
The Logica System: Elevating SQL Databases to
Declarative Data Science Engines
Evgeny Skvortsov1,*, Yilin Xia2,†, Shawn Bowers3,† and Bertram Ludäscher2,†

1Google LLC, WA, USA
2University of Illinois Urbana-Champaign, School of Information Sciences, IL, USA
3Gonzaga University, Department of Computer Science, Spokane, WA, USA

Abstract
Logica (= Logic + aggregation) is a freely available, open-source, feature-enhanced version of Datalog that
automatically compiles logic rules to a number of popular SQL platforms (DuckDB, SQLite, PostgreSQL, and
BigQuery). Logica combines beginner-friendly declarative features of Datalog with advanced analytical features
needed by data science and ML practitioners when processing real-world data. Since Logica is built on top of
mature SQL implementations, these features can be executed robustly and scalably. Logica allows beginners to
seamlessly progress from simple textbook examples to intermediate and advanced use cases. We introduce Logica
with examples that combine aggregation, recursion, and negation in interesting and powerful ways. Additional
advanced examples (maximum flow, matrix inversion, etc.) are demonstrated in an online notebook. Logica source
programs are compiled into (a) self-contained SQL scripts (for non-recursive and shallow-recursive problems) or
(b) Python-driven iterations of SQL queries (when deep recursion is needed). Logica’s practical and theoretical
expressive power thus extends both SQL and (pure) Datalog. The Logica system has been used for data science
applications and training in industry, and in graduate-level courses in academia.

Keywords
Datalog-to-SQL compilation, aggregation, non-stratified negation, declarative data science applications

1. Introduction

Datalog has a long history in databases [1], e.g., for studying the expressive power of queries [2], as a
logical foundation for nonmonotonic reasoning [3, 4], and as a language for teaching the foundations
of databases [5]. The resurgence of Datalog in academia and industry [6] yielded new application areas
that bridge the gap between specification and implementation: e.g., in program analysis [7], declarative
networking [8, 9], knowledge graphs [10], and ML/AI [11, 12]. For these and other use cases, a number
of specialized Datalog systems and prototypes have been implemented, e.g., see [13, 7, 10] among others.

Somewhat surprisingly, however, despite these successes there has been a lack of freely available,
scalable implementations of Datalog that support real-world data-science applications. In contrast, the
ubiquity and success of Python can be explained by (i) the fact that it is freely and widely available,
and (ii) it is a language and system that can grow with the experience and needs of learners and users:
with Python there is a continuous path—from beginner to expert—within a single framework. If the
user-friendly, declarative features of Datalog could be combined with the robust, well-engineered
features of SQL databases in a widely available implementation, a similar path could allow beginners to
advance from simple, declarative queries to more complex data-intensive analysis use cases.

We begin to address this challenge using Logica, a freely available, open-source Datalog variant,
designed to combine the declarative features of a logical rule language with features needed in real-
world data science applications. Logica is a descendant of Yedalog [14] (and thus Dyna [12]) and
inherits several features through this lineage, e.g., a programmer-friendly syntax for aggregators,

Datalog 2.0 2024: 5th International Workshop on the Resurgence of Datalog in Academia and Industry, October 11, 2024, Dallas,
Texas, USA
*Corresponding author.
†
These authors contributed equally.
$ evgenys@google.com (E. Skvortsov); yilinx2@illinois.edu (Y. Xia); bowers@gonzaga.edu (S. Bowers);
ludaesch@illinois.edu (B. Ludäscher)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

69

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:evgenys@google.com
mailto:yilinx2@illinois.edu
mailto:bowers@gonzaga.edu
mailto:ludaesch@illinois.edu
https://creativecommons.org/licenses/by/4.0


Evgeny Skvortsov et al. CEUR Workshop Proceedings 69–73

Logica System

SQL
Script

SQLite

Logica Parser

DuckDB

Type Inference Engine

Logica Program Compiler

Rule Compiler Expression Compiler

Logica Pipeline Object (SQL-query iteration) 

Logica Pipeline Driver (Python)
CSV 
File

JSON
File

Parquet
File

Imported
Logica

Modules

Logica
Main

Program

Imported
Logica

Modules

U
se

r’s
 F

ile
 S

ys
te

m

PostgreSQL

BigQuery

External DB Engines

shallow or non-
recursive rules

deep recursion
Embedded DBs

UI 

Qi Qi 

Figure 1: System Architecture: Logica supports a module system for importing libraries (top left); users write programs
either locally (top left), e.g., as part of a larger Python script, or from within Jupyter notebooks (top right); programs are
parsed, type checked (top middle), and, if well-formed, compiled to a self-contained SQL script (no/limited recursion) or
to an iterative plan of pipelined SQL-queries that is passed to a pipeline driver (bottom middle). Logica then executes and
monitors queries via underlying SQL engines, either locally (bottom left) or externally (bottom right).

functional predicates, user-defined functions, and complex data types. Logica source code, tutorials,
and demonstration notebooks are available online [15, 16].

In Section 2 we provide an overview of the Logica system architecture and its components. The
system compiles rules into (a) self-contained SQL scripts, or (b) to Python-driven pipelines that chain
together SQL queries (if deep recursion is needed). In Section 3 we introduce some of the key features
of the Logica language by example. Advanced features include user-defined, rule-based aggregation,
support for positional and name-based predicates, and numeric computations (e.g., to compute the
PageRank of a network). These and additional examples are available through and online demonstration
[16]. In Section 4, we discuss future work.

2. The Logica System Architecture

An overview of the system architecture is depicted in Figure 1: The user can work with Logica from the
command line or use an interactive UI (e.g., Jupyter notebook). The main program can import functions
and other rules via a module system. In the main program (or Jupyter cell), the user specifies a subset
of top-level predicates that should be evaluated (skipping rules that are not needed). After parsing
and analyzing the main Logica file and all its dependent (imported) files, a collection of SQL queries is
created, in the dialect of the target database engine. Since the different engines each have their own
limitations and idiosyncrasies, information from the type inference engine is used to create the correct
SQL code for each platform.

If the set of rules to be evaluated is non-recursive (or if the user has indicated via a directive that a
fixed-depth, non-iterative recursion is sufficient), a self-contained SQL script is generated that can be
executed en bloc, in the required order. For long-running queries the user can monitor rule execution in
the UI: Top-level predicates and the predicates they depend on are rendered as they are being evaluated1,
so the user knows which (iterated) relations are complete or still running, respectively.

System Components. The Logica Parser (Figure 1) reads and analyzes the main program and all
dependent (imported) modules. The resulting syntax tree is represented by a JSON-like object. The Type
Inference Engine works on this object to infer the types of predicate arguments and expressions in the
bodies of rules. Type inference is used to catch programming errors in Logica rules, producing high-level,
user-friendly messages (instead of forcing the user to debug faulty SQL). The type-annotated syntax
tree is then passed to the Logica Program Compiler, which generates a collection of interdependent
SQL queries. The Expression Compiler sub-component turns Logica value expressions into equivalent
SQL expressions. The Rule Compiler takes a single conjunctive rule and translates it into a single SQL

1in ASCII mode when running in a terminal, or as a dynamic Graphviz-rendered pipeline graph in Jupyter

70



Evgeny Skvortsov et al. CEUR Workshop Proceedings 69–73

query. If the program is non-recursive or the expected runtime recursion depth is shallow (e.g., < 100),
the compiler can output a reasonably-sized, self-contained SQL script that produces a result table
for each compiled predicate. For predicates requiring deep recursion, Logica will create a JSON-like
pipeline object to execute the generated SQL queries via the Python-based Logica Pipeline Driver. The
latter executes SQL queries 𝑄𝑖 iteratively (Figure 1), stage-by-stage until a fixpoint or a user-defined
termination condition is reached. Intermediate results are stored in the target database.

3. Logica Rules by Example

In Logica syntax, predicate names are capitalized, variable names begin with lowercase letters, negation
is denoted by “∼”, and rules are terminated with semicolons.2 Logica programs consist of sets of
statements, which are either rules or directives (e.g., imports). The following stratified Logica rules
specify how to compute the lowest-common-ancestor (LCA) a of two nodes x and y:

1 Ancestor(x,a) :- Parent(x,a);
2 Ancestor(x,a) :- Ancestor(x,z), Ancestor(z,a);
3 CommonAncestor(x,y,a) :- Ancestor(x,a), Ancestor(y,a), x != y;
4 NonLCA(x,y,a) :- CommonAncestor(x,y,a), CommonAncestor(x,y,b), Ancestor(b,a);
5 LCA(x,y,a) :- CommonAncestor(x,y,a), ∼NonLCA(x,y,a);

When compiling Datalog to plain SQL there are several natural approaches for handling recursion,
e.g., (1) use WITH RECURSIVE and Common Table Expressions (CTEs), or (2) unroll recursive rules to
a fixed depth 𝑘. Both approaches have pros and cons, e.g., (1) cannot handle non-linear recursion,
while (2) may result in incomplete answers when the recursion depth required exceeds the user-defined
“unroll-depth” 𝑘 set for a given program. For shallow-recursive problems Logica employs (2), as this is
often sufficient in practice. The double-recursive Ancestor(x,a) specification above, e.g., can handle
graphs with diameter 𝑑 ≤ 2𝑘 given an unroll-depth of 𝑘.

Loans-by-Month: Named Attributes and Basic Aggregation. Logica supports the traditional
positional Datalog syntax (used above) and the name-based syntax from SQL. The latter makes Logica,
like SQL, more robust to schema changes3 and is a practical necessity when dealing with real-world
tables that have more than a few columns. Consider, e.g., a relational schema for LibLoans giving the
number of loans (checkouts) for different item types in a given month. The following rules use both
positional and named syntax to compute the number of checkouts for items that are popular (having at
least 30K total loans).

1 AnyMonth() = i + 1 :- i in Range(12);
2 ItemCount(item) += loans :- LibLoans(item:,loans:);
3 PopularItem() = item :- ItemCount(item) > 30000;
4 LoansByMonth(item:PopularItem(),month:AnyMonth()) += 0;
5 LoansByMonth(item:,month:) += loans :- LibLoans(item:, month:,loans:),item = PopularItem();

The rule in 1 uses the built-in function Range() to define a multi-valued function AnyMonth() that
returns integers 1, . . . , 12. All Logica relations have an additional “special attribute” logica_value
used to store and access a relation’s functional value, i.e., its value when used syntactically as a function.
The rule in 2 uses named attributes for LibLoans() to sum the total number of checkouts for each item.
Each named attribute (e.g., item: in rule 2) implicitly defines a variable of the same name (here: item).
Rule 3 finds popular items: logica_value is accessed via ItemCount(item) in the body. Rules 4 and 5

compute the number of loans per month for each of the popular items. This example uses aggregation
but no recursion and thus compiles into a single (stand-alone) SQL script.

PageRank: Aggregation through Recursion. PageRank quantifies the importance of a web page 𝑝
based on the importance of pages that link to it [17]. Let 𝑀(𝑝) be the set of pages that link to 𝑝; 𝐿(𝑝)
be the number of links from 𝑝; and 𝑁 be the total number of pages in a web graph. For a damping
factor 𝑑 (0 ≤ 𝑑 ≤ 1), the PageRank PR(𝑝𝑖) of page 𝑝𝑖 is recursively defined as:
2Logica, like SQL, also supports bag semantics and a distinct keyword.
3For example, adding new columns to a schema usually will not break a query.

71



Evgeny Skvortsov et al. CEUR Workshop Proceedings 69–73

PR(𝑝𝑖) =
1− 𝑑

𝑁
+ 𝑑

∑︁
𝑝𝑗∈𝑀(𝑝𝑖)

PR(𝑝𝑗)

𝐿(𝑝𝑗)
.

Intuitively, a page is important if many pages or a few important pages link to it. PageRank can be
interpreted as a probability distribution modeling the behavior of a web-surfer following links from a
random page until becoming bored, then jumping to another random page, clicking links, etc. Thus, PR
is the probability the surfer visits a page and 𝑑 is the probability the surfer becomes bored and jumps to
another page. These two rules implement PageRank in Logica:

1 PageRank(x) += ResetProb() / N() :- Page(x);
2 PageRank(y) += (1.0 - ResetProb()) * PageRank(x) / Degree(x) :- Link(x,y);

Here ResetProb() is 1− 𝑑; N() is 𝑁 ; and Degree(x) is 𝐿 from above. This code assumes a fixed-depth
(shallow) recursion. Alternatively, consider this iterative (pipelined) version:

1 @Recursive(PageRank(), 100, iterative:true,stop:ChangeIsSmall);
2 PageRank(x) += ResetProb() / N() :- Page(x), MonitorIteration();
3 PageRank(y) += (1.0 - ResetProb()) * PageRank(x) / Degree(x) :- Link(x,y);

The directive @Recursive states that PageRank() rules are iterated until a stop condition becomes
true or a maximum of 100 iterations is reached. The former is given by a ChangeIsSmall() predicate
that compares the change between consecutive PageRank() iterations to a given 𝜖-value (see [16] for
details). MonitorIteration() is used to encapsulate the call to ChangeIsSmall().

𝑘-Means: Collection Types and Mutual Recursion. The 𝑘-means algorithm partitions a collection
of rows into 𝑘 clusters using a distance metric. First, 𝑘-means assigns rows randomly to 𝑘 initial clusters
and then computes each cluster’s centroid. The rules then reassign each row to the nearest cluster
centroid; recalculates centroids; and repeats until a fixpoint is reached. The following rules implement
𝑘-means for 𝑘 = 3 (rows represent points with X and Y coordinates):

1 Distance(p1,p2) = ((p1.X - p2.X) ^ 2 + (p1.Y - p2.Y) ^ 2) ^ 0.5;
2 Color(i) = colors[i] :- colors = ["red", "green", "blue"];
3 Cluster(i) ArgMin= Color(i % 3) -> Infinity() :- Point(i);
4 Cluster(i) ArgMin= c -> Distance(Centroid(c), Point(i));
5 Avg2D(p) = {X:Avg(p.X), Y:Avg(p.Y)};
6 Centroid(Cluster(i)) Avg2D= Point(i);

This also demonstrates Logica’s support for list and record types, used to represent the 𝑘 clusters
(as colors) and point objects, respectively. Point() is an input that maps indexes to point objects;
Distance() computes the Euclidean distance between two points; and Color() assigns index values
to color strings. The Cluster() rules use indirect recursion with the ArgMin aggregation function.
“ArgMin= 𝑥 -> 𝑓” computes the argument 𝑥 of 𝑓 with a minimal 𝑓 -value. Rule 3 assigns each point to
one of the three clusters and rule 4 finds the cluster with the closest centroid. Cluster centroids are
found in line 6 using the user-defined aggregate function Avg2D (line 5).

Win-Move: Negation through Recursion. Win-move is a two-player game played on a digraph.
Nodes represent positions, edges possible moves. A play starts at a position and players take turns
moving a pebble along the edges. A player who reaches a terminal node cannot move and loses.
Such games can be solved via the well-founded semantics (WFS) and a single non-stratified rule [3]:
Win(𝑥) :- Move(𝑥, 𝑦), ¬ Win(𝑦). Using WFS, Win(𝑥) is true, false, or undefined iff position 𝑥 is ob-
jectively won, lost, or drawn, respectively. Logica’s production rule semantics (cf. [4]) is similar but
different from WFS: Instead of detecting the drawn positions, Logica alternates their value between won
and lost. The following rewritten rules compute a reified version of the 3-valued solution, i.e., the value
of a position x is explicitly captured by 2-valued predicates Won(), Lost(), and Drawn(), respectively;
something not readily available in the WFS.

1 Won(x) :- Move(x,y), Lost(y);
2 Lost(x) :- Position(x), ∼(Move(x,y), ∼Won(y));
3 Drawn(x) :- Position(x), ∼Won(x), ∼Lost(x);

72



Evgeny Skvortsov et al. CEUR Workshop Proceedings 69–73

The crux is the implicitly ∀-quantified variable y in rule 2’s body, a construct discussed in [18] and
[3], which in this case represents the first-order formula (∀y)(Move(x, y) → Won(y)). We note that in
addition to the above rewriting, it is also possible (although slightly more involved) to use the single
non-stratified win-move rule together with additional rules to stop iteration, similar to the PageRank
example earlier, and then compute the drawn positions as a post-processing step (within the same
Logica program). Another alternative approach in Logica for solving win-move games uses numerical
scores and a time-delayed “reward value”; see [16].

4. Summary and Future Plans

Logica is a freely available, open-source, feature-enhanced version of Datalog for beginners and advanced
users [15]. Its Datalog-to-SQL compilation makes it a practical tool for declarative data science and
problem solving. Experience with training in industry and graduate-level teaching suggest that Logica
can be an effective tool for learning databases, data science, and logic programming. We plan to create
a public repository of teaching materials, including specialized (thematic) tutorials, and a suite of
educational notebooks. We also hope to build an active Logica community that will join our efforts.

References

[1] D. Maier, K. T. Tekle, M. Kifer, D. S. Warren, Datalog: concepts, history, and outlook, in: Declarative
Logic Programming: Theory, Systems, and Applications, 2018, pp. 3–100.

[2] S. Abiteboul, V. Vianu, Datalog extensions for database queries and updates, Journal of Computer
and System Sciences 43 (1991) 62–124.

[3] A. Van Gelder, K. A. Ross, J. S. Schlipf, The Well-founded Semantics for General Logic Programs,
Journal of the ACM 38 (1991) 619–649.

[4] V. Vianu, Datalog Unchained, in: ACM PODS, 2021, pp. 57–69.
[5] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[6] M. Alviano, A. Pieris (Eds.), 4th Intl. Workshop on the Resurgence of Datalog in Academia and

Industry, volume 3203 of CEUR Workshop Proceedings, 2022.
[7] H. Jordan, B. Scholz, P. Subotić, Soufflé: On Synthesis of Program Analyzers, in: Computer Aided

Verification, LNCS, Springer, 2016, pp. 422–430.
[8] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, et al., Declarative

networking: language, execution and optimization, in: ACM SIGMOD, 2006.
[9] J. M. Hellerstein, P. Alvaro, Keeping CALM: when distributed consistency is easy, CACM 63 (2020)

72–81.
[10] L. Bellomarini, E. Sallinger, G. Gottlob, The Vadalog System: Datalog-based Reasoning for

Knowledge Graphs, VLDB 11 (2018) 975–987.
[11] J. Wang, J. Wu, M. Li, J. Gu, A. Das, C. Zaniolo, Formal semantics and high performance in

declarative machine learning using Datalog, The VLDB Journal 30 (2021) 859–881.
[12] J. Eisner, N. W. Filardo, Dyna: Extending Datalog for Modern AI, in: Datalog Reloaded, volume

6702 of LNCS, Springer, 2011.
[13] T. J. Green, LogiQL: A Declarative Language for Enterprise Applications, in: PODS, 2015.
[14] B. Chin, D. von Dincklage, V. Ercegovac, P. Hawkins, M. Miller, et al., Yedalog: Exploring knowledge

at scale, Summit on Advances in Programming Languages (2015).
[15] E. Skvortsov, Logica project, 2023. URL: https://logica.dev/.
[16] E. Skvortsov, Y. Xia, S. Bowers, B. Ludäscher, The Logica System: Elevating SQL databases to

declarative data science engines, 2024. URL: https://tinyurl.com/LogicaElevatingSQL.
[17] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine, in: Proceedings of

the International Conference on World Wide Web, 1998, p. 107–117.
[18] J. Lloyd, R. Topor, Making Prolog more expressive, The Journal of Logic Programming 1 (1984)

225–240.

73

https://logica.dev/
https://tinyurl.com/LogicaElevatingSQL

	1 Introduction
	2 The Logica System Architecture
	3 Logica Rules by Example
	4 Summary and Future Plans

