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Abstract
Current recommender systems (RSs) prioritize accuracy, often neglecting aspects like diversity and
fairness. This single-metric approach overlooks valuable trade-offs between different qualities. We
propose a multi-objective evaluation using Pareto optimality and Quality Indicators (QI) of Pareto
frontiers to consider all model configurations simultaneously across multiple perspectives. This approach
reveals a more comprehensive picture of RS performance, potentially leading to a reevaluation of existing
methods. Code and data are available at https://github.com/sisinflab/RecMOE.
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1. Introduction

The success of Recommender Systems (RSs) is often measured by their ability to accurately
predict a user’s preferences and suggest relevant items. However, beyond-accuracy metrics like
diversity [2], novelty [3, 4], and fairness [5, 6] have been proposed. While beyond-accuracy
metrics have gained momentum, accuracy is still prioritized [7, 8, 9]. Figure 1 shows the normal-
ized performance of baselines on the Goodreads dataset, selecting the best hyper-parameters
for each metric. Selecting the best model solely based on accuracy limits consideration of
beyond-accuracy performance. A Pareto-optimal configuration improves at least one objective
without hurting others, forming the Pareto frontier [10, 11]. We propose introducing Quality
Indicators (QIs) [12] to RSs, providing a quantitative evaluation of Pareto frontiers from dif-
ferent perspectives [13]. Our contributions are (i) Showing the negative impact of prioritizing
accuracy and motivating multi-objective evaluation; (ii) Computing Pareto frontiers for hyper-
parameter settings of models on public datasets in multi-objective scenarios. (iii) Enhancing
multi-objective evaluation by utilizing QIs to comprehensively analyze recommendation models.

2. Quality Indicators

In this Section, we present the Quality Indicators (QIs) to assess the Pareto frontiers correspond-
ing to an RS model. They can be classified according to the quality they assess.
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Figure 1: Kiviat diagrams indicating the performance of the models on the Goodreads dataset. The
models are selected according to different metrics for each objective. Higher means better.

Spread QI. The QIs for Spread indicate the range of the Pareto-optimal solutions on the Pareto
frontier. For our study, we use the Maximum Spread (MS) [14]. Specifically, this spread indicator
measures the range of a Pareto frontier by considering the maximum extent of each objective.
The higher the value, the better the extensiveness of the curve.
Uniformity QI. The uniformity of a Pareto frontier provides information about the distribution
of the solutions. A higher uniformity of the curve denotes that the solutions are less dispersed,
while a low uniformity indicates more diversity within the set. Specifically, we employ the
Spacing metric (SP) [15] that measures the variation in the Manhattan distances between the
Pareto-optimal solutions. The lower the value, the more concentrated the solutions are on the
Pareto frontier. However, an 𝑆𝑃 = 0 indicates that all the solutions could be equidistant.
Cardinality QI. Given 𝐾 generic solutions belonging to the set 𝐵, the QIs for cardinality
determine the proportion of Pareto-optimal solutions in this set. Specifically, the Error Ratio

(ER) [16] is defined as 𝐸𝑅(𝐵) = ∑𝑏∈𝐵 𝑒(𝑏)
𝐾 with 𝑒(𝑏) = 1 if 𝑏 is a Pareto-optimal solution, 0

otherwise. A higher ER value indicates greater Pareto-optimal solutions in the set 𝐵.
All quality aspects QI. The QIs included in this category provide insights into the spread,
uniformity, and cardinality of the Pareto frontiers simultaneously. Among them, the Hypervol-
ume (HV) [17] is a volume-based QI that measures the volume of the objective function space
dominated by the Pareto frontier. The larger the hypervolume, the better the solution set is.

3. Experiments

We aim to answer two research questions: RQ1: To what extent can the models provide Pareto-
optimal configurations? Are these configurations uniformly distributed, or are they dispersed
enhancing diverse solutions to the trade-off? RQ2: Which model has the Pareto frontier that
simultaneously offers better solutions on multiple metrics?
Datasets. We select three different datasets to cover several domains. Specifically, we use
Amazon Music (music), Goodreads [18] (books), and Movielens1M [19] (movies).

Baselines and Hyper-parameters Settings Exploration. We train five recommendation
algorithms, i.e., EASE𝑅 [20], MultiVAE [21], LightGCN [22], RP3𝛽 [23], and UserKNN [24]. We
train 32 hyper-parameter values combinations of each model by using Elliot [25].

Metrics. We assess the baselines’ performance under several perspectives. We compute nDCG,
Precision, and Recall for the accuracy of recommendations. From the final user point of view,
we evaluate the diversity (with Gini index [26] and Item Coverage) and novelty (with EPC and



Table 1
QIs of the Pareto frontiers results for the identified scenarios. The arrow indicates the descending or
ascending order for the best solution. SP has no specific order of solutions, since its interpretation is
strictly connected with the MS indicator. C counts how many solutions lay on the Pareto frontier.

Model

Objectives

Accuracy / Novelty / Diversity Accuracy / Bias

HV↑ ER↑ MS↑ SP C↑ HV↑ ER↑ MS↑ SP C↑

A
m
az
on

M
us

ic EASE𝑅 0.00095 0.46875 0.24986 0.01476 15 0.01355 0.43750 0.11886 0.00669 14
UserKNN 0.00082 0.34375 0.29452 0.00496 11 0.01448 0.34375 0.17871 0.00980 11
LightGCN 0.00051 0.06250 0.01335 0.00000 2 0.00835 0.03125 0.00000 0.00000 1
MultiVAE 0.00022 0.12500 0.09656 0.01738 4 0.00468 0.15625 0.05629 0.00351 5
RP3𝛽 0.00039 0.18750 0.20753 0.05888 6 0.03489 0.21875 0.11336 0.01173 7

G
oo

dr
ea

ds EASE𝑅 0.00074 0.59375 0.09910 0.00227 19 0.00439 0.65625 0.09433 0.00214 21
UserKNN 0.00110 0.31250 0.19889 0.01287 10 0.02267 0.71875 0.48042 0.01471 23
LightGCN 0.00051 0.18750 0.06743 0.00783 6 0.00696 0.18750 0.09180 0.01536 6
MultiVAE 0.00043 0.06250 0.05022 0.00000 2 0.00521 0.06250 0.01827 0.00000 2
RP3𝛽 0.00083 0.12500 0.05584 0.01213 4 0.05544 0.28125 0.29529 0.02657 9

M
ov

ie
le
ns

1M EASE𝑅 0.00865 0.68750 0.09833 0.00446 22 0.00281 0.65625 0.06001 0.00196 21
UserKNN 0.01296 0.28125 0.30929 0.03641 9 0.08191 0.50000 0.52723 0.01810 16
LightGCN 0.00807 0.18750 0.01012 0.00287 6 0.00974 0.15625 0.00617 0.00181 5
MultiVAE 0.01216 0.21875 0.03419 0.00427 7 0.01639 0.18750 0.02528 0.00293 6
RP3𝛽 0.00839 0.06250 0.03796 0.00000 2 0.14014 0.46875 0.86913 0.03228 15

EFD [3]). Finally, we measure the popularity bias of the recommendations with APLT [27] –
the greater, the better – and ARP [26] – the less, the better. All these metrics refer to cutoff 10.

Multi-Objective Evaluation Methodology. We obtain Pareto frontiers for each recommender
system (RS) baseline using the metrics described in Section 2. Each hyper-parameter setting
represents a solution in the objective space. We identify the Pareto-optimal configurations
for each baseline, forming their respective Pareto frontiers. We evaluate these frontiers using
QIs under two scenarios: 1) user-centered (accuracy, diversity, novelty) and 2) accuracy vs.
algorithmic bias. Figure 2 shows the resulting Pareto frontiers.

3.1. Results and Discussion

While EASE𝑅 and UserKNN provide the most accurate recommendations, beyond-accuracy
metrics paint a different picture. By observing Figure 2, UserKNN exhibits better diversity than
EASE𝑅. Finally, RP3𝛽 consistently outperforms its competitors in addressing the popularity bias.
We delve into a multi-objective evaluation using QIs on Pareto frontiers. Here, we examine the
distribution of Pareto-optimal configurations and performance on all quality metrics.

Distribution of Pareto-optimal configurations. The Error Ratio (ER), Maximum Spread
(MS), and Spacing metric (SP) values in Table 1 unveil interesting insights into the distribution of
Pareto-optimal configurations for each model. In the nDCG/APLT scenario for the Movielens1M
dataset, for instance: 1) UserKNN exhibits a wide range of solutions with good dispersion across
the Pareto frontier, indicating its ability to offer various well-balanced trade-offs between
accuracy and algorithmic bias; 2) EASE𝑅, while offering a high number of solutions on the
frontier, they tend to be concentrated in a limited area, suggesting a lack of diversity in the
achievable trade-offs; 3) RP3𝛽 strikes a good balance between the number of solutions, their
dispersion, and the ability to provide various trade-offs between accuracy and bias. This is
reflected in its high ER, MS, and SP values. Similar trends are observed for the other datasets
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Figure 2: Pareto optimal solutions plots for Amazon Music, Goodreads, and MovieLens1M. The first
row refers to the nDCG/Gini/EPC scenario, and the second row refers to the nDCG/APLT scenario. The
arrows indicate the optimal directions.

(see Figures 2f - 2e). When examining the user-centric scenario (nDCG/Gini/EPC), UserKNN
again excels, offering well-diversified solutions across all datasets (see Figures 2a - 2c).
Performance on all qualitymetrics. In response to RQ2, we can utilize the Hypervolume (HV)
measure. HV evaluates the performance of models from multiple objectives simultaneously, as
shown in Table 1. By considering the cardinality and dispersion of the Pareto-optimal solutions
and the dominance among the Pareto frontiers, HV provides us with valuable insights. The
higher the volume or area under the frontier, the greater the HV. The results show that UserKNN
outperforms the other models by achieving the best or second-best values of HV for all datasets
and scenarios. This result indicates that UserKNN generates an extensive and diversified Pareto
frontier while performing well across all metrics. While EASE𝑅 has the highest value of HV for
the Amazon Music dataset in the user-centred scenario, it does not dominate or get dominated
in the remaining cases. This result highlights the model’s limited reliance on accounting for
multiple metrics. LightGCN shows no distinctive trends, while MultiVAE’s HV decreases when
dealing with sparser datasets. RP3𝛽 confirms its capability in managing the nDCG/APLT trade-
off by achieving the highest values of HV and visual dominance of its Pareto frontiers against
the others in Figures 2d, 2e, and 2f.

4. Conclusion and Future Work
Our multi-objective evaluation with Quality Indicators reveals new insights into recommender
systems (RSs). While EASE𝑅 exhibits high accuracy, UserKNN emerges as a strong contender
offering diverse solutions across multiple objectives. Additionally, RP3𝛽 proved to be highly
effective in the accuracy/algorithmic bias scenario.
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