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Abstract
Learned sparse representations form an attractive class of contextual embeddings for text retrieval
thanks to their effectiveness and interpretability. Retrieval over sparse embeddings remains challenging
due to the distributional differences between learned embeddings and term frequency-based lexical
models of relevance, such as BM25. Recognizing this challenge, recent research trades off exactness for
efficiency, moving to approximate retrieval systems. In this work1, we propose a novel organization of
the inverted index that enables fast yet effective approximate retrieval over learned sparse embeddings.
Our approach organizes inverted lists into geometrically-cohesive blocks, each equipped with a summary
vector. During query processing, we quickly determine if a block must be evaluated using the summaries.
Experiments on the Splade and E-Splade embeddings on the Ms Marco and NQ datasets show that our
approach is up to 21× time faster than the winning (graph-based) submissions to the BigANN Challenge.
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1. Introduction

Learned Sparse Retrieval (LSR) [2, 3, 4, 5, 6] repurposes Large Language Models to encode
an input into sparse embeddings, a vector in an inner product space where each dimension
corresponds with a term in the model’s vocabulary. LSR models are of pivotal interest as
they i) compete with dense retrieval models that encode text into dense vectors in terms of
effectiveness [7, 8, 9, 10, 11, 12, 13], ii) tend to generalize better to out-of-domain datasets [14, 6],
iii) are interpretable by design [6, 1]. The straightforward usage of standard inverted index
for sparse embeddings is hindered by the statistical properties of the weights learned by LSR,
which do not conform to the assumptions under which popular inverted index-based retrieval
algorithms operate [15, 16, 17]. Hence, many recent solutions give up on exact search to boost
the efficiency of the search algorithm [15, 18], taking a leaf out of the Approximate Nearest
Neighbor (ANN) literature [19]. As a clear example, the 2023 BigANN Challenge1 at NeurIPS
dedicated a track to learned sparse embeddings. Inspired by BigANN, we present a novel
ANN algorithm that we call Seismic (Spilled Clustering of Inverted Lists with Summaries for
Maximum Inner Product Search) and that admits effective and efficient retrieval over learned
sparse embeddings. Our solution (Section 2) uses in a new way two familiar data structures:

1This contribution is an extended abstract of Bruch et al. [1]
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the inverted and the forward index. We extend the inverted index by introducing a novel
organization of inverted lists into geometrically-cohesive blocks. Each block is equipped with a
“sketch,” serving as a summary of the vectors contained in it. The summaries allow us to skip
over a large number of blocks during retrieval and save substantial compute. Our experimental
evaluation (Section 3) shows that Seismic outperforms the state-of-the-art competitors up to
21× on the Splade and E-Splade embeddings on the Ms Marco and NQ datasets.

2. Methodology

Algorithm 1: Indexing.
Input: 𝒳: sparse vectors in ℝ𝑑;
𝜆: Maximum inverted list length;
𝛽: Maximum number of blocks per
inverted list;

𝛼: Fraction of the overall importance
preserved by each summary.

Result: Seismic index.
1: for 𝑖 ∈ {1, … , 𝑑} do
2: 𝒮 ← {𝑗 | 𝑥(𝑗)𝑖 ≠ 0, 𝑥(𝑗) ∈ 𝒳}
3: Sort 𝒮 in decreasing order by 𝑥𝑖 for

all 𝑥 ∈ 𝒮
4: ℐ𝑖 ← {𝒮𝑖,1, 𝒮𝑖,2, … , 𝒮𝑖,𝜆}
5: Cluster ℐ𝑖 into 𝛽 partitions,

{𝐵𝑖,𝑗}
𝛽
𝑗=1

6: for 1 ≤ 𝑗 ≤ 𝛽 do
7: 𝑆𝑖,𝑗 ← 𝛼-mass subvector of 𝜙(𝐵𝑖,𝑗)
8: return ℐ𝑖, {𝑆𝑖,𝑗} ∀𝑖, 𝑗

Algorithm 2: Query processing
Input: 𝑞: query; 𝑘: number of results;
cut: query entries considered;
heap_factor: correction factor for
summary inner product; ℐ𝑖’s and
𝑆𝑖,𝑗’s: inverted lists and summaries .
Result: A Heap with the top-𝑘

documents.
1: 𝑞cut ← the top cut entries of 𝑞
2: Heap← ∅
3: for 𝑖 ∈ 𝑞cut do
4: for 𝐵𝑗 ∈ ℐ𝑖 do
5: 𝑟 ← ⟨𝑞, 𝑆𝑖,𝑗⟩
6: if 𝑟 < Heap.min()

heap_factor
then

7: continue {Skip the block}
8: for 𝑑 ∈ 𝐵𝑗 do
9: 𝑝 = ⟨𝑞, ForwardIndex[𝑑]⟩
10: UpdateHeap(Heap, p, d)
11: return Heap

The design of Seismic relied both on an inverted index and a forward index. Seismic uses
an organization of the inverted index that blends together static and dynamic pruning. The
documents pinpointed by the inverted index are then evaluated using the forward index. The
data structure and the indexing / query processing algorithm are described in detail below.

Static Pruning. Seismic heavily relies on the concentration of importance property discussed
by Bruch et al. [1]. The property shows that a small subset of the most important coordinates of
the sparse embedding of a query and document vector can be used to effectively approximate
their inner product. Concretely, static pruning means that for coordinate 𝑖, we build its inverted
list by gathering all 𝑥 ∈ 𝒳whose 𝑥𝑖 ≠ 0. We then sort the inverted list by 𝑥𝑖’s value in decreasing
order (breaking ties arbitrarily), so that the document whose 𝑖-th coordinate has the largest
value appears at the beginning of the list. We then prune the inverted list by keeping at most
the first 𝜆 entries for a fixed 𝜆—our first hyper-parameter. We denote the resulting inverted list
for coordinate 𝑖 by ℐ𝑖.

Blocking of Inverted Lists. Seismic also introduces a novel blocking strategy on inverted lists.
It partitions each inverted list into 𝛽 small blocks—our second hyper-parameter. The rationale



behind a blocked organization of an inverted list is to group together documents that are similar
so as to facilitate a dynamic pruning strategy.

A clustering algorithm is used to partition the documents whose ids are present in an inverted
list into 𝛽 clusters. Each cluster is then turned into one block, consisting of the id of documents
whose vectors belong to the same cluster. Conceptually, each block is “atomic” in the following
sense: if the dynamic pruning algorithm decides we must visit a block, all the documents in that
block are fully evaluated. We note that any geometrical (supervised or unsupervised) clustering
algorithm may be readily used. We use a shallow variant [20] of K-Means; see the original
paper for more details [1].

Per-block summary Vectors. Seismic leverages the concept of a summary vector to determine
whether a block should be evaluated. A summary is 𝑑-dimensional vector built with the idea
to upper-bound the full inner product attainable by documents in a block. In other words, the
𝑖-th coordinate of the summary vector of a block would contain the maximum 𝑥𝑖 among the
documents in that block. More precisely, our summary function 𝜙 ∶ 2𝑋 → ℝ𝑑 takes a block
𝐵 from the universe of all blocks 2𝑋, and produces a vector whose 𝑖-th coordinate is simply
𝜙(𝐵)𝑖 = max𝑥∈𝐵 𝑥𝑖. This summary is conservative: its inner product with the query is no less
than the inner product between the query and any of its document: ⟨𝑞, 𝜙(𝐵)⟩ ≥ ⟨𝑞, 𝑥⟩ for all
𝑥 ∈ 𝐵 and an arbitrary query 𝑞.
The number of non-zero entries in summary vectors grows quickly with the block size,

increasing the memory footprint and the search time of Seismic. To this end, we prune 𝜙(𝐵)
by keeping only its 𝛼-mass subvector. See the original work for the definition of 𝛼-mass
subvector [1]. That, 𝛼, is our third and last indexing hyper-parameter. We further reduce the
size of summaries by applying scalar quantization after min-max scaling, employing only a
single byte for each value.

Indexing. We summarize the discussion above in Algorithm 1. When indexing a collection
𝒳 ⊂ ℝ𝑑, for every coordinate 𝑖 ∈ {1, … , 𝑑}, we form its inverted list, recording only the document
identifiers (Line 2). We then sort the list in decreasing order of values (Line 3), and apply static
pruning by keeping, for each inverted list, the 𝜆 elements with the largest value (Line 4). We
then apply clustering to the inverted list to derive at most 𝛽 blocks (Line 5). Once documents
are assigned to the blocks, we then build the block summary using the procedure described
earlier (Line 7).

Query Processing. Algorithm 2 shows the query processing logic in Seismic. We select
a subset of the query coordinates 𝑞cut (Line 1), sorted by magnitude, and (b) define a novel
dynamic pruning strategy (Lines 5–7) that allows to skip blocks in the inverted lists of the
coordinates in 𝑞cut. Seismic adopts a coordinate-at-a-time traversal (Line 3) of the inverted
index. For each coordinate 𝑖 ∈ 𝑞cut, it evaluates the blocks using their summary. The documents
within a block are evaluated further if the approximation with the summary is greater than a
fraction of the minimum inner product in the Min-Heap, using the Forward Index. A document
whose inner product is greater than the minimum score in the Min-Heap is inserted into the
heap (UpdateHeap).



Splade on Ms Marco

Accuracy (%) 90 91 92 93 94 95 96 97

GrassRMA 807 (4.3×) 867 (4.2×) 956 (4.6×) 1,060 (4.8×) 1,168 (4.3×) 1,271 (4.2×) 1,577 (4.5×) 1,984 (3.7×)
PyAnn 489 (2.6×) 539 (2.6×) 603 (2.9×) 654 (2.9×) 845 (3.1×) 1,016 (3.4×) 1,257 (3.6×) 1,878 (3.5×)
Seismic (ours) 187 – 206 – 206 – 222 – 269 – 303 – 348 – 531 –

E-Splade on Ms Marco

GrassRMA 2,074 (9.3×) 2,658 (12.0×) 2,876 (12.0×) 3,490 (14.6×) 4,431 (17.3×) 5,141 (13.7×) 7,181 (18.7×) 12,047(20.7×)
PyAnn 1,685 (7.6×) 1,702 (7.7×) 2,045 (8.6×) 2,409 (10.1×) 3,119 (12.2×) 4,522 (12.0×) 7,317 (19.1×) 12,578(21.6×)
Seismic (ours) 222 – 222 – 239 – 239 – 256 – 376 – 383 – 581 –

Splade on NQ

GrassRMA 1,000 (5.1×) 1,138 (5.8×) 1,208 (5.7×) 1,413 (5.9×) 1,549 (6.2×) 2,091 (7.9×) 2,448 (8.6×) 3,038 (8.4×)
PyAnn 610 (3.1×) 668 (3.4×) 748 (3.5×) 870 (3.6×) 1,224 (4.9×) 1,245 (4.7×) 1,469 (5.1×) 1,942 (5.4×)
Seismic (ours) 195 – 195 – 211 – 240 – 250 – 266 – 286 – 362 –

Table 1
Mean latency (𝜇sec/query) at different accuracy cutoffs with speedup (in parenthesis) gained by Seismic.

3. Experiments

Experimental Setup. We experiment on two publicly-available datasets: Ms Marco v1
Passage [21] and Natural Questions (NQ) from Beir [22]. We evaluate Seismic on embeddings
generated using Splade [5] and E-Splade. [6].

We compare Seismic with five state-of-the-art retrieval solutions. In this manuscript, we only
report the comparison against the best competitors, namely the winning solutions of the “Sparse
Track” at the 2023 BigANN Challenge at NeurIPS, GrassRMA and PyAnn. See the original
work for the complete comparison [1]. We compare the methods using mean query latency
(𝜇sec.) and accuracy, i.e., the percentage of true nearest neighbors recalled in the returned set.
We implemented Seismic in Rust.2 We conduct experiments on a server equipped with one
Intel i9-9900K CPU, clock rate 3.60 GHz and 64 GiB of RAM, with single-threaded execution.

Results Table 1 details retrieval performance in terms of average per-query latency at various
accuracy cut. Seismic consistently outperforms GrassRMA and PyAnn by a substantial margin,
ranging from 2.6× (Splade on Ms Marco) to 21.6× (E-Splade on Ms Marco) depending on
the level of accuracy. In fact, as accuracy increases, the latency gap between Seismic and the
two graph-based methods widens. This gap is much larger when query vectors are sparser,
such as with E-Splade embeddings. That is because, when queries are highly sparse, inner
products between queries and documents become smaller, reducing the efficacy of a greedy graph
traversal. As one data point, PyAnn over E-Splade embeddings of Ms Marco visits roughly
40,000 documents to reach 97% accuracy, whereas Seismic evaluates just 2,198 documents.

4. Conclusions and Future Work

This paper presents Seismic, a novel approach for efficient and effective retrieval over sparse
learned representations. Our solution outperforms the state-of-art graph-based solutions for
efficient sparse retrieval up to a factor of 21× on the Splade and E-Splade embeddings on
the Ms Marco dataset. As future work, we intend to explore the application of compression
techniques for inverted lists [23] to further reduce the size of inverted and forward indexes.

2Our code is publicly available at https://github.com/TusKANNy/seismic.

https://github.com/TusKANNy/seismic
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