
Introducing model-based tool support for applying zero-trust

security for microservices at a bank

Donald Baldwin, Martin Henkel* and Erik Perjons

Stockholm University, Borgarfjordsgatan 12, 164 25 Kista, Sweden

Abstract
Zero-trust security involves designing, coding, and deploying applications, assuming that threats may
exist both inside and outside the application environment. Developing applications using a zero-trust
design is complex since it requires internal development teams to understand and apply zero-trust
principles throughout the development process. This is especially crucial for microservice
architectures, where many independent teams develop services. However, enforcing and teaching
security principles may lead to a formal process, focusing on documentation and auditing rather than
agile development. In this paper, we describe a pragmatic use of a modeling tool that is tied to a
knowledge repository and contains means for team communication. The tool supports a systemic way
of developing zero-trust architectures, catering to both programming needs and the desire to improve
the overall development process. The paper concludes with lessons learned from a bank case study
where the tool has been developed and utilised for microservices development.

Keywords
Zero-trust architecture, Modeling tool, STRIDE analysis, VSM 1

1. Introduction

In the domain of cybersecurity, applying zero-trust (ZT) principles marks a paradigm shift from

the traditional perimeter-centric security models to a more holistic, omnipresent security.

Traditional perimeter-centric security is a data security strategy that focuses on protecting the

outer boundaries of a network. The idea is to establish a strong “perimeter” around the network

to prevent unauthorised access and external attacks. Using ZT principles, on the other hand,

operates on the principle that trust is an omnipresent vulnerability [1]; hence, no distinction is

made between internal and external threats. This approach necessitates continuous verification

of identity, and other contextual factors before granting access to resources [2].

The need for ZT stems from an increasing sophistication of cyber threats and the recognition

that breaches often occur due to the exploitation of overly trusted networks and systems. This is

especially critical in distributed architectures, such as architecture using microservices, where

the security of each discrete service is important to prevent a domino effect of vulnerabilities.

The adoption of ZT principles necessitates a departure from conventional security

approaches, particularly in the development and management of systems. It demands not only a

technical reconfiguration but also a comprehensive understanding of its principles across the

organisation’s teams. A major challenge that organisations face in this regard is the dichotomy

between heavy formal security processes and the agility required by development teams. Formal

processes, with their exhaustive checklists and protocols, are perceived as burdensome,

prompting teams to engage in informal practices that, while expedient, inadvertently circumvent

established security measures. Thus, the problem addressed in this paper is the challenge to

BIR-WS 2024: BIR 2024 Workshops and Doctoral Consortium, 23rd International Conference on Perspectives in
Business Informatics Research (BIR 2024), September 11-13, 2024, Prague, Czech Rep.
∗ Corresponding author.

 don.baldwin@dsv.su.se (D. Baldwin); martinh@dsv.su.se (M. Henkel); perjons@dsv.su.se (E. Perjons)

 0000-0003-3712-7454 (D. Baldwin); 0000-0003-3290-2597 (M. Henkel); 0000-0001-9044-5836 (E. Perjons)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:martinh@dsv.su.se
mailto:perjons@dsv.su.se

support the adoption of ZT principles within teams used to traditional security approaches while

using agile development approaches.

In the paper we examine a solution in the form of a modeling tool that allows the modeling of

microservices and their associated threats, but also provides features for communication and

process support that allows the teams to develop knowledge about security principles. The tool

is based on Data Flow Diagrams and STRIDE analysis. In this paper, our focus is mostly on how

the tool is situated in an organisation that is using it, rather than the syntax of the used diagram.

While the modeling tool contains basic modeling features, it has some features that make it

especially suited for ZT microservices architectures. For example, the collaborative features of

the tools enable scaling across multiple development teams, which is essential for supporting

microservices architectures. Moreover the tool also contains a component library - making

sharing and pushing for ZT design principles among teams possible. Thus the tool’s benefits lie

only partially in the core modeling support, equal importance is in the organisation support.

We examine how the tool supports the organisation by recognising the organisation as an

organic entity, akin to a living organism, which requires a balance between its operational

functions and strategic imperatives. Inspired by the Viable System Model (VSM) [3], our method

underscores the importance of systemic thinking. VSM is an approach that views an organisation

as an organism, encompassing both the tactical day-to-day operations and the overarching

strategic vision. It advocates for a symbiotic relationship where different teams work in concert,

ensuring the security integrity of the organisation at every level. We use VSM to analyse the

potential effect of using the modeling tool.

The paper is structured as follows. The main concepts and related research is introduced in

section 2. Section 3 covers the research approach. Section 4 is devoted to describing the case

company, the tool features, and lessons learned from applying the tool. In section 5 we analyse -

based on VSM - how the tools helps the organisation.

2. Background

Even though ZTA is fairly new concepts for protecting IT systems, there are ample amounts of

papers that describe its technical implementation, but far less that describe how to use models

to shift an organisation’s way of working to build systems using ZT principles.

Technical implementations to uphold ZTA include measures such as continuous verification

[4] and monitoring to ensure that security policies are upheld [2]. Even when discussing

technical means for ZTA implementation, there has been a discussion about the effort needed for

shifting to ZTA, mentioning both the cost for tools [5] and the analysis needed before migrating

[6]. The migration to ZTA entails 1) identification of current resources (IT systems), 2) risk

assessment and prioritisation, and 3) deployment and review [6]. The modeling tool presented

in this paper supports the three steps - identification and description of resources, risk

assessment, and security reviews. However, there is currently no support for real-time

monitoring.

Modeling as a way to understand and take security measures can be undertaken in several

ways. One way is to make use of an existing modeling framework. For example, the TOGAF

framework may be used for security analysis [7]. While this has the benefit of using a well-known

model and/or method as a foundation, there is a risk of obscuring the problem at hand—dealing

with security. Another approach is to use tailor-made models for security. For example, the

CORAS model focuses on modeling risk by creating relations between risks and harmful

outcomes [8]. CORAS models are similar to goal models in that they convey a cause-effect view

of actions taken. Another example of a tailor-made model is the Microsoft Threat Model tool [9].

The threat modeler uses the same basic concepts employed in the tool presented in this paper -

its foundation is the architecture of the system modeled as data flows. While the tool presented

in this paper also uses data flow diagrams (DFDs), it has some additional features that set it apart

from the Microsoft Threat Modeler. Most prominently, it includes a component library, making

it easier to get started with. Moreover, it also has team collaboration features, which are essential

for continuously using the tool and keeping the models and software updated.

3. Research methodology

This study employs a Design Science Research (DSR) [10] methodology, which involves the

creation and evaluation of artefacts designed to solve identified organisational problems. The

DSR approach ensures the practical relevance of the solution and its contribution to the

knowledge base for both research and general practice. In this paper, our focus is on the

demonstration part of Design Science Research. Specifically, we present the application of the

modeling tool and share the lessons learned from its application. We base these lessons learned

from first-hand experience working in the case organisation, and an interview with personnel

using and developing the tool within the case organisation.

4. Case study at a bank

The modeling tool has been deployed at a multinational bank, which is offering online payment

solutions to other businesses (B2B). The bank distinguishes itself by providing a wide array of

software deployment options tailored to its clients’ needs. Operating in a highly regulated

financial sector, the bank is committed to stringent compliance with relevant financial

regulations and security standards. This commitment ensures the integrity and reliability of its

services and is crucial for upholding trust among its business clients. The bank’s adherence to

these regulatory requirements is integral to its operations, as it needs to handle the complexities

of providing secure, efficient, and compliant payment solutions in a global marketplace.

The work with the bank’s software solutions is divided into several types of teams. A team

typically consists of 8 to 12 team members. Each team is using the modeling tool to support their

work, or in the case of the architecture team, has the potential to use it:

• The security team is conducting modeling, audits and reviews. The team uses the tool as

a base for modeling, auditing, and reviewing security functions before and during the

development of microservices.

• Security team for penetration testing. The team is using the tool to gain insight into the

vulnerabilities of the microservices, which helps the team take action to improve their

security posture.

• Development teams model, design and document the security functions of the microservices.

The teams are using the tool to model, design and document new microservices and the

maintenance of existing services, including security functions.

• The architecture team describes business cases and designs the overall solution. The team

plays the role of mediator between the business and development teams. So far, the team

has not used the tool. However, the current plan is that the architects in the future could

use the tool for architecture auditing of the microservices.

When the tool was introduced, it was used solely by the security team to model, audit and

review the microservices and their security functions. However, the use now, when the tool is

fully introduced, is that the development teams use the tool to create models of the microservices

and their security functions, and then the security team uses the model as a foundation for the

auditing and reviews. Hence, as will be discussed in Section 5, the tool is now much more

integrated with the organisation.

4.1. Description of the tool

The tool is designed to assist in conducting a thorough security STRIDE threat analysis, a key

component in identifying and mitigating potential security threats in system design. It is open

source (Apache License), built with TypeScript, using a Postgres database, Node.js webserver

React front-end. The tool is composed of several modules and functions that facilitate a model-

based and partially automated security assessment.

Figure 1: Overview of the work process and tool support

In practice, users begin by employing the modeling function to draft a data flow diagram (DFD),

which maps the flow of data and identifies critical processes within the microservices to be

constructed. Concurrently, users leverage the library of components. The library contains

various elements such as cloud services, open-source libraries, and organisational-specific

components. Each component is accompanied by a dedicated STRIDE threat analysis, ensuring

that potential vulnerabilities are not overlooked. The areas covered by STRIDE are Spoofing,

Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of privilege,

and are a common way of identifying IT security threats.

Given the DFD, the tool performs a partially automated STRIDE analysis. This process

generates a list of identified threats based on the employed components. The tool then proposes

mitigation strategies to be integrated into the system’s design and deployment. The mitigation

strategies are denoted as Controls. To ensure comprehensive coverage, the analysis is

supplemented by a manual STRIDE review for custom-made components, enabling the

combined analysis of both custom-made and off-the-shelf software components.

When a first draft of the model and analysis has been done, it can be sent for review. The

review process begins with an architect/developer marking a model for review, initiating a

collaborative platform for direct communication between security reviewers, architects, and

developers. This collaborative approach ensures a unified understanding of security threats and

mitigation strategies in the form of available controls. Key to the collaborative process is the

setting of action items, where specific tasks are assigned to address identified threats, enhancing

accountability and ensuring effective implementation of security measures.

Additionally, the tool supports follow-up reviews, allowing for the verification of completed

action items and the documentation of changes, crucial for maintaining security. A notification

system complements this process by sending email alerts about significant events like review

initiation, action item assignments, and task completions. This ensures all stakeholders are

informed and can respond promptly, fostering continuous engagement with the security

improvement process.

In the following, we describe the main modules of the tool.

Figure 2: The DFD modeler, and component library (left side)

Modeler for Data Flow Diagrams (DFDs): This module enables users to visually represent and

analyse the flow of data within their systems. It’s crucial for understanding how data moves and

where vulnerabilities may exist. DFDs use standardised symbols to represent the flow of data

within a system, highlighting where information is processed and stored (see Figure 2). The

primary graphical elements include: External entities that are external sources of data

(rectangles), Processes functions or activities that transform data (ovals), Data stores -

repositories where data is held (two parallel lines), and Data flows depicting the movement or

transfer of data (arrows). These elements work together to provide a visual understanding of

the system’s data handling, facilitating analysis and design.

Library of Components: The tool includes a library of components and services that can be

used within the organisation. This library encompasses infrastructure/platform elements like

AWS services, open-source libraries such as Docker, and reusable components developed

internally. A component is referred to as a technology stack. Each Process and Data store can be

associated with several components. For example, a service can be build using both using Java

(one component) and run on Apache (another component). An example of components can be

seen on the left hand side of Figure 2.

STRIDE Analysis: The tool provides STRIDE analysis functions. This feature is instrumental

in identifying and assessing potential security threats in six key areas: Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege. The STRIDE

analysis could be both manual and automatic:

Automated Analysis: Based on the DFD model and the included component names, the tool

can automatically generate a list of identified threats, assess their risks, and suggest mitigation

strategies. For example, if a PostGreSQL database is used, the tool will suggest SQL injection as a

threat (Figure 3).

Manual Analysis Support: For custom-made components in a project, the tool supports a

manual STRIDE analysis, ensuring comprehensive coverage of all system elements.

Figure 3: STRIDE analysis, suggested threat and controls (left) and setting severity (right)

STRIDE review: When the architecture requires a review, there are several features that enable

the architect and security reviewer to communicate. Unmitigated threats (threats that have no

controls assigned) will be shown as warnings in the DFD diagram. This makes it possible to see

any issue at a glance.

Collaborative features: There are also collaborative features built into the tool. This includes

marking a model as in need of review. Once the review has commenced, the reviewer can set

action items for developers and architects to follow up on. These action items are handy when

performing a follow-up review to observe and document the actions that have been taken. All

relevant events can be sent as mail to notify the review team and developers. The modeling tool

is also fully real-time multi-user - meaning that during a review session both the auditor and

developer can change the model.

While the tool itself is quite straightforward, its implementation in the organisation is more

complex. The next section will discuss the implementation in this case.

4.2. Lessons learned from the tool implementation

The implementation of the tool in the case highlighted several key enablers for its successful

adoption. Some positive and negative aspects were also uncovered.

Tool learning curve. Initially, the learning curve presented a significant challenge, as many

developers were unfamiliar with modeling techniques. To mitigate this, special training sessions

were introduced, supplemented by the availability of support bookings for tool use. Auditing

sessions also served as a learning platform, providing feedback on model implementations and

fostering continuous improvement. The prerequisite knowledge of STRIDE emerged as a critical

enabler for tool utilisation. Recognising the gap in widespread STRIDE familiarity, efforts were

made to educate the user base, emphasising the importance of understanding this framework to

leverage the tool effectively. Gradually the developers learn the analysis and the tool, and now

most models are created by developers themselves.

Tool design. Flexibility in the tool’s design proved beneficial, allowing teams to incorporate

project-specific components and guidelines in the form of templates. This adaptability was

further enhanced by filtering mechanisms that excluded irrelevant data, such as third-party

integrations, thereby streamlining the focus on central security responsibilities.

The adoption of the tool brought several positive aspects. Adopting the tool yielded significant

benefits, notably reducing the burden on the security team by minimising the time and personnel

required for auditing. It facilitated a more structured approach to security, generating models,

graphical presentations, and documentation for applications and microservices. The tool also

enabled a structured security review process, compelling developers to document their

adherence to for example security protocols and the usage of encryption standards, thereby

identifying and rectifying outdated practices.

Several challenges were also encountered in the case. Engaging teams to initiate tool usage

was difficult; however, this was effectively addressed by replacing self-guided instruction with

facilitated training sessions, which enhanced understanding and engagement. The complexity of

some models posed another obstacle, discouraging early adoption. This issue was similarly

overcome through guided sessions, which provided direct support and guidance, enabling more

effective model simplification from the outset. A guide was also built into the tool, explaining the

basic concepts of the model.

A noted drawback with the use of the tool was the increased complexity introduced into the

development process. The requirement for detailed security documentation, while beneficial for

security oversight, was initially perceived as an additional burden by developers. This

underscores the need for balancing security rigor with development efficiency, a challenge that

will inform future tool enhancements and training approaches.

5. Systemic effects of using the tool

In this section, we analyse the systemic effects of implementing the ZT modeling tool within the

case, guided by the Viable System Model (VSM) [3]. VSM provides a framework for

understanding the organisation as an integrated, living system, balancing both operational needs

and strategic objectives. By mapping the tool’s functions to the components of VSM, we can

elucidate how it supports and enhances the organisation’s ZT security posture.

The Viable System Model (VSM), developed by Stafford Beer, is a framework designed to

understand and manage complex organisational systems. Rooted in cybernetics, the study of

systems and their regulatory mechanisms, VSM provides a way to diagnose and design

organisations to ensure their viability. At its core, VSM conceptualises any viable system,

whether an organism, a machine, or an organisation, as consisting of five essential functions or

subsystems. These subsystems are responsible for operations, coordination, control,

intelligence, and policy. Table 1 gives an introduction to VSM subsystems 1-5 (column 1), what

the subsystems need to handle when it comes to ZT and microservice development (2), the

problem each subsystem exhibits (3), and how the presented tool helps each subsystem (4)

based on its functions (5).

Notable, adding the collaborative functions to the tool enables the tool to also support the

higher level subsystem of VSM. While the table outlines the benefits for the subsystems, some

drawbacks can also be noted. The modeling tool, while beneficial in enforcing security protocols

and aiding coordination (System 2), could due to the learning curve, temporarily disrupt daily

operations (System 1), due to increased burden on developers, potentially slowing down routine

tasks. Furthermore, if the tool is used for unneeded rigid implementation of ZT principles, which

is not the case at the studied organisation, it might create resistance within development teams,

affecting overall organisational coherence (System 5).

Table 1

Tool functions, mapped to VSM system 1-5

Viable System Model VSM applied to

ZT

development.

ZTarchitecture

issues/problems

How does the Tool

help?

Tool functions

System 1 (Operational

Units):

Operational elements

that carry out primary

activities. Handles day-to-

day operations, ensuring

tasks are completed.

Development

teams and

architects

develop

microservices.

Services are

tested and

integrated.

Implementing ZT can

disrupt daily

operations. Requires

constant validation,

potentially slowing

down routine tasks

and increasing

operational overhead.

Tool helps to

analyse the

microservice design,

ensuring adherence

and timely detection

of ZTdeviations.

Modeling of software

components in DFDs.

Support with a pre-

defined list of

standard components

Support the

identification of

threats and mitigation

controls.

System 2

(Coordination):

Manages conflicts and

coordinates between

different System 1 units.

Provides stability and

short-term regulation.

Teams

collaborate,

share

experiences and

coordinate.

Difficult to keep

consistent ZT policies

across different

teams. Inconsistencies

complicate

communication and

coordination between

teams.

Facilitates

consistent security

policy application

across

teams, ensuring

unified ZT practices.

The consistent

policies allow for

better

communication

between teams.

Standardised models

(DFD) allow for the

comparison and

communication

between teams.

The use of the

standard component

library fosters a

common

understanding of

threats.

System 3 (Control):

Monitors and controls

System 1 activities.

Ensures accountability.

Manages performance

and optimisation.

The security

teams oversee

the development

and instruct the

development

teams to solve

security issues.

Monitoring

complexity increases.

Ensuring all

development teams

adhere to Zero Trust

policies requires more

sophisticated control

mechanisms, which

can become resource-

intensive.

Automates

oversight, flagging

non-compliance.

Streamlines the

resource used for

security reviews.

Enables

specification of Zero

Trust standards to

be upheld.

The fulfilment of ZT

principles can be

monitored.

Allows continuous

control and follow-up

by assigning actions to

be carried out by the

development teams.

By changing the

component library

and associated threats

it is possible to

instruct the teams to

address new threats.

System 4

(Development/Planning):

Focuses on the future.

Plans for change,

adaptation, and

sustainability in the

evolving environment.

Planning of new

micro-services.

Assessment of

changes that

need to be done.

Micro-services are

quite complex, thus it

is difficult to get an

overview of the

existing services. This

makes it difficult to

motivate and plan for

changes.

The tool provides a

good overview of

the existing

microservices and

their security levels,

which provides a

good foundation for

future changes.

Gives a list of ongoing

and existing micro-

services projects.

Give the current

status of the security

efforts.

System 5

(Policy/Identity):

Highest level of the

system. Sets the

organisation’s purpose,

values, and oversees all

other systems

Forms a unified

culture and

understanding

of

ZTdevelopment.

ZTsecurity, due to the

extra effort required,

may create resistance

within development

teams.

Helps foster a

shared and

streamlined way of

working according

to ZTprinciples.

Creates a culture of

continuous

awareness.

The tool provides a

holistic and coherent

set of functions.

Thereby embodying

the organisation’s

purpose of being a

secure partner for

transactions.

6. Conclusion

In this paper we presented a multi-user modeling tool designed to support the implementation

of ZT security principles within a microservices architecture at a bank. The tool integrates data

flow diagrams (DFDs) and STRIDE threat analysis, offering both semi-automated and manual

security assessments. Through a case study at a bank, we demonstrated the tool’s potential

impact on various organisational levels, guided by the Viable System Model (VSM).

While the tool effectively structures the security team’s work, and provides a structured

approach to security, it also introduces challenges. The initial learning curve and the complexity

of detailed security documentation need an initial effort in training. Despite challenges, the tool’s

ability to enforce consistent security policies and facilitate coordination across teams is a

significant advantage. A sign that the advantages outweigh the initial learning curve is that the

examined case organisation has continued using the tool, and its use is even widened as more

and more of its software services are making use of the tool.

References

[1] N.F. Syed, S.W. Shah, A. Shaghaghi, A. Anwar, Z. Baig, and R. Doss, Zero trust architecture

(ZTA): A comprehensive survey. IEEE, 2022.

[2] A. Kerman, O. Borchert, S. Rose, and A. Tan, Implementing a zero trust architecture, National

Institute of Standards and Technology (NIST), 2020.

[3] S. Beer, The Heart of Enterprise, Chichester: John Wiley & Sons, 1994.

[4] A. Wylde, Zero trust: Never trust, always verify, In 2021 international conference on cyber

situational awareness, data analytics and assessment (cybersa), IEEE, 2021.

[5] Z. Adahman, A.W. Malik, and Z. Anwar, An analysis of zero-trust architecture and its cost-

effectiveness for organisational security, Computers & Security, 122, 2022.

[6] S. Teerakanok, T. Uehara, and A. Inomata, Migrating to zero trust architecture: Reviews and

challenges, Security and Communication Networks, 2021(1), 2021.

[7] N. Mayer, J. Aubert, E. Grandry, and C. Feltus, An integrated conceptual model for

information system security risk management and enterprise architecture management

based on Togaf, In The Practice of Enterprise Modeling: 9th IFIP WG 8.1. Working

Conference, PoEM 2016, Skövde, Sweden, 2016. Springer International Publishing, 2016.

[8] R. Wirtz and M. Heisel, Model-based risk analysis and evaluation using CORAS and CVSS, In

Evaluation of Novel Approaches to Software Engineering: 14th International Conference,

ENASE 2019, Heraklion, Crete, Greece, 2019. Springer International Publishing, 2020.

[9] Microsoft, Threat Modeling Tool, Accessed 2024-05-12 URL:

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

[10] P. Johannesson and E. Perjons, An Introduction to Design Science, 2nd ed., Springer

International Publishing, 2021.

