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Traditional learning algorithms are known to introduce or exacerbate biases in data, leading
to discrimination against individuals from protected groups (e.g., minorities or socially dis-
advantaged groups). This phenomenon extends to Information Retrieval (IR) systems, where
biases in the data may translate into ranking systems that discriminate protected groups [1].
Ensuring fair treatment of protected individuals has become a pivotal challenge in IR to prevent
discrimination; however, ranking effectiveness remains a crucial requirement for IR systems.
As a consequence, providing fair ranking systems without significantly compromising their
effectiveness poses a substantial challenge.
In this regard, our work introduces LambdaFair, a LambdaMART-based [2] in-processing

method to train fairness-aware ranking models by simultaneously optimizing fairness and effec-
tiveness. LambdaFair jointly optimizes fairness and effectiveness through a convex combination
of NDCG [3] (effectiveness) and rND [4] (fairness).
NDCG (Normalized Discounted Cumulative Gain) is a well-known IR metric for evaluating

ranking effectiveness. The optimum is achieved when documents with higher relevance to the
query are ranked higher in the list. rND (Normalized Discounted Difference), instead, measures
the fairness of a ranked list in terms of statistical parity. rND is optimal when each ranking
prefix has the same proportion of protected items as the entire ranking.

To optimize these different-purpose metrics jointly, we designed three variants of LambdaFair,
each balancing effectiveness and fairness at a different level. The first variant, named rND+,
is fairness-oriented. When there is a conflict between optimizing rND and NDCG, i.e., when
maximizing one metric forces a sub-optimal solution of the other, priority is given to fairness.
The second variant, NDCG+, is effectiveness-oriented. NDCG+ is symmetric to rND+; in case
of conflict, it favors NDCG over rND. The last variant, ΔrND, balances the two metrics by
looking for a sub-optimal solution.

We compared LambdaFair with the state-of-the-art baseline PL-Rank-3 [5] and LambdaMART
[2] on real-world publicly available datasets: MSLR-30K [6] and Statlog (German Credit Data)
[7]. Our empirical results demonstrate that LambdaFair improves ranking fairness in terms of
statistical party (rND) while maintaining competitive ranking effectiveness (NDCG).
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