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Abstract
This research focuses on generating realistic and achievable counterfactual explanations. Given a negative
outcome predicted by a machine learning model or decision system, the novel Causally Constrained
Counterfactual Generation (C3G) approach generates (i) a counterfactual solution representing a positive
outcome and (ii) identifies the necessary changes in feature values to transition from the negative to the
positive outcome. The counterfactuals produced by the Causally Constrained Counterfactual Generation
(C3G) approach respect causal constraints among features and adhere to user-defined preferences
regarding feature alterations, accounting for the ease of modifying certain features over others and
the associated costs. C3G utilizes answer set programming (ASP) and the s(CASP) goal-directed ASP
system to automatically generate counterfactual explanations from rules generated by rule-based machine
learning (RBML) algorithms. Using rule-based machine learning (RBML) algorithms, C3G models causal
dependencies between features, ensuring the realism of the solutions. This paper discusses the current
status of the research and presents preliminary results.
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1. Introduction

Predictive models in automated decision-making, such as job filtering or loan approval, often
function as black boxes, making the reasoning behind decisions difficult to understand. Given
the significant consequences of these decisions, affected individuals desire clear explanations
for undesired/negative outcomes, highlighting the need for transparency. Some approaches
[1] propose generating counterfactuals to explain decisions and guide users toward desired
outcomes.

We introduce a framework called Causally Constrained Counterfactual Generation (C3G), which
generates counterfactual explanations using rule-based machine learning (RBML) algorithms.
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Our framework addresses the question: "What changes can achieve a desired outcome from an
undesired one?" by modelling two scenarios: the current state with a negative outcome and
an imagined state with a positive outcome. The aim is to transition from the negative to the
positive scenario while assuming a static decision-making process. This is accomplished by
altering input feature values and considering their causal dependencies.

C3G employs commonsense reasoning through Answer Set Programming (ASP) [2], specifi-
cally using the goal-directed s(CASP) ASP system [3].

2. Background

2.1. Counterfactual Reasoning

Humans use explanations to understand decisions. Counterfactual explanations offer meaningful
insights to understand a decision and guide actions to change the outcome to a desired one. For
example, in the case of being denied a loan, a counterfactual explanation might state: “If John
were married, his loan application would have been approved."

For a binary classifier used for prediction, given by 𝑓 : 𝑋 → {0, 1}, we define a set of
counterfactual explanations 𝑥̂ for a factual input 𝑥 ∈ 𝑋 as CF𝑓 (𝑥̂) = {𝑥̂ ∈ 𝑋|𝑓(𝑥) ̸= 𝑓(𝑥̂)}.
This set of counterfactual explanations contains all the inputs (𝑥̂) that lead to a different
prediction under 𝑓 compared to the original input 𝑥.

We demonstrate how counterfactual reasoning can be performed using the s(CASP) query-
driven predicate ASP system [3] while accounting for causal dependencies between features. By
leveraging s(CASP)’s ability to compute dual rules (as described in Section 2.3), which enable
the execution of negated queries, counterfactual explanations are naturally obtained. Given a
predicate p defined as a rule in ASP, its corresponding dual rule allows us to prove ¬ p, where
¬/not represents negation as failure [4].

2.2. Causality

MINT [5] showed that ignoring causal relations in counterfactual explanations produces un-
realistic results. MINT focused on generating counterfactual explanations through a series of
interventions, providing realistic paths to change the predicted label. In earlier approaches
[6, 7], assumptions were made that changes from interventions were independent across fea-
tures, which may not hold in reality. Hence, causal relationships should be considered to
generate realistic counterfactual explanations. For instance, changing one’s marital status
without considering related features like relationship status and gender might not yield realistic
results. Modeling these causal relationships ensures that downstream changes are realistically
represented.

2.3. ASP, s(CASP) and Common Sense Reasoning

Answer Set Programming (ASP) is a paradigm for knowledge representation and reasoning,
widely used in automating commonsense reasoning [8, 9, 2]. We use ASP to encode knowl-
edge about features, domains, properties, decision-making, and causal rules, facilitating the



automatic generation of counterfactual explanations. The s(CASP) system, a goal-directed ASP
variant, operates in a top-down, query-driven manner without grounding [3, 10]. It supports
commonsense and counterfactual reasoning using proof trees and adopts program completion
by introducing dual rules- for every rule that says 𝑝 ⇒ 𝑞, add a complementary rule saying
¬𝑝 ⇒ ¬𝑞. This ensures that 𝑞 is 𝑇𝑅𝑈𝐸 “if and only if” 𝑝 is 𝑇𝑅𝑈𝐸.

Commonsense knowledge in ASP is represented using default rules, integrity constraints,
and multiple possible worlds. For an introduction to ASP, see Gelfond and Kahl [10, 2]; for a
detailed overview of s(CASP), see [11, 3]."

2.4. FOLD-SE

FOLD-SE [12] is an efficient and explainable rule-based machine learning (RBML) algorithm for
classification tasks. It generates a set of default rules (a stratified normal logic program) from
input data (numerical and categorical). The explainability obtained through FOLD-SE is scalable.
It maintains a small number of rules and literals, regardless of dataset size, while offering
accuracy comparable to other RBML approaches like RIPPER [13] and traditional models like
XGBoost [14] and Multi-Layer Perceptrons (MLP), with the added advantage of explainability.

3. Overview

3.1. The Problem

When an individual (represented as a set of features) receives a negative decision (e.g., loan
denial), they may seek changes to achieve a positive outcome. C3G identifies these changes
automatically. The negative decision state is termed the pre-intervention state 𝑖, while the
positive outcome states are post-intervention states 𝑔 ∈ 𝐺. For instance, if John is denied a loan
(𝑖), C3G models various scenarios (𝐺) where he is approved. The negative decision should hold
in 𝑖 (‘?- reject_loan(john)’ = True) and not in any state in 𝐺 (‘?- reject_loan(john)’
= False). The goal is to determine the interventions, or feature changes, required to transition
from 𝑖 to 𝑔 ∈ 𝐺.

Figure 1: Left: Transition from Pre-InterventionWorld to the Post-InterventionWorld. Right: Intervention
takes the original instance to the other side of the decision boundary. With feature independence, the new
counterfactual is closer to the original instance. With causal dependencies, the new counterfactual is further
away as more changes are made to the original instance.



3.2. Solution- C3G Approach

Given a decision query (e.g., ‘?- reject_loan/1’) that succeeds (negative outcome), C3G
identifies the state where this query fails, i.e., the query ‘?- not reject_loan/1’ succeeds,
representing the post-intervention state (𝑔). In ASP terms, this involves finding the necessary
feature changes while considering causal dependencies to transition from a state where the
query (‘?- reject_loan/1’) is True to one where its negation (‘?- not reject_loan/1’)
is True. The transition must comply with the given rules, using the s(CASP) query-driven ASP
system [3], which supports negated queries constructively.

The C3G approach involves transitioning from a pre-intervention state (𝑖) to a post-
intervention state (𝑔), with each state represented as feature-value pairs (e.g., John { Debt:
> $1000, Credit score: 600; Age: 24} ). Multiple post-intervention states (𝐺) can represent
different positive outcomes. The objective is to change feature values to convert a negative
decision (state 𝑖) into a positive one (state 𝑔), ensuring that ‘?- not reject_loan(john)’
succeeds for 𝑔 ∈ 𝐺.

Example: In a loan application scenario, John {> $10000 debt, $40000 balance, 599 credit
score} is denied a loan because his balance is under $60000 and his credit score is below 600.
A naive solution might suggest raising John’s balance to $60000 and his credit score to 620,
but directly altering the credit score is unrealistic. Considering causal dependencies, such as
clearing debt to improve credit scores, C3G suggests a feasible intervention: John {no debt,
$60000 balance, 620 credit score}, resulting in loan approval. This intervention adjusts John’s
bank balance to $60000 and clears his debt, resulting in a valid counterfactual scenario, as
shown in Fig. 1."

4. Experiments

Dataset Adult Titanic Dropout

Details # of Features Used Training Size Avg. Time Taken (ms) # of Features Used Training Size Avg. Time Taken (ms) # of Features Used Training Size Avg. Time Taken (ms)

FOLD-SE: 6 26048 291 3 891 84 4 3539 67

RIPPER: 12 26048 2869 1 891 14 16 3539 807

Dataset Voting Cars Mushroom

Details # of Features Used Training Size Avg. Time Taken (ms) # of Features Used Training Size Avg. Time Taken (ms) # of Features Used Training Size Avg. Time Taken (ms)

FOLD-SE: 5 348 779 4 1382 807 5 6499 600

RIPPER: 2 348 75 6 1382 75 9 6499 3911

Table 1
Time for Computing the Counterfactual for Various Datasets

By using decision rules that provide the original instance, we use C3G to generate the origi-
nal instance-counterfactual pairs, indicating possible solutions from a negative outcome to a
counterfactual. It calculates the cost of reaching the counterfactual while allowing flexibility
in the types of interventions permitted in the process of generating such counterfactuals. We
applied our C3G methodology to rules generated by RBML algorithms, specifically FOLD-SE [12]
and RIPPER [13], using datasets such as adult[15], car[16], titanic[17], dropout[18], mushroom



[19] and voting[20]. In the adult dataset, which includes demographic information with labels
indicating income (‘=<$50k/year’ or ‘>$50k/year’), our RBML algorithms generate rules to
predict income. Given decision-making rules specifying an undesired outcome (‘=<$50k/year’),
the goal is to find a path to a counterfactual instance where the income is ‘>$50k/year’. We
have shown our results in Table 1.

For each dataset in Table 1, there are 3 columns denoting the following: 1) Number of
Features: Count of the number of features that were used in generating original instance-
counterfactual pairs. This depends on the features defined in the decision making rules and
causal rules; 2) Size of Training Data: Size of the training data used to generate the decision
making and causal rules; and 3) Time Taken: Average Time taken to produce a (original
instance, counterfactual) pair.

As shown in Table 1, our C3G framework generates counterfactuals regardless of the RBML
algorithm that specifies the decision making rules.

5. Discussion and Related Work

Existing approaches enhance transparency by explaining undesired outcomes through counter-
factuals, using model-specific or optimization-based methods [1, 21, 22]. Actionable Recourse [6]
focuses on actionable changes, while MACE [7], a model-agnostic method, generates counterfac-
tuals considering feature immutability, avoiding unrealistic suggestions like changing ‘gender’
or ‘age.’ CLEAR [23] uses counterfactuals to improve model performance. However, both
Actionable Recourse and MACE assume feature independence, which does not reflect real-world
causal dependencies.

MINT [5] models causal dependencies for realistic counterfactuals but lacks the ‘if and only
if’ property necessary for incorporating causal effects. Some methods [24] use Answer Set
Programming (ASP) to address this but rely on grounding, which can disconnect variables.
In contrast, C3G uses the goal-directed s(CASP) system, supporting complex logic without
grounding. While some frameworks [25] generate contrastive explanations in ASP by explaining
why one outcome occurred instead of another, C3G goes further by incorporating causal
dependencies, ensuring counterfactuals are both realistic and achievable.

Our framework, Causally Constrained Counterfactual Generation (C3G), utilizes Answer Set
Programming (ASP) to generate counterfactuals, accommodating any rule-based machine learn-
ing (RBML) algorithm and allowing for user-defined rules. C3G ensures realistic counterfactuals
by accounting for causal dependencies. This paper demonstrates how s(CASP) can model com-
plex tasks, such as imagining possible scenarios and reasoning about counterfactual situations,
to provide detailed explanations for decisions. Further details on the methodology and code can
be found in the work by Dasgupta et al. [26].

Future work includes generating a path to the counterfactual by providing a step-by-step
guide on the necessary changes and their causal effects [27]. We also plan to explore computing
counterfactuals for image classification tasks, inspired by the work of Padalkar et al. [28, 29]



6. Conclusion

This paper addresses the challenge of generating counterfactual explanations for undesired
outcomes predicted by machine learning models. Our framework, Causally Constrained Coun-
terfactual Generation (C3G), utilizes ASP and the goal-directed s(CASP) system to generate
counterfactual explanations, regardless of the RBML algorithm used. By supporting negation as
failure and dual rules, s(CASP) generates alternative worlds to find reachable counterfactuals.
We methodically demonstrate how to reach counterfactuals, identify and constrain features to
be altered, and measure the cost of interventions. This approach allows specifying intervention
costs and integrating user-defined rules, enhancing the transparency and explainability of
machine learning models.
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