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Abstract
Computational thinking is a problem-solving approach that involves breaking down complex problems into smaller,
manageable parts, recognizing patterns, abstracting general principles, and devising algorithms to solve them. It
can be thought of as an algorithmic method of thinking. Our thesis is that to learn to think computationally, one
must first learn to think logically. In this work-in-progress paper we explore how logic programming, answer set
programming (ASP) in particular, can aid in learning to think logically. We discuss how ASP can be used to help
students organize their thoughts as well as make them understand various processes involved in human thinking. We
believe that this will facilitate the teaching of computational thinking to students.
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1. Introduction

Computational thinking involves “solving problems, designing systems, and understanding human behavior,
by drawing on the concepts fundamental to computer science. Computational thinking includes a range of
mental tools that reflect the breadth of the field of computer science” [1]. Computational thinking has been
proposed as a crucial skill for everyone to learn because it helps individuals develop a structured and logical
approach to solving complex problems. A pre-requisite, thus, to computational thinking is to learn to think
logically. In this paper we show how logic programming, specifically answer set programming (ASP) and
its realization in the goal-directed predicate ASP system called s(CASP), can be employed as an aid for
developing logical thinking in students. Note that modeling human thinking using logic programming has
been an object of intense study for a long time [2, 3]. Here, our objective is to show how logic programming
can be used to teach logical thinking to students which, in turn, can lead to students learning computational
thinking [1]. Logical thinking includes being able to precisely express knowledge that is involved in
human thought as well as processing this knowledge to draw inferences, infer new knowledge, fill gaps in
knowledge, etc.

Humans are capable of thought, of course. However, human thought process appears quite informal,
and most people are not able to understand the steps they took, for example, to arrive at a conclusion. We
argue that human thought relies on a small number of inference principles, and once a human understands
these principles and how they are invoked, he/she can understand their thought processes involved in
drawing conclusions, deriving new knowledge, and filling gaps in knowledge. This, in turn, can facilitate
computational thinking, as humans can then understand the mapping between the steps of a task to be
accomplished and their thought process. A pre-requisite to computational thinking is logical thinking. We
show how logic programming can be used as a tool to formalize thought processes that appear informal
otherwise. Once a person develops the ability to see the formalism underlying their thoughts, they will
become better reasoners and hence better computational thinkers.

Formalizing the human thought process has been considered hard. The study of human thought process
has been conducted over several millennia [4, 5]. In modern times this effort culminated in boolean logic [6],
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first order logic [7], and various other advanced logics. These logics, however, are limited and could not
match the sophistication of human reasoning in the sense that it is hard to use these logics to faithfully
model the human thought process in an elegant manner.

2. Computational Thinking

Computational thinking involves representing solutions to problems as computation steps (algorithm). The
key points of computational thinking include:

• Decomposition: Breaking down complex problems into smaller, more manageable parts.
• Pattern Recognition: Identifying similarities, trends, or patterns in data or problems that can be

reused in other situations.
• Abstraction: Simplifying a problem by focusing on the essential details and ignoring irrelevant

information.
• Algorithm Design: Creating step-by-step instructions or rules (algorithms) to solve problems system-

atically and efficiently.
• Debugging: Identifying and fixing errors or flaws in an algorithm or solution.
• Generalization: Applying a solution to a broad set of similar problems.

Computational thinking can also be thought of as scientific thinking, design thinking, or model-based
thinking. These have been discussed widely in the literature over decades [8]. Computational thinking,
essentially, is algorithmic thinking. With this in mind, recall Kowalski’s famous equation [2]:

Algorithm = Logic + Control
In the context of human thinking, ‘logic’ here stands for knowledge, and ‘control’ for methods for processing
knowledge and reasoning over it. So to master algorithmic thinking, one must not only understand
representation of (human) logic or knowledge, but also the operational procedures involved in processing
knowledge and reasoning over it. Thus, to master algorithmic thinking, humans must become adept at both:
knowledge representation and reasoning.

Knowledge (logic) that resides in the human mind can be represented as facts, rules, and goals. Control
is represented by human mental processes that process knowledge. These mental processes correspond
to operations such as deduction, abduction, induction, etc., realized through backward chaining, forward
chaining, resolution, etc.

Significant number of articles and books have been written on modeling human knowledge in logic, and
on performing reasoning. What we show in this paper is how this reasoning can be presented in a formal
way, and how the proofs needed to establish a conclusion can be systematically generated. These proofs
can help students understand the complex reasoning processes followed by humans.

3. Modeling Human Thinking

The representation of logic in the human mind (human logic) is quite different from what is espoused by
classical logic. Human logic is non-monotonic, as it can draw inferences even if the knowledge is incomplete.
Incomplete knowledge is elegantly modeled by negation-as-failure and the stable model semantics of logic
programming [9]. Thus, to model human logic we will employ answer set programming (ASP). Seeing
explicitly represented human thought in the form of an answer set program will lead to students being
able to express their knowledge more precisely. Human control or reasoning, on the other hand, will by
represented by the operational semantics of ASP. We will use the s(CASP) goal-directed predicate answer
set programming system [10] for this purpose. The s(CASP) system is a query-driven ASP engine that
executes an answer set program in a top-down, query-driven manner, very much how a human might



think and reason [11]. The s(CASP) system supports predicates with arbitrary terms and it also supports
constructive negation.

Human reasoning methods use techniques such as deduction, abduction, and induction to draw infer-
ence [12]. Humans also employ reasoning methods to simplify (human) knowledge by combining rules and
facts to produce new information and infer missing knowledge.

Note that aside from negation-as-failure, ASP also includes strong negation. Negation-as-failure, repre-
sented as not p evaluates to true if p is false or unknown. It evaluates to false if p is true. Strong negation,
denoted -p, evaluates to false if p is known to be true or unknown. It evaluates to true, if falsehood of p
can be explicitly established.

3.1. Modeling Human Logic

Answer Set Programming (ASP) has been shown to be well-suited for knowledge representation and
reasoning [13, 14]. ASP can model human thinking quite closely as it supports default rules with exceptions
and preferences, integrity constraints, and even loop over negation [15]. ASP can be used to program
various shades of truth as well as judgement calls through a combination of negation as failure and strong
negation [12]. For example, given a proposition p (e.g., p ≡ “it is raining now”):

1. p: denotes that p is unconditionally true.
2. not -p: denotes that p maybe true.
3. not p ∧ not -p: denotes that p is unknown, i.e., there is no evidence of either p or -p.
4. not p: denotes that p may be false (no evidence that p is true).
5. -p: denotes that p is unconditionally false.

These shades of truth allow us to model judgement calls that humans make. Consider a physician who is
about to prescribe a medicine to a patient. A physician who is willing to take risks may make the judgement
call to immediately prescribe the medicine and not worry about the medicine’s side effects.

1 prescribe(M, D, P) :- cures(M, D), not contraindicated(M, P). ...(1)
2 contraindicated(M, P) :- has_side_effects(M, P). ...(2)

which states that medicine M can be prescribed to patient P for disease D if medicine M cures disease
D and M’s contraindication for P maybe false. M is contraindicated for P, if M has side-effects on P. In
contrast, a physician who is conservative may make the judgement call to first seek evidence that M is not
contraindicated for patient P.

1 prescribe(M, D, P) :- cures(M, D), not contraindicated(M, P). ...(3)
2 contraindicated(M, P) :- not -has_side_effects(M, P). ...(4)

What has changed is the contraindication definition. Medicine M is now contraindicated for patient P if M
having a side-effect on P maybe true. The net effect is that now M will be prescribed for patient P for disease
D if we can prove that M has no side effects on P. Slight rewriting of (3) and (4) results in the rule below,
which makes this logic explicit.

1 prescribe(M, D, P) :- cures(M, D), -has_side_effect(M, P).

Next, we theorize that a bulk of human knowledge can be simulated with three types of ASP rules:
default rules with exceptions and preferences (defeasible rules), integrity constraints, and assumption-based
(or abductive) reasoning [12, 15]. These three types of rules cover all of ASP, a Turing-complete language,
so one can arguably draw the conclusion that human knowledge can be modeled with just these three
constructs.



Default Rules: Given a goal, we establish it by decomposing it into subgoals, and then recursively proving
those subgoals next, and so on. The dependence of goals on subgoals is described by logic programming
rules. For example:

1 flies(X) :- bird(X), alive(X).

However, there might be conditions that might prevent us from reducing a goal into subgoals. These
conditions represent exceptions. Thus, the above rule may be refined into:

1 flies(X) :- bird(X), alive(X), not exception(X).
2 exception(X) :- penguin(X).

where if X is a penguin it will prevent flies(X) from succeeding. There might be multiple rules that may
be used to reduce a goal. We can add additional subgoals to the rules that will allow us to discriminate
among these rules thereby prioritizing them [15].

Assumption-based Reasoning: While reducing a goal 𝑔, if no information is available for it, i.e., no rule
is defined for 𝑔, we can perform abductive or assumption-based reasoning. That is, we now consider two
alternate worlds, one in which 𝑔 is true and another one in which 𝑔 is false. This is achieved by adding the
following rules (termed even loop over negation in ASP literature [14].

1 g :- not not_g.
2 not_g :- not g.

In the s(CASP) system, the above effect is achieved by simply declaring g as an abducible via the directive:

1 #abducible g/0.

An abducible can be an arbitrary predicate as well. The directive automatically generates the even loop
described above.

Integrity Constraints: As we accumulate subgoals in the reduction process, we may encounter subgoals
that are mutually inconsistent. These subgoals may be far apart in the proof process, and their inconsistency
cannot be modeled using the exception mechanism described previously. In such a case, we impose these
restrictions via integrity constraints. For example, a dead person cannot breathe:

1 false :- person(X), dead(X), breathe(X).

Note that integrity constraints are a special case of odd loops over negation [14, 15]. Also, these integrity
constraints may be global or local. Above constraint is an example of a global constraint. A local constraint
will be imposed on specific predicates, and thus will be included in the body of the rule specifying that
predicate.

Logically organized thoughts should be expressible as answer set programs. Consider the following
example [13]. A student is admitted to a program if he/she has a high GPA, or has a special talent but a
reasonable GPA. A student is declined admission if he/she has low GPA or has no other talent. If it cannot
be determined that a student must be admitted or rejected, the student will be interviewed. Note that
-admit represents rejection.

1 admit(X) :- highGPA(X), not ab_eligible(X).
2 admit(X) :- special(X), fairGPA(X), not ab_eligible(X).
3 -admit(X) :- -special(X), -highGPA(X), not ab_ineligible(X).
4 interview(X) :- not eligible(X), not -eligible(X).

Note that ab_eligible/1 and ab_ineligible/1 represent realistic situations (a student with a high
GPA but a criminal record, and a large donor’s offspring with a low GPA, respectively, for example).



3.2. Modeling Human Control

So far we have shown how (possibly incomplete) knowledge that resides in human mind (human logic)
can be faithfully and declaratively represented as an answer set program. Human thinking also involves
drawing inferences from this knowledge, as well as modifying this knowledge to suit our purposes. We
should be able to model this process of drawing conclusions as well as possibly transforming our knowledge
to achieve a goal. Similarly, we may combine the knowledge that resides in our mind in all sorts of ways to
produce new knowledge. We need to understand and automate these processes as well.

Next, we give a (non-exhaustive) list of concepts that are employed in human control. These concepts
allow us to draw inferences from knowledge, simplify our knowledge, combine our knowledge, etc. These
concepts are also invoked during computational thinking. These concepts must also be taught to students
so they can understand their own thinking process. The idea will be to illustrate these concepts to students
by applying them to modify and transform knowledge represented as an answer set program. Our goal is
to use the s(CASP) ASP interpreter to illustrate this transformation and processing in a concrete way.

• Deduction: Deduction is a logical reasoning process where conclusions are drawn from premises.
The conclusion logically follows from the premises. If the premises are true, the conclusion must
also be true. Modus Ponens is an example of deductive reasoning: If P holds and 𝑃 ⇒ 𝑄 holds, we
can conclude Q. Execution of a query against an answer set program involves performing deduction.
Thus, given the program:

1 flies(X) :- bird(X), not exception(X).
2 exception(X) :- penguin(X).
3 bird(tweety).

we can deduce flies(tweety).
• Abduction: Abduction refers to a form of reasoning that is concerned with the generation and

evaluation of explanatory hypotheses. We could also think of abduction as assumptions based
reasoning where we find the assumptions under which an observation would hold. Abductive
reasoning leads back from facts to a proposed explanation of those facts or assumptions that will
explain that fact. Abductive reasoning takes the following form [16]:

The fact B is observed.
But if A were true, B would be a matter of course.
Hence, there is reason to suspect that A is true.

Abductive reasoning can be modeled in ASP through even loops over negation, as explained earlier.
As an example, consider the rule:

1 flies(X) :- bird(X), not exception(X).
2 exception(X) :- not -penguin(X).
3 bird(chirpy)

Suppose we are wondering whether the bird called chirpy flies. Notice that our judgement call
if a bird can fly leans on the conservative side, meaning that we must demonstrate that chirpy is
definitely not a penguin. We can add the rules:

1 -penguin(chirpy) :- not auxpenguin(chirpy).
2 auxpenguin(chirpy) :- not -penguin(chirpy).

Now the query ?- flies(chirpy) will succeed with the assumption -penguin(chirpy), namely,
chirpy should definitely not be a penguin.

• Induction: Induction is a reasoning process in which general conclusions are drawn from specific
observations or examples. Induction generally refers to learning associations or dependency relations



between data features, in the sense of machine learning or inductive logic programming [17]. A
useful idiom may be to explain to students that humans make inductive generalizations from data.
Inductive generalization may also come from a single observation or a small number of observations,
though generally this generalization relies on human knowledge of the world. Humans represent
inductive generalizations as default rules. Much of expert knowledge is representable as default
rules [15]. For example, a child may drop a ceramic mug on the floor which subsequently breaks.
Perhaps after this happens a few times, the child may generalize and induce:

1 break(X) :- fragile(X), drop(X).

The child may subsequently notice that dropping the mug on a carpeted surface doesn’t break it, and
so may revise the rule above to add the exception.

1 break(X) :- mug(X), drop(X,Y), not exception(X,Y).
2 exception(X,Y) :- soft_surface(Y).

Algorithms that learn rule based machine learning models from large amount of data and represent
them as default rules have been designed [18].
Finally, generalizing from just one or two instances of a predicate succeeding can be realized in
s(CASP). Suppose we want to assert that if we can prove p(1) and p(2), then we can induce that
p(X) holds for all X. In such a case as soon as both p(1) and p(2) are proved, then the existing
knowledge is extended with the following rules:

1 :- p(1), p(2), X .>. 2, not p(X).
2 p(X) :- X .>. 2, not np(X).
3 np(X) :- not p(X).

where np(X) is a dummy predicate. The constraint asserts that if p(1) and p(2) succeed, then p(X)
must succeed for any given X. The even loop over negation states that for any given value of X, p(X)
must be either true or false. Note that we could have represented this inductive inference much more
simply using deduction as follows:

1 p(X) :- X .>. 2, p(1), p(2).

However, this representation is not making an inductive inference. In the former approach that
involves a global constraint, we are closer to the human thought process, where if we discover that
p(1) and p(2) hold, only then we infer that p(X) holds for all X. So if we encounter p(5) before
we prove p(1) or p(2), then p(5) will fail. In the latter approach, a call to p(5) will lead to an
attempt to prove p(1) and p(2), which is deduction not induction.

• Resolution: Resolution can be thought of as hypothetical syllogism: if 𝑃 ⇒ 𝑄 and 𝑄 ⇒ 𝑅, then 𝑃 ⇒
𝑅. That is, given ¬𝑃 ∨𝑄 and ¬𝑄∨𝑅, we infer that ¬𝑃 ∨𝑅 is a their logical consequence. Resolution
can be used to realize backward and forward chaining discussed later. In logic programming, resolution
appears as SLD resolution [19]. Essentially, resolution corresponds to when a procedure call is made,
and the call is matched to a rule head. Unification is used to achieve parameter passing. In s(CASP),
coinductive success is another mechanism that is used alongside resolution. If a goal g is a variant
of an ancestor goal in the search tree, then g succeeds coinductively. Coinductive success is critical
for executing even loops over negation in a top-down, query driven manner. Resolution can also be
thought of as a mechanism to derive new information (that was earlier implicit).
To illustrate resolution, we use the popularly-cited example: All Cretans are islanders and all islanders
are liars, therefore, all Cretans are liars. Coded as:

1 liar(X) :- islander(X). ...(5)
2 islander(X) :- cretan(X). ...(6)



Simple reduction will generate the clause

1 liar(X) :- cretan(X). ...(7)

• Backward chaining: Backward chaining is a reasoning technique that starts with a goal or conclusion
and works backward to determine the conditions or premises that would allow that goal to be true.
In a backward chaining system, we start with a query, which is expanded using resolution (SLD
resolution in case of pure logic programming), until all goals are resolved. In s(CASP), goals also
get resolved due to coinductive success. The s(CASP) system keeps track of all the subgoals that
are proved via resolution or coinduction while executing a query. The set of subgoals constitutes a
partial answer set. Backward chaining is essentially query-driven execution.
Thus, using the Cretan example above, if we add the fact

1 cretan(icarus). ...(8)

then the query ?- liar(icarus) will succeed through backward chaining (liar(icarus)→
islander(icarus) → cretan(icarus) → success.

• Forward Chaining: Forward chaining is a reasoning method that combines facts/rules to infer new
information, progressing step by step until a specific goal or conclusion is reached. It can be thought
of as a method for combining knowledge to generate new inferred knowledge. In the example above,
clause (7) is obtained by forward chaining. In the context of logic programming, forward chaining can
be thought of as partial evaluation [20]. In s(CASP), the partial evaluation process is more complex,
as coinduction also has to be taken into account. In addition, integrity constraints can lead to failure
if they are not satisfied at any instance. In the example above, given the fact (8), forward chaining
applied to clauses (5), (6), and (8) will produce the conclusion liar(icarus). Forward chaining is
useful in making inferencing more efficient.

• Craig Interpolation: For two formulae 𝑃 and 𝑄 such that 𝑃 ⇒ 𝑄, a Craig interpolant is a formula
𝐼 such that 𝑃 ⇒ 𝐼 and 𝐼 ⇒ 𝑄, and all the non logical symbols (i.e., atoms) in 𝐼 occur in both 𝑃
and 𝑄. Craig interpolation can be thought of as the opposite of resolution. One can also define the
reverse interpolant. For a contradiction 𝑃 ∧𝑄 a reverse interpolant is a formula 𝐼 such that 𝑃 ⇒ 𝐼 ,
and 𝐼 ∧𝑄 is a contradiction, and the non-logical symbols in 𝐼 occur in 𝑃 and in 𝑄. Intuitively, a
reverse Craig interpolant of two inconsistent formulas 𝑃 and 𝑄 is the smallest formula containing
common atoms of 𝑃 and 𝑄 that captures the inconsistency.
It is important for students to understand the idea of inconsistency among statements. Craig Inter-
polant captures this idea. If we state “No one is in the kitchen,” then next state that “John is in the
kitchen,” then these two statements are directly inconsistent. These mutually inconsistent statements
can be part of larger set of statements. Reverse Craig interpolant corresponds to the smallest subset
of statements that captures the inconsistency. Thus, given: in(maria,study),-in(X,kitchen)
and in(john,kitchen),in(jill,living_room), the reverse interpolant is -in(X,kitchen)
(X is universally quantified).

• Causality: Causality is important for making sense of the world. We are constantly learning the
causal relationships between events. We adopt the following definition of causality [21]: event 𝑄
causally depends on 𝑃 if 𝑄 would have occurred if 𝑃 occured, and 𝑄 would not have occurred if 𝑃
had not occurred. It can be described by the relation: 𝑜𝑐𝑐𝑢𝑟𝑠(𝑃 ) ⇔ 𝑜𝑐𝑐𝑢𝑟𝑠(𝑄). We need to teach
students to distinguish between causality and correlation.
In answer set programming, program clauses are “completed” by default, i.e., given clauses

1 p(�̄�) :- B1.
2 p(�̄�) :- B2.

it is assumed that subgoals in the body of p, i.e., B1 ∨ B2 are the cause of p(�̄�). The program
completion operation in s(CASP) results in the dual rule being added to the program:



1 not_p(�̄�) :- not B1, not B2.

To illustrate, we know that a house floods if there is a water pipe leak, or that a house will also flood
if there is torrential rain, then it follows that the house will not flood if there is no water leak and no
torrential rain.

1 house_floods :- pipe_leak.
2 house_floods :- torrential_rain.
3 not_house_floods :- not pipe_leak, not torrential_rain.

However, note that while program completion may appear to make the rules defining causal rela-
tionships, they are only “weakly” causal. A negation-as-failure goal not p states that there is no
evidence for p being true, and so not p can be assumed to be true. So in the above example, if there
is no evidence of torrential rain or water pipe leak, then there will be no evidence of house flooding.
However, it is up to the user to assume that lack of a pipe leak and lack of torrential rain is sufficient
evidence for house not flooding.
If we want to express causality, we must use strong negation. Thus, to state that lack of rain and pipe
leak is sufficient evidence, we must explicitly define the -house_floods predicate as follows:

1 -house_floods :- -pipe_leak, -torrential_rain. .... (9)

If we have no information about pipe leak or torrential rain, then neither house_floods is provable
nor -house_floods. Thus, whether the house got flooded remains unknown. However, we could
make the close world assumption instead, by asserting the rule:

1 -house_floods :- not house_floods.

which amounts to:

1 -house_floods :- not pipe_leak, not torrential_rain.

If there is no evidence of rain and pipe leak, we can conclude that the house did not flood.
Note that these examples can be executed using s(CASP) and the proof traces shown to students,
improving their understanding of causality.

• Counterfactuals: A counterfactual is a statement that considers what would have happened if a
certain event or condition had been different from what actually occurred. It typically takes the form
“If X had happened, Y would have occurred.” Counterfactuals can also capture causality [22]. This is
because if event c causes event e, and we state the counterfactual that if c had not occurred then e
would not have occurred, then we are declaring that event c is the cause of event e.
Counterfactuals can be modeled in ASP and s(CASP). Suppose we have an answer set program with
p(�̄�) as the top-level goal. If we execute the query ?- p(�̄�) on s(CASP), then all possible worlds
in which p(�̄�) holds will be generated by s(CASP) one by one. Note that s(CASP) generates just
enough description of the world that is sufficient to prove the query (each partial world is guaranteed
to be extensible to a complete consistent world). We can generate counterfactual worlds by issuing
the query ?- not p(�̄�), which will systematically generate all the worlds in which p(�̄�) does not
hold. These counterfactual worlds can be useful in improving student understanding of the program
that they have develoepd.
Executing the negation of a query is very useful in case the positive query fails. The worlds generated
for the negated query help one understand why the positive query failed, namely, what factor(s)
contributed to the query’s failure. This can help in debugging the logic developed for proving the
query, as well as improve a student’s understanding of the problem being modeled.

• Constraint Relaxation: Constraint relaxation is employed by humans to arrive at a solution if there
are so many constraints that there is no solution (solution space is empty). Thus, if we model our
knowledge as an answer set program that is over-constrained, and we pose a query against such a



program, then no answer will be produced. Note that there may be other reasons why an answer may
not produced. For example, a query may fail due to incomplete knowledge. So over-constraining is
not the only reason why a query may fail. If the query fails due to the program being over-constrained,
then we may be interested in relaxing enough constraints such that the query will succeed.
The s(CASP) system has a feature where the constraint that caused the top-level query to fail is
output. This feature can help the user to interactively figure out the constraints that are causing
failure.

• Consistency Maintenance: Maintaining consistency is another strategy humans typically use in
day to day life. Consistency is maintained by either relaxing constraints (discussed earlier), or making
additional assumptions, or altering the premises (rules and facts).
A system is consistent if it has at least one model (at least one possible world, or one answer set).
Often, we want to model a situation and we write the rules, but then we find that the system is
inconsistent. We have already discussed how the s(CASP) system can be used to find the constraints
and premises that are making our system inconsistent: by relaxing constraints and/or by comput-
ing the counterfactual worlds and examining them. Consistency may also be restored by making
assumptions. As illustrated earlier, abduction can be used for this purpose. That is, if the absence
of a fact p(�̄�) causes inconsistency, we can alternately assume that it is true or false, by adding the
following even loop over negation:

1 p(�̄�) :- not n_p(�̄�).
2 n_p(�̄�) :- not p(�̄�).

4. Discussion

We argue in this paper that to teach logical thinking, not only the students must be taught knowledge
representation in logic, but also the operational semantics of reasoning. Ideally, this operational semantics
should be identical to that of human reasoning. We also argue that the goal-directed ASP system s(CASP)
indeed follows an operational semantics that reflects how human reason. Most of the concepts that humans
use for reasoning—deduction, abduction, induction, resolution, forward chaining, backward chaining,
etc.—can be directly supported in s(CASP). The s(CASP) system supports both negation-as-failure and
strong negation, as well as constructive negation. In fact, the s(CASP) system can produce a justification
tree automatically for a given query [23] that reflects the reasoning steps followed. This justification tree is
really a proof tree. This justification tree closely corresponds to how a human would reason in their mind
to prove, for example, that a given query holds. The use of justification tree can be a good way to show
students individual steps taken during human reasoning.

In addition, the modeling of various reasoning mechanisms used by humans can allow us to automate
most human endeavors. For example, s(CASP)’s predecessor (s(ASP) [24]) has been used to build the CHeF
system [25] that models a cardiologist’s expertise for treating congestive heart failure. The reasoning used
by cardiologists is expressed in about 100 page long guidelines developed by the American College of
Cardiology. These guidelines [26] are represented in ASP. The CheF system outperforms cardiologists [27],
primarily because it does not suffer from human weaknesses such as a human cardiologist not realizing
that a specific lab result changed since patient’s last visit. Similarly, ASP technology allows us to answer
natural language questions against a textual passage or a graphical image by invoking common sense
knowledge [28, 29]. The system has also been used for automation of legal reasoning [30] and to build
reliable chatbots [31].

Significant amount of research has been invested in formalizing argumentation using logic programming
and answer set programming [32]. However, the logic-based modeling in all these approaches is based
on propositions. In contrast, our goal is to be as general as possible. This means that we should handle



predicates as well—like the s(CASP) system does. The argumentation literature studies complex argument
structures. Our goal is to keep the illustration of human thinking simple—confine it to only default rules,
integrity constraints, and assumption-based reasoning.

Significant work has also been done in informal logic [33]. Similar to classical logic, work in informal
logic is focused on inference rules (called arguments in the informal logic literature) and reasoning (proof).
An argument is an attempt to present evidence for a conclusion (or a claim) and it relies on premises
that support the conclusion [34]. Informal logic can be mapped to logic programming and answer set
programming and modeled with s(CASP) also [35].

5. Conclusion and Future Work

Computational thinking is deemed as an important skill that every student should acquire. Computational
thinking is essentially algorithmic thinking. Since “Algorithm = Logic + Control”, we argue that to learn
computational thinking, a student must learn human logic as well as human control. Human logic cor-
responds to knowledge. Thus, students must be taught how to represent knowledge. “Human control”
corresponds to performing reasoning steps to draw conclusions, simplify/transform knowledge, fill in
knowledge gaps, etc. We argue that ASP is an excellent formalism to represent “human logic”, while the
goal-directed predicate ASP system s(CASP) is excellent for illustrating “human control.” The work reported
here is still in progress. Future work involves developing an extensive set of examples from daily life
represented in ASP and the reasoning processes involved illustrated via s(CASP) to teach logical thinking
to students. As we emphasize in the paper, we want to focus both on teaching students “human logic” as
well as “human control.”
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