1. +M(100−𝑛)𝜄 ± P𝑥 1. −M𝑛(𝜄−𝜎) ± P𝑥 1. +M(100−𝑛)𝜎 ± P𝑥 1. −P1000 −M1000

2. −M𝑛0 + S0𝜄 2. +M(100−𝑛)𝜎 + S0𝜄 2. −M𝑛(𝜄−𝜎) + S0𝜄 2. +M𝑛𝜄 + S0𝜄

⊢ +S0𝜄 ± P𝑥 ⊢ +S0𝜄 ± P𝑥 ⊢ +S0𝜄 ± P𝑥 ⊢ +S0𝜄 − P1000

If we develop tableaux for each of these syllogisms, we will see that all them are closed complete, but
since s is a syllogism built after the rules of 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡, it must be included in Table 13, and hence its
tableau must be closed complete, which contradicts our assumption.

Previously in [19], we have shown that:

Proposition 2. If a syllogism is valid in 𝒯 ℱℒ𝑠𝑡𝑎𝑡, then it is also valid in 𝒮𝒴ℒℒ𝑠𝑡𝑎𝑡.

So, from these results it follows that:

Corollary 1. If a syllogism is valid in 𝒯 ℱℒ𝑠𝑡𝑎𝑡, then its tableau is closed complete.

4. Final Remarks

After presenting Sommers and Englebretsen’s Term Functor Logic, and Thompson’s statistical syllogistic,
we have offered some tableaux for a fragment of Thompson’s syllogistic. This result, albeit humble,
updates the research on term logics with the purpose of dealing with non-deductive inference, namely,
inductive and abductive inference, in a terministic, Aristotelian fashion. Our future work consists in
studying the formal properties of this proposal and developing fine-tuned implementations.
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