Autonomous Task Completion Based on
Goal-directed Answer Set Programming

Alexis R. Tudor’, Gopal Gupta’

"University of Texas at Dallas, Richardson, USA

Abstract

Task planning for autonomous agents has typically been done using deep learning models and simulation-
based reinforcement learning. This research proposes combining inductive learning techniques with goal-
directed answer set programming to increase the explainability and reliability of systems for task breakdown
and completion. Preliminary research has led to the creation of a Python harness that utilizes s(CASP) to solve
task problems in a computationally efficient way. Although this research is in the early stages, we are exploring
solutions to complex problems in simulated task completion.

Keywords
Logic in Computer Science, Software Engineering

1. Introduction

Task planning for autonomous agents has been an area of interest in recent years as robotics and deep
learning have made major advances. Most approaches to task planning involve the use of deep learning
models. The most popular approach is deep reinforcement learning, though recent work has used
large-language models (LLMs) as well. Deep learning models generally achieve good results, however,
they are uninterpretable and often produce flawed answers with no explanation. Much work has been
done to improve the explainability of deep learning models, however, they remain untrustworthy.

A better solution is to use logic programming. Logic programming is a programming paradigm based
primarily on the calculation of Horn clauses through the process of entailment. The most common logic
programming language is Prolog, though most logic programming languages consist of a Prolog-like
collection of facts and rules. One advantage of logic programs is that they are inherently interpretable
and their errors can be logically understood and solved. The research proposed in this paper involves
using answer set programming to complete tasks in a simulated environment. This will hopefully result
in autonomous task planning that is both robust and trustworthy.

2. Background and Relevant Literature

As autonomous agents become more ubiquitous, the focus has turned to their ability to complete
complex tasks in the real world, converting high-level instructions (like "fold laundry") to executable
plans ("walk to clothes", "grab clothes", etc.). Autonomous task completion can mean anything from
unmanned vehicles navigating from one point to another to robotic kitchen assistants designed to
make certain foods. For the most part, modern autonomous systems use deep learning models to
accomplish this [1]. This commonly takes the form of deep reinforcement learning and more recently
LLMs. Deep learning has achieved excellent results on complex problems. However, most deep learning
systems are black boxes that lack explainability and interpretability. This is especially dangerous
given how dependent deep learning algorithms are on the (often flawed) data they are trained on.
This makes it difficult to trust that their answers are correct and unbiased, as explored in DARPA’s

explainable Al retrospective [2]. This is important in critical systems, such as hospital diagnoses or

CEUR-WS.org/Vol-3799/paper4GDE24 .pdf

3rd Workshop on Goal-directed Execution of Answer Set Programs (GDE’24), October 12, 2024
& alexisreneel@gmail.com (A.R. Tudor)
® 0000-0003-3992-6903 (A.R. Tudor); 0000-0001-9727-0362 (G. Gupta)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings


mailto:alexisrenee1@gmail.com
https://orcid.org/0000-0003-3992-6903
https://orcid.org/0000-0001-9727-0362
https://creativecommons.org/licenses/by/4.0/deed.en

military applications, where it has to be quickly apparent whether a model is correct or not. Deep
learning as a whole is well explained in other high-quality survey papers [3]. Logic programming-based
solutions focus more on the importance of explainability, which is often neglected in deep learning
models.

Inductive Logic Programming (ILP) is a form of machine learning that codifies its learning in the
form of first-order logic. Ever since the term was defined in 1991 [4] as the "intersection of Logic
Programming and Machine Learning”, ILP has served to solve machine learning problems. ILP can
get results rivaling deep learning models while being inherently interpretable and explainable [5].
Recent advances in ILP, such as the FOLD family of algorithms, demonstrate that complex data can be
represented in small logic programs using default rules. A more detailed description of default rules and
the FOLD family of incremental learning algorithms can be found in the paper by Gupta et al. [6]. The
research mentioned above uses a type of logic programming called Answer Set Programming (ASP).
Unlike Prolog-based logic programming, which generates a true or false answer for a queried predicate,
ASP is used to generate all entailable rules from a knowledge base. This collection is called an answer
set. This can be used to generate "multiple worlds" where different answer sets are true.

Traditional ASP, like in Clingo [7], executes an answer set program through the use of a SAT solver
and grounding. Grounding involves the generation of the program with all variables substituted with
constants in the program. A disadvantage of this approach is that grounding is not always guaranteed
to be feasible, which can leave some programs with no ASP solution. The s(CASP) system [8] solves
this problem by performing a top-down goal-oriented search which eliminates the need for grounding.
This advantage makes s(CASP) well-suited to the representation of complex world states and provides
an advantage over other ASP systems [9].

One of the biggest weaknesses of the ILP approach to solving problems is the need for background
information and ’program templates’. Program templates are a layout of how the generated information
should look in the context of the logic program. A domain expert must provide this program template
and explicitly logic program-based background knowledge for most ILP. Thus, for trivial examples, it
would be just as easy to include the final found rules in the knowledge base at the start. Additionally,
while ILP programs perform very well on data that can be represented in a logic program, logic programs
have a difficult time representing complex data. These weaknesses can be overcome through the use
of traditional machine learning algorithms to supplement a logic program. This approach increases
explainability while utilizing the benefits of deep learning and other machine learning models, such
as in the paper by Rajasekharan et al. that uses an s(CASP) knowledge base to constrain an LLM
into providing more reliable results [10]. Other examples exist of using some form of knowledge base
to improve deep learning algorithms [11] [12], but the use of logic programming to augment other
algorithms merits further exploration.

3. Methodology

The research outlined in this paper seeks to explore the use of an s(CASP) knowledge base for au-
tonomous task completion in a simulated virtual environment. To test our system, we use the Vir-
tualHome simulator [13] as a playground for our s(CASP) agent to perform tasks in. The primary
goal of this research is to achieve reasonably accurate task completion with goal-directed answer set
programming. The end system would have a high level of explainability for decision-making, where
the results are trustworthy and could be diagnosed if in error. We wish to further prove that even the
very high-quality deep learning systems in use today could be augmented through the use of logic
programming. Using logic in this way moves toward general artificial intelligence. Using s(CASP) to
simulate how humans can perform common-sense logical interactions with the world brings us closer
to reasoning Al.

An additional goal of this research is to make s(CASP) easier to use with simulators. A notable
weakness of s(CASP) is that it does not have a Python API, which makes it difficult to run in line with
other forms of machine learning. The software engineering goal of this research is to create a "harness"



for using s(CASP) in Python for interactions with simulators, as shown in Figure 1.

s(CASP) state

and prior
knowledge Python Agent

Take Some

s(CASP) Knowledge R

Base representing
environment state

VirtualHome
Environment

Updated State

Figure 1: A diagram showing the high-level functionality of the Python harness for s(CASP). The
Python harness can perform actions in the VirtualHome environment, and then convert the state of the
environment to s(CASP) facts. These facts can then be used to inform the next action of the agent.

3.1. Preliminary Results

There have been promising results in producing executable actions for small-scale real-world tasks.
Using the Python harness mentioned above, the simulated VirtualHome environment can be instantiated
and transformed into an s(CASP) representation of the world state:

I % With Time
> current_time(1).
s off(remotecontrol, 1).
+ inside([inside(remotecontrol, livingroom),
5 inside(character, livingroom)], 1).
6 % Without time

off (remotecontrol).
s 1inside([inside(remotecontrol, livingroom),
9 inside(character, livingroom)]).

The above example represents a world state containing a single turned-off remote control sitting in a
living room at time 1. The Python harness keeps track of a discretized world time where each action
taken by the agent represents a step forward in time, however the addition of time greatly increases
the complexity of the world state s(CASP) program. Using time naively in this manner results in
intractable programs which loop over infinite time, and so when representing the world state we use
the latter example where timestamps are not provided in the state facts. Even without the use of
time, this representation of the world state easily grows to encompass a large amount of facts. The
complexity of generating an answer set that accounts for all of these facts and possible worlds quickly
becomes a computational obstacle. For testing purposes, the Python harness has a small-scale simulation
environment built in. Still, the goal remains to execute plans in realistic environments.

To represent and complete tasks we treat task completion as a planning problem. We represent
each task as a final state (i.e. if the task was to grab a remote control, the final state would include
holds(remotecontrol)) and then formulate actions to reach that final state. The added complexity to this
comes from the incorporation of the simulated world state when starting from an initial state. We use
the following s(CASP) rules for the task planning problem:

1 % Planning
> % Get the initial state of items close to the character
5 1initial_state(List) :- close_to_character(List).



. % Find a set of actions to reach the final state

5 transform(FinalState, Plan) :-

6 initial_state(Statel),

7 transform(Statel, FinalState, [Statel], Plan).

s transform(Statel, FinalState,_,[]) :- subset(FinalState, Statel).
o transform(Statel, State2, Visited, [Action]|Actions]) :-

10 choose_action(Action, Statel, State2),

1 update(Action, Statel, State),

12 not member(State, Visited),

13 transform(State, State2, [State|Visited], Actions).

14 % We choose an action to take

5 choose_action(Action, Statel, State2) :-

16 suggest(Action, State2), legal_action(Action, Statel).
17 choose_action(Action, Statel, _) :-

18 legal_action(Action, Statel).

v suggest(walk(X), State) :- member(close(X), State).

20 % Check if an action is legal given the state

21 legal_action(walk(X), State) :-

22 type(X, Y), Y \= character, not member(close(X), State).
3 % Update state

2 update(walk(X), State, [close(X) | Statel]) :-

25 update_walking(X, State, State, [], Statel).

% % Tasks

27 complete_task(walk_to_remote, P) :-

28 type(Remote, remotecontrol), transform([close(Remote)], P).

These rules are a small representative subset of the rules used to generate actions to complete a
task. In this very simple example, the task is to walk towards a remote control, which can be easily
accomplished by the program. Using this knowledge base we can also achieve some inference. Given a
final state where the agent is holding something, using the s(CASP) knowledge base constraints the
agent can intuit that it first needs to walk to the item before attempting to pick it up. The most serious
problem with this inference, however, is the large computation time of this program in a sufficiently
large simulation.

We have made significant strides in reducing the impact of computation time on the program. To
reduce computation time, we implemented a dynamic dependency graph that is used to remove facts
and rules that are not relevant to the query. Figure 2 represents the dependency graph for the query
?- niece(X,Y) . on the below knowledge base:

1 parent(tony, abe).
: parent(tony, jill).
s parent(abe, sarah).
+ male(tony).

5 male(abe).

¢« female(jill).

;7 female(sarah).

o parent(Parent, Child) :- sibling(X, Child), parent(Parent, X).
0 grandparent (Grandparent, Child) :-

11 parent (Grandparent, Parent), parent(Parent, Child).

2 sibling(X,Y) :- parent(Parent, X), parent(Parent, Y), X\=Y.

15 auntuncle(AU,N) :- sibling(AU, Parent), parent(Parent, N).

1« niece(Niece, AU) :- auntuncle(AU, Niece), female(Niece).



==
e

Figure 2: An example dependency graph for a family tree program where niece is the queried rule.

Using the dependency graph the Python harness can simplify the above knowledge base, removing
the male/1 and grandparent/2 predicates entirely. In a program of this size, the computational savings
of such optimization is negligible. However, preliminary research has shown a significant time saving
in the real-world environment. Table 1 demonstrates the time savings of using the dependency graph
to prune the knowledge base for the specific task being accomplished on three semi-simple tasks that
take one to four actions to fulfill. The computational time can be reduced from nearly thirty minutes to
a fraction of a second using this approach, allowing for continued research into more complex tasks.

4. Future Work

Right now, the biggest issues facing this research concern the representation of the s(CASP) knowledge
base. There are several outstanding questions.

Representing a Complex Real-World State Representing a simulation of any reasonable size leads
to an exponential increase in the number of facts available in the world state. In addition to these facts,
there also needs to be a set of rules adequate to perform tasks in the environment. This produces answer
sets that are intractable to generate. The use of a dependency graph to pare down the knowledge base
allows us to perform more complicated tasks, however there can be more optimization.

Another solution that will be explored is to keep groups of state facts and rules in different programs.
The creation of modules that correspond to various tasks or locations would allow for faster calculation
of relevant queries. This follows the human logic that one likely does not need their cooking knowledge
if, for example, they need to walk their dog.

Table 1
Table of computational time in seconds for three tasks completed by the s(CASP) agent both optimized and
unoptimized.

Task

Unoptimized
Time to Complete

(s)

Dependency Graph
Optimized Time to
Complete (s)

Grab Remote

Control 13925.14 0.55
Grab Remote

Control and Shirt 608.28 0.71

Grab Cell Phone 1771.21 0.64

and Sit on Couch




The Passage of Time As mentioned above, the use of time in the knowledge base provides com-
plications related to the ostensibly infinitely divisible nature of time (as posited by the famous Greek
philosopher Zeno). This is a known problem with representing continuous time in logic programming
and would require the inclusion of event calculus [14].

Large-scale Learning As deep learning and its applications for real-world task completion are
already well explored, the value of this research lies in seeing how complex problems that the s(CASP)
task planner can solve can get. To that end, explanation-based learning is a promising paradigm that
would allow for generalized knowledge from a small number of examples [15] and works well with
answer set programming.

Likely, s(CASP) by itself cannot encode all of the complexities of a real environment and remain
tractable. Once that point is reached, there would still be benefits in combining s(CASP) with more
traditional machine learning (and newer deep learning, such as LLMs) to improve performance in
the former and explainability of the latter. We hope to leverage databases of task instructions and
breakdowns, such as those provided by VirtualHome or ALFRED [16], to improve the performance of
the s(CASP) agent at scale.

We expect to be able to answer these questions in a unified way to facilitate task completion
in complex environments using s(CASP). Although solutions to these problems may always become
intractable at certain levels of fidelity, there is valuable knowledge to be gained along the way.

5. Conclusion

In conclusion, this line of research could open up a broad number of solutions for challenging ILP
problems. Simply creating a Python framework for the use of s(CASP) with simulated environments
is an advancement for s(CASP), as it is currently lacking a Python API. Using the intersection of
ILP and traditional machine learning is promising for improving the explainability and reliability of
task-completing autonomous agents.

References

[1] E.F. Morales, R. Murrieta-Cid, I. Becerra, M. A. Esquivel-Basaldua, A survey on deep learning and
deep reinforcement learning in robotics with a tutorial on deep reinforcement learning, Intelligent
Service Robotics 14 (2021) 773-805. doi:10.1007/s11370-021-00398-z.

[2] D. Gunning, E. Vorm, J. Y. Wang, M. Turek, Darpa’s explainable ai (xai) program: A retrospective,
Applied Al Letters 2 (2021) e61. doi:10.1002/ail2.61.

[3] S. Dong, P. Wang, K. Abbas, A survey on deep learning and its applications, Computer Science
Review 40 (2021) 100379. doi:10.1016/j.cosrev.2021.100379.

[4] S. Muggleton, Inductive logic programming, New Generation Computing 8 (1991) 295-318.
doi:10.1007/b£03037089.

[5] Z.Zhang, L. Xu, L. Yilmaz, B. Liu, A critical review of inductive logic programming techniques for
explainable ai, 2023. arXiv:2112.153109.

[6] G. Gupta, H. Wang, K. Basu, F. Shakerin, E. Salazar, S. C. Varanasi, P. Padalkar, S. Dasgupta,
Logic-based explainable and incremental machine learning, Prolog: The Next 50 Years (2023)
346-358. d0i:10.1007/978-3-031-35254-6_28.

[7] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Clingo = asp + control: Preliminary report,
ArXiv abs/1405.3694 (2014). doi:10.48550/arXiv.1405.3694.

[8] J. Arias, M. Carro, E. Salazar, K. Marple, G. Gupta, Constraint answer set programming with-
out grounding, Theory and Practice of Logic Programming 18 (2018) 337-354. doi:10.1017/
S1471068418000285.


http://dx.doi.org/10.1007/s11370-021-00398-z
http://dx.doi.org/10.1002/ail2.61
http://dx.doi.org/10.1016/j.cosrev.2021.100379
http://dx.doi.org/10.1007/bf03037089
http://arxiv.org/abs/2112.15319
http://dx.doi.org/10.1007/978-3-031-35254-6_28
http://dx.doi.org/10.48550/arXiv.1405.3694
http://dx.doi.org/10.1017/S1471068418000285
http://dx.doi.org/10.1017/S1471068418000285

(9]

[10]

[11]
[12]
[13]

[14]

[15]

M. Gelfond, Y. Kahl, Knowledge representation, reasoning, and the design of Intelligent Agents:
The answer-set programming approach, Cambridge University Press, 2014. doi:10.1017/
CB09781139342124.

A.Rajasekharan, Y. Zeng, P. Padalkar, G. Gupta, Reliable natural language understanding with large
language models and answer set programming, Electronic Proceedings in Theoretical Computer
Science 385 (2023) 274-287. doi:10.4204 /EPTCS . 385. 27.

I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice, C. Fu, C. Ma, J. Jiao, S. Levine,
K. Hausman, Jump-start reinforcement learning, 2023. arXiv:2204.02372.

Z.Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, J. Zhu, Physics-informed machine learning: A
survey on problems, methods and applications, 2023. arXiv:2211.08064.

X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, A. Torralba, Virtualhome: Simulating household
activities via programs, 2018. arXiv:1806.07011.

S. C. Varanasi, J. Arias, E. Salazar, F. Li, K. Basu, G. Gupta, Modeling and verification of real-time
systems with the event calculus and s(casp), in: Practical Aspects of Declarative Languages: 24th
International Symposium, PADL 2022, Philadelphia, PA, USA, January 17-18, 2022, Proceedings,
Springer-Verlag, Berlin, Heidelberg, 2022, p. 181-190. doi:10.1007/978-3-030-94479-7_12.

J. Strout, Y. Zhang, R. Mooney, Do human rationales improve machine explanations?, in: Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-
works for NLP, Association for Computational Linguistics, Florence, Italy, 2019, pp. 56—-62.
doi:10.18653/v1/W19-4807.

M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, D. Fox,
Alfred: A benchmark for interpreting grounded instructions for everyday tasks, 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2019) 10737-10746. doi:10.
1109/cvpr42600.2020.01075.


http://dx.doi.org/10.1017/CBO9781139342124
http://dx.doi.org/10.1017/CBO9781139342124
http://dx.doi.org/10.4204/EPTCS.385.27
http://arxiv.org/abs/2204.02372
http://arxiv.org/abs/2211.08064
http://arxiv.org/abs/1806.07011
http://dx.doi.org/10.1007/978-3-030-94479-7_12
http://dx.doi.org/10.18653/v1/W19-4807
http://dx.doi.org/10.1109/cvpr42600.2020.01075
http://dx.doi.org/10.1109/cvpr42600.2020.01075

	1 Introduction
	2 Background and Relevant Literature
	3 Methodology
	3.1 Preliminary Results

	4 Future Work
	5 Conclusion

