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Abstract
Datalog is a powerful yet elegant language that allows expressing recursive computation. Although Datalog
evaluation has been extensively studied in the literature, so far, only loose upper bounds are known on how

fast a Datalog program can be evaluated. In this work, we ask the following question: given a Datalog program,

what is the tightest possible runtime? To this end, our main contribution is a structure-aware query evaluation

technique that computes a Datalog program by first rewriting it to generate the smallest possible grounding.

Using this technique we can obtain state-of-the-art theoretical runtime results. We also give some preliminary

evidence that the rewriting method can lead to practical runtime improvements.
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1. Introduction

Datalog is a recursive query language that has gained prominence due to its expressivity and rich

applications across multiple domains, including graph processing [1], declarative program analysis [2, 3],

and business analytics [4]. Many graph analytics tasks (e.g., pattern finding) and program analysis tasks

such as Dyck-reachability [5, 6, 7], context-free reachability [8], and Andersen’s analysis [9] can be

naturally cast as Datalog programs.

Much prior work has sought to characterize the complexity of Datalog evaluation. The general

data complexity of Datalog is P-complete [10, 11]. Some fragments of Datalog can have lower data

complexity: the evaluation for non-recursive Datalog is in AC0, whereas evaluation for Datalog with

linear rules is in NC and thus efficiently parallelizable [12, 13]. However, all such results do not tell us

how efficiently we can evaluate a given Datalog program. Furthermore, the current general algorithmic

techniques for Datalog evaluation typically aim for an imprecise polynomial bound instead of specifying

the tightest possible exponent. Semi-naïve or naïve evaluation only provides upper bounds on the

number of iterations, ignoring the computational cost of each iteration.

Endeavors to pinpoint the exact data complexity for Datalog fragments have focused on the class of

Conjunctive Queries (CQs) [14, 15, 16] and union of CQs [17]. When recursion is involved, however,

exact runtimes are known only for special classes of Datalog [18, 19, 20, 21]. The seminal work of

Yannakakis [22] established a 𝑂(𝑛3) runtime for chain Datalog programs, where 𝑛 is the size of the

active domain. Such programs have a direct correspondence to context-free grammars and capture

a fundamental class of static analysis known as context-free reachability (CFL-reachability). When

the chain Datalog program corresponds to a regular grammar, the runtime can be further improved

to 𝑂(𝑚 · 𝑛), where 𝑚 denotes the size of the input data. An 𝑂(𝑛3) algorithm was proposed for the

Datalog program that captures Andersen’s analysis [8]. Recently, Casel and Schmid [23] studied the

fine-grained complexity of evaluation, enumeration, and counting problems over regular path queries

(also a Datalog fragment) with similar upper bounds. However, none of these techniques generalize to

arbitrary Datalog programs.

Our Contribution In [24], we address the following question: given a Datalog program 𝑃 , what is

the tightest possible runtime as a function of the input size𝑚 and the size of the active domain 𝑛?
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To answer this question, we propose a general framework for evaluating 𝑃 based on rule rewriting.

The key idea is based on the fundamental result that a grounded Datalog program (i.e., one where every

rule has constants) can be evaluated in time linear w.r.t. its size. Hence, the goal of the framework is to

transform 𝑃 into an equivalent grounded program that is as small as possible. Though constructing

grounded programs naïvely is rather straightforward, we show that groundings of smaller size are

attainable via rewriting 𝑃 using tree decomposition techniques. We apply our framework to prove

state-of-the-art and new results for practical Datalog fragments (e.g. linear Datalog).

This paper summarizes the key results from [24] and seeks to experimentally evaluate the idea of

rewriting a Datalog program 𝑃 to obtain the smallest possible grounding. We show that the rewriting

can often lead to significant speed-ups in evaluation.

2. Preliminaries

Datalog consists of a set of rules over a set of extensional and intensional relations (simply referred

to as EDB and IDB respectively, henceforth). EDBs correspond to relations in a given database, each

comprising a set of EDB tuples, whereas IDBs are derived by the rules. The head of each rule is an

IDB, and the body of the rule consists of zero or more EDBs and IDBs as a Conjunctive Query defining

how the head IDB is derived. We illustrate with the example of transitive closure on a binary EDB R
denoting edges in a directed graph, a single IDB T, and two rules:

T(𝑥, 𝑦)← R(𝑥, 𝑦).

T(𝑥, 𝑦)← R(𝑥, 𝑧), T(𝑧, 𝑦).

For every Datalog program, we will assume that there is a unique IDB that we identify as the target

(or output) of the program. We use arity(𝑃 ) to denote the maximum number of variables contained in

any IDB of a program 𝑃 . We say that a Datalog program 𝑃 is monadic if every IDB is unary; a Datalog
program is linear if the body of every rule contains at most one IDB. A chain Datalog program is a

program where every rule has the following form:

T(𝑥1, 𝑥𝑘+1)← T1(𝑥1, 𝑥2), T2(𝑥2, 𝑥3), . . . , T𝑘(𝑥𝑘, 𝑥𝑘+1).

A chain Datalog program corresponds to a Context-Free Grammar (CFG).

We use 𝑚 to denote the sum of sizes of the input EDB relations to a Datalog program. We use 𝑛 to

denote the size of the active domain of EDB relations (i.e., the number of distinct constants that occur

in the input). We assume data complexity, i.e. the program size (the total number of predicates and the

variables) is a constant. We use the standard word-RAM model with 𝑂(log𝑚)-bit words and unit-cost

operations for all complexity results.

3. Main Results

In this section, we sketch the main results from [24] on structure-aware Datalog rewriting. The readers

may refer to [24] for the formal algorithm and analysis. Our first result considers Datalog programs

that are rulewise-acyclic. A rule is said to be acyclic if the body of the rule, viewed as a Conjunctive

Query, admits a join tree. We say that a program is rulewise-acyclic if it has only acyclic rules.

Theorem 3.1 ([24]). Let 𝑃 be a rulewise-acyclic Datalog program with input size 𝑚, active domain

size 𝑛, and arity 𝑘. Then, we can evaluate 𝑃 in time 𝑂(𝑛𝑘−1 · (𝑚+ 𝑛𝑘)).

We give below an example of how our algorithm for the theorem works, using even-hop backward
reachability in directed graphs:

evenPath(𝑥)← sink(𝑥).

evenPath(𝑥)← edge(𝑥, 𝑦), edge(𝑦, 𝑧), evenPath(𝑧).
(1)
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Both rules here are acyclic, and the arity is 𝑘 = 2. Observe that producing directly all groundings of

the second rule would generate a grounded program of size 𝑂(𝑚 · 𝑛). Our algorithm first rewrites the

second rule following the structure of its join tree:

evenPath(𝑥)← sink(𝑥).

oddPath(𝑦)← edge(𝑦, 𝑧), evenPath(𝑧).

evenPath(𝑥)← edge(𝑥, 𝑦), oddPath(𝑦).

(2)

Now grounding the resulting rules will produce a grounded program of only size 𝑂(𝑚), which implies

an evaluation algorithm with runtime 𝑂(𝑚). In fact, a direct corollary of Theorem 3.1 is that for

monadic acyclic Datalog we have a linear runtime of 𝑂(𝑚), which is essentially optimal.

Theorem 3.1 can be generalized from acyclic rules to rules bounded by submodular width.

Theorem3.2 ([24]). Let𝑃 be a Datalog program where arity(𝑃 ) ≤ 𝑘, subw is the maximum submodular

width across all rules of 𝑃 , and suppose the input size is 𝑚, and the active domain size is 𝑛. Then, we

can evaluate 𝑃 in time
̃︀𝑂(𝑛𝑘−1 · (𝑚subw + 𝑛𝑘·subw)), where

̃︀𝑂 hides a polylogarithmic factor.

As an example, consider the following Datalog program, which computes a diamond-pattern
reachability starting from some node set source(𝑥):

T(𝑥)← source(𝑥).

T(𝑥)← T(𝑦), edge(𝑦, 𝑧), edge(𝑧, 𝑥), edge(𝑥,𝑤), edge(𝑤, 𝑦).
(3)

For this program, the submodular width of the second rule is 3/2. Further, its arity is 𝑘 = 1. Thus, we

can evaluate the above program in time
̃︀𝑂(𝑚3/2).

As a corollary of Theorem 3.2, monadic Datalog (i.e. when 𝑘 = 1) can be evaluated in time
̃︀𝑂(𝑚subw).

This is also the best-known runtime for Boolean Conjunctive Queries [16]. Hence, this result tells us

that the addition of recursion with unary IDBs does not really add to the runtime of evaluation!

When the rules in the Datalog program are linear, we can obtain even stronger runtime results.

Theorem 3.3 ([24]). Let 𝑃 be a linear and rulewise-acyclic Datalog program with input size 𝑚, active

domain size 𝑛, and arity ≤ 2. Then, we can evaluate 𝑃 in time 𝑂(𝑚 · 𝑛).

Theorem 3.4 ([24]). Let 𝑃 be a linear Datalog program with input size 𝑚, active domain size 𝑛, arity

≤ 𝑘, and submodular width subw. Then, we can evaluate 𝑃 in time 𝑂(𝑛𝑘−1 ·𝑚subw−1 · (𝑚+ 𝑛𝑘)).

4. Experiments

In this section, we demonstrate that our rewriting technique can result in significant runtime speed-ups

in practice. We ran all our experiments on a bare-metal single-node virtual machine on Cloudlab [25]

that has two Intel E5-2683 v3 14-core CPUs and 256GB main memory.

We test our structure-aware rewritings via three programs on Soufflé. Soufflé [2] is a widely used

high-performance Datalog system that is primarily designed for program analysis and uses advanced

optimization techniques such as efficient program synthesis. All results reported are configured to run

single-threaded in main memory. The three programs are: 1 same generation [26, 27], i.e.

sg(𝑥, 𝑦)← edge(𝑝, 𝑥), edge(𝑝, 𝑦), 𝑥 ̸= 𝑦.

sg(𝑥, 𝑦)← edge(𝑎, 𝑥), sg(𝑎, 𝑏), edge(𝑏, 𝑦).
(4)

and its rewriting (using our technique)

sg(𝑥, 𝑦)← edge(𝑝, 𝑥), edge(𝑝, 𝑦), 𝑥 ̸= 𝑦.

fatherOf(𝑏, 𝑥)← edge(𝑎, 𝑥), sg(𝑎, 𝑏).

sg(𝑥, 𝑦)← fatherOf(𝑏, 𝑥), edge(𝑏, 𝑦).

(5)
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Dataset # nodes # edges
G5k 5000 25046
G10k 10000 99805
wiki-Vote 7115 103689
ego-Twitter 81306 1768149
web-Stanford 281903 2312497
soc-Livejournal 4848571 68993773

Table 1
Number of nodes and edges of all graph datasets used in the experiments

Programs Dataset Runtime Runtime after rewriting
same generation G5k 125s 54s

G10k 2078s 372s
wiki-Vote 328s 32s

two-hop backward reachability ego-Twitter 8.3s 3.2s
web-Stanford 68.8s 3.5s
soc-Livejournal 435s 136s

diamond-pattern reachability wiki-Vote 7s 1.5s
ego-Twitter 145s 73s
web-Stanford 11s 52s

Table 2
Runtime results of the original programs and the rewritten programs

2 even-hop backward reachability and its rewriting (both outlined in Section 3), and 3 diamond-

pattern reachability (3) (it is not rulewise-acyclic) and its rulewise-acyclic rewriting as follows:

T(𝑥)← source(𝑥).

Z(𝑥, 𝑦)← T(𝑦), edge(𝑦, 𝑧), edge(𝑧, 𝑥).

W(𝑥, 𝑦)← T(𝑦), edge(𝑥,𝑤), edge(𝑤, 𝑦).

T(𝑥)← Z(𝑥, 𝑦),W(𝑥, 𝑦).

(6)

We use graph datasets (wiki-Vote, ego-Twitter, web-Stanford and soc-Livejournal) from

the Stanford Large Network Dataset Collection [28] as program inputs. The G5k and G10k datasets are

random graphs of 5𝑘 and 10𝑘 nodes sampled from the Erdős-Rényi model [29], where each edge exists

with probability 0.001. All datasets are listed in Table 1. Whenever necessary, we randomly sample 100
nodes from the graph and designate them as the source nodes source(𝑥) or the sink nodes sink(𝑥).

Table 2 summarizes the runtime results on Soufflé. We find a consistent 2.5 up to ~20x speed-up on

the first two programs. In the last row, one regression (~5x slowdown) is observed on web-Stanford
because the final result set is small but the introduced Z(𝑥, 𝑦),W(𝑥, 𝑦) IDBs are very large and hence

expensive to materialize in the rewritten Soufflé program (6).

5. Conclusion

We propose a structure-aware rewriting technique that allows us to obtain and even refine the best-

known theoretical runtime results. The theoretical results are based on our recent PODS 2024 pub-

lication [24]. In addition, our rewriting exhibits significant speed-ups on Soufflé across multiple

recursive graph workloads. Future directions include an in-depth understanding of the tightness of our

results and a more comprehensive investigation of the practicality of our technique in modern Datalog
engines like Soufflé.
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