CEUR-WS.org/Vol-3799/short6GDE24 .pdf

C

CEUR

Workshop
Proceedings

A Neurosymbolic Framework for Bias Correction in
Convolutional Neural Networks

Parth Padalkar!, Natalia Slusarz?, Fkaterina Komendantskaya®’ and Gopal Gupta!

IUniversity of Texas at Dallas, Richardson, USA
?Heriot-Watt University, UK
ISouthampton University, UK

Abstract

Recent efforts in interpreting Convolutional Neural Networks (CNNs) focus on translating the activation
of CNN filters into a stratified Answer Set Program (ASP) rule-sets. The CNN filters are known to
capture high-level image concepts, thus the predicates in the rule-set are mapped to the concept that
their corresponding filter represents. Hence, the rule-set exemplifies the decision-making process of the
CNN w.r.t the concepts that it learns for any image classification task. These rule-sets help understand
the biases in CNNs, although correcting the biases remains a challenge. We introduce a neurosymbolic
framework called NeSyBiCor for bias correction in a trained CNN. Given symbolic concepts, as ASP
constraints, that the CNN is biased towards, we convert the concepts to their corresponding vector
representations. Then, the CNN is retrained using our novel semantic similarity loss that pushes the
filters away from (or towards) learning the desired/undesired concepts. The final ASP rule-set obtained
after retraining, satisfies the constraints to a high degree, thus showing the revision in the knowledge
of the CNN. We demonstrate that our NeSyBiCor framework successfully corrects the biases of CNNs
trained with subsets of classes from the Places dataset while sacrificing minimal accuracy and improving
interpretability.

Keywords

Neurosymbolic Al, CNN, Semantic Loss, Answer Set Programming, XAI, Representation Learning

1. Introduction

Deep learning models can be biased based on the training data. One infamous illustration of this
bias is exemplified by the “wolf in the snow” problem [1], where convolutional neural networks
(CNNs) erroneously identify a husky as a wolf due to the presence of snow in the background.
This happened because they learnt to associate ‘snow’ with ‘wolf’ based on the training data.
This bias can lead to dire consequences if deployed in sensitive scenarios such as such as disease
diagnosis ([2]) and autonomous vehicle operation ([3]).

Recent works have shown that it is possible to obtain the knowledge of a trained CNN in the
form of a symbolic rule-set, more specifically as a stratified Answer Set Program ([4, 5]). The
authors proposed NeSyFOLD, a framework where the activation of filters in the final CNN layer
represents predicate truth values in the rule-set, revealing concepts learned by the model and

4th Workshop on Goal-directed Execution of Answer Set Programs (GDE’24), October 12, 2024

& parth.padalkar@utdallas.edu (P. Padalkar); nds1@hw.ac.uk (N. Slusarz); e.komendantskaya@soton.ac.uk
(E. Komendantskaya); gupta@utdallas.edu (G. Gupta)

® 0000-0003-1015-0777 (P. Padalkar); 0000-0001-9727-0362 (G. Gupta)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

71 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:parth.padalkar@utdallas.edu
mailto:nds1@hw.ac.uk
mailto:e.komendantskaya@soton.ac.uk
mailto:gupta@utdallas.edu
https://orcid.org/0000-0003-1015-0777
https://orcid.org/0000-0001-9727-0362
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

their relation to the target class. CNN filters, which are n X n matrices, capture image concepts.
Predicates are labeled according to the concepts identified by these filters. The FOLD-SE-M [6]
Rule-Based Machine Learning (RBML) algorithm is used to extract the rules from the last layer
filters.

2. Methodology

We introduce the NeSyBiCor (Neuro-Symbolic Bias Correction) framework, to aid in correcting
pre-identified biases of the CNN. The ASP rule-set generated by NeSyFOLD, from the bias-
corrected CNN serves to validate the effectiveness of the framework. The pre-identified biases
are presented as semantic constraints based on concepts that should and should not be used
to predict the class of an image. These concepts can be selected by scrutinizing the rule-
set generated by NeSyFOLD. We map the undesirable/desirable semantic concepts to their
corresponding vector representations learnt by the filters. Next, we retrain the CNN with a
novel semantic similarity loss function which is a core component of our framework. The loss
function is designed to minimize the similarity of the representations learnt by the filters with
the undesirable concepts and maximize the similarity to the desirable ones. Once the retraining
is complete, we use the NeSyFOLD framework again to extract the refined rule-set. Hence, our
approach provides a way to refine a given ASP rule-set subject to some semantic constraints.
Figure 1 illustrates the framework.

Computing Concept Representation Vectors: The first step is to obtain concept representation
vectors for each desired and undesired concept specified in the semantic constraints of each
target class. A CNN filter can be flattened into a vector representing the detected patterns. For
example, in the rul-set (blue box) shown in Fig. 1, the filter associated with the predicate ‘sky1/1’
detects blue sky patterns, while ‘sky2/1” detects evening sky patterns in desert road images. To
compute the concept representation vector for sky, we calculate the filter representation vectors
for all predicates containing sky in their name and positively linked to the ‘desert road’ class.
For example, ‘sky1/1’ and ‘sky2/1” have two such filters. Their filter representation vectors
are computed by averaging the output vectors of the top-10 images these filters activate in the
training set. The final concept representation vector for sky is the mean of the ‘sky1/1’ and
‘sky2/1” vectors. This process is repeated for every desired and undesired concepts.

Calculating the Semantic Similarity Loss: The semantic similarity loss, Lss for a training
set with NV images and a CNN with K filters in the last layer, is defined as:

N K

Lss = Z Z AB Z cos_sim(rz-, ry) — Ag Z cos_sim(r;:, ry) (1)

i=1 | j=1 beB g€G

Here, cos_sim calculates the cosine similarity between two vectors. ré» represents the filter
output from the j" filter of the i'" image, while r; and r, are the concept representation
vectors for undesired concepts b € B and desired concepts g € G, respectively. Ap and Ag are
hyperparameters that balance the influence of these terms.

The loss increases when filter vectors resemble undesired concepts and decreases when they
are closer to desired concepts, similar to the word2vec loss function. As training progresses, the

\ (ﬁaANTIC ASP CONSTRAINTS: \
L. ==

RULE=-SET : target (X, 'desert_road'), sky(X).
1. target(X,'street') :- buildingl (X) . 2. :- target(X, 'street'), road(x).
2. target(X,'desert_road') :- skyl(X). 3. :- target (X, 'desert road'), not
3. target (X, 'desert_road’) := not road (X) .
building4 (X), not building2(X) , 4. :- target(X, 'desert_road'), not
not abl(X) . ground (X) .
4. target(X,'street') :- building5(X) . 5. := target(X, 'desert_road'), not
5. target(X,'street') :- not roadl(X). sand (X) .
6. abl(X) :- not sky2(X),personl_building3(X) . 6. :- target (X, 'street'), not
\ / K building(X) . j
Craining ~ ~ ~ ~ ~ _~ ~_ _~ - TTTTTTTTTmTmmTmemmmommmmmEmT
Loop «€Backpropagation

Calculate Crossentropy +
Semantic Similarity Loss

Compute Representation
Vectors for Concepts

L Generate Rule-Set
Every k Using NeSyFOLD
Epochs

Find Undesired/Desired
Concepts

Semantic ASP
Constraints

Figure 1: The NeSyBiCor Framework. Note that the crossentropy loss is calculated after the fully
connected layer while the semantic similarity loss is calculated by using the filter output feature maps
of the last convolution layer

filters are encouraged to learn desired concepts while avoiding undesired ones. The total loss
is defined as the sum of crossentropy loss L¢g and semantic similarity loss Lss, LToT4c =
Lee + Lss

Recalibrating the Concept Representation Vectors: We propose rectifying all the concept
representation vectors for each class after every k epochs during training. We do this by running
the NeSyFOLD framework after every k epochs and obtaining a new rule set from the partially
retrained CNN. We then aggregate the new concept representation vectors with the old concept
representation vectors by taking their mean.

3. Experiments and Results

We train a CNN on subsets of the Places [7] dataset and compare the results with the rule-set
obtained using NeSyFOLD before and after the bias correction with our NeSyBiCor framework.
Details of the experiments can be found elsewhere (Padalkar et al. [8]). Figure 2 shows the
initial and bias-corrected rule-set for 2 subsets of the Places dataset. The des subset constitutes
the ‘desert road’ and ‘street’ class and the defs subset comprises of the ‘desert road’, ‘forest road’
and ‘street’ classes.

The undesired concepts for the ‘desert road’ class are ‘sky’ and ‘building’. In RULE-SET 1,

ULE-SET 1:

. target(X, 'street') :- buildingl(X). RULE-SET 1%*:
. target(X, 'desert_road') :- skyl(X).
. target(X, 'desert_road') :- not building5(X), 1. target(X, 'street') :- buildingl(X).
not building2(X), not abl1(X). 2. target(X, 'desert_road') :- groundl_roadl(X).
. target(X, 'street') :- building6(X). 3. target(X, 'street') :- building3(X).
. target(X, 'street') :- not roadil(X). 4. target(X, 'desert_road') :- not building2(X).
. abl(X) :- not sky2(X), not building4(X),
building3(X).
/QSET 2: \
1. target(X, 'street’') :- building4(X).
2. target(X, 'forest_road') :- tree3(X), not abl(X), e
not ab2(X). =
3. target(X, 'desert_road') :- sky2(X), not ab3(X).
4. target(X, 'forest_road') :- skyl_tree2(X), 1. target(X, 'street') :- buildingl(X).
not buildingl(X), not ab4(X). 2. target(X, 'desert_road') :- not treesil(X),
5. target(X, 'desert_road') :- not building5(X), N not ab2(X).
not building2(X). 3. target(X, ‘forest_road’') :- treesl(X).
6. target(X, 'street') :- building9(X). 4. target(X, 'street') :- building3(X).
7. target(X, 'street’') :- building8(X). 5. abl(X) :- not building2(X), sky1(X).
8. target(X, 'street') :- personil(X). 6. ab2(X) :- not groundl_roadl(X), not abl(X).
9. abl(X) :- not treel(X), building7(X).
10. ab2(X) :- not building3(X), roadl(X), road2(X).
11. ab3(X) :- not building6(X), building2(X).

QM(X) :- not treel(X), roadl(X). /

Figure 2: The initial and final rule-sets after applying the NeSyBiCor framework on the CNNs trained
on des (RULE-SET 1) and defs (RULE-SET 2)

rule 2 uses the ‘sky1/1’ predicate to determine if the image belongs to the ‘desert road’ class.
In the bias-corrected rule-set, RULE-SET 17 there is no ‘sky’ based predicate. Moreover, the
only predicate positively linked with the ‘desert road’ class is the ‘ground1_road1/1’ predicate
which is based on the desired concept ‘ground’ and refers to the corresponding filter, learning a
pattern comprising of specific type of patches of ‘ground’ and ‘road’. Thus it is clear that at
the end of the bias correction, very few/none of the filters learn representations of the ‘sky’ or
‘building’ concepts, hence correcting the “bias” of the CNN towards them while predicting the
“desert road” class.

4. Conclusion and Future Work

Our framework, in addition to correcting the bias of a CNN also allows the user to fine-tune
the bias based on general concepts according to their specific needs or application. To the
best of our knowledge, this is the first method that does bias correction by using the learnt
representations of the CNN filters in a targeted manner. We show through our experiments that
the bias-corrected rule-set is highly effective at avoiding the classification of images based on
undesired concepts. It is also more likely to classify the images based on the desired concepts.

Finally, the work we presented here may be used to extend implementations of loss functions
based on Differentiable Logics: [9, 10, 11].

References

(1]

(2]

M. T. Ribeiro, S. Singh, C. Guestrin, "why should i trust you?": Explaining the predictions of
any classifier, 2016. URL: https://arxiv.org/abs/1602.04938. doi:10.48550/ARXIV.1602.
04938.

T. Milezzinoglu, N. Baygin, I. Tuncer, P. D. Barua, M. Baygin, S. Dogan, T. Tuncer, E. E.
Palmer, K. H. Cheong, U. R. Acharya, Patchresnet: Multiple patch division-based deep
feature fusion framework for brain tumor classification using MRI images, 2023. URL:
https://doi.org/10.1007/s10278-023-00789-x. doi:10.1007/S10278-023-00789-X.

R. Barea, L. M. Bergasa, E. Romera, E. Lopez-Guillén, O. Perez, M. Tradacete,]J. Lopez,
Integrating state-of-the-art cnns for multi-sensor 3d vehicle detection in real autonomous
driving environments, in: Proc. ITSC, IEEE, 2019, pp. 1425-1431.

P. Padalkar, H. Wang, G. Gupta, Nesyfold: A framework for interpretable image classifica-
tion, in: Proc. AAAI, AAAI Press, 2024, pp. 4378-4387.

P. Padalkar, H. Wang, G. Gupta, Using logic programming and kernel-grouping for
improving interpretability of convolutional neural networks, in: Proc. PADL, volume 14512
of LNCS, Springer, 2024, pp. 134-150. URL: https://doi.org/10.1007/978-3-031-52038-9_9.
doi:10.1007/978-3-031-52038-9_0.

H. Wang, G. Gupta, FOLD-SE: an efficient rule-based machine learning algorithm with
scalable explainability, in: Proc. PADL, volume 14512 of LNCS, Springer, 2024, pp. 37-53.
B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places: A 10 million image database
for scene recognition, 2017.

P. Padalkar, N. Slusarz, E. Komendantskaya, G. Gupta, A neurosymbolic framework for
bias correction in cnns, 2024.

M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, M. Vechev, DI2: training
and querying neural networks with logic, in: International Conference on Machine
Learning, PMLR, 2019, pp. 1931-1941.

N. Slusarz, E. Komendantskaya, M. L. Daggitt, R. Stewart, K. Stark, Logic of differentiable
logics: Towards a uniform semantics of dl, in: 24th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, LPAR 2023, 2023, pp. 473-493.

M. L. Daggitt, W. Kokke, R. Atkey, N. Slusarz, L. Arnaboldi, E. Komendantskaya,
Vehicle: Bridging the embedding gap in the verification of neuro-symbolic pro-
grams, 2024. URL: https://doi.org/10.48550/arXiv.2401.06379. d0i:10. 48550 /ARXIV. 2401 .
06379. arXiv:2401.06379.

https://arxiv.org/abs/1602.04938
http://dx.doi.org/10.48550/ARXIV.1602.04938
http://dx.doi.org/10.48550/ARXIV.1602.04938
https://doi.org/10.1007/s10278-023-00789-x
http://dx.doi.org/10.1007/S10278-023-00789-X
https://doi.org/10.1007/978-3-031-52038-9_9
http://dx.doi.org/10.1007/978-3-031-52038-9_9
https://doi.org/10.48550/arXiv.2401.06379
http://dx.doi.org/10.48550/ARXIV.2401.06379
http://dx.doi.org/10.48550/ARXIV.2401.06379
http://arxiv.org/abs/2401.06379

	1 Introduction
	2 Methodology
	3 Experiments and Results
	4 Conclusion and Future Work

