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Abstract  
The OMOP Common Data Model (CDM) has been widely used as an open community data 

standard in observational data integration and analysis. However, it still has its drawbacks 

including weak semantics and interoperability with other CDMs. In this study, we report our 

ontologization of the OMOP CDM elements and the semantic relations among the elements 

using the Ontology of Precision Medicine and Investigation (OPMI). A total of 165 terms from 

15 OMOP CDM tables has been mapped to OPMI, with 46 terms newly generated with OPMI 

namespace and the other terms reported from OBO reference ontologies. An Omop2Opmi.owl 

file was also generated by extracting the OMOP CDM related terms and relations from OPMI. 

Three categories of use cases are reported, using the ontology-level OMOP CDM element 

standardization and data integration, adverse event (AE) modeling, and COVID-19 clinical data 

studies. Following the Ontology of Adverse Events (OAE) definition, we developed a 

generalizable OMOP-AE model that transforms the OMOP data to systematically define, 

identify, and analyze specific adverse events following some medical interventions that include 

Drug/Device Exposure and Procedure Occurrence in OMOP. Overall, OMOP-2-OPMI 

complements and empower OMOP CDM for enhanced clinical data standardization, sharing, 

interoperability, and analysis.   
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1. Introduction 

The Observational Medical Outcomes 

Partnership (OMOP) Common Data Model 

(CDM) is an open community data standard that 

aims to allow for systematic analysis of disparate 

observational databases [1]. With the CDM, the 

data contained in those databases can be 

transformed into a common format with a 

common representation. OMOP CDM has been 

widely used to support the standardization of 

various electronic medical records (EMR) and 

administrative claims within and outside the 

United States. Billions of patient records have 

been standardized using OMOP CDM. Recently, 

OMOP CDM has become an established data 
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model used by the National COVID Cohort 

Collaborative (N3C, https://ncats.nih.gov/n3c). 

As of May 2022, the N3C data enclave has stored 

the records of 14 million persons, including over 

5 million COVID+ cases. Based on the N3C data 

use design, the COVID-19 clinical data 

warehouse data dictionary used in N3C is based 

on OMOP CDM, and the other data formats need 

to be aligned with the OMOP CDM in order to be 

entered and used in the N3C data enclave. 

Therefore, the OMOP CDM has clearly played a 

significant role in the data standardization and 

integration.  

Still the OMOP CDM has its own drawbacks 

[2, 3]. One drawback is its weak semantics in that 

OMOP CDM does not provide robust semantic 

relations among CDM elements. Basically, the 

OMOP CDM provides the schema structure of a 
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standardized a relational database that includes 

over 10 tables, which has an inherent weakness in 

terms of representing the relations among terms 

from different tables. As a result, the layout of 

OMOP and how it is set up to document patients’ 

conditions could lead to ambiguities, inaccurate 

representations and erroneous counting [2]. 

Another drawback is that OMOP CDM does not 

inherently provide systematic interoperability 

with other CDMs such as National Patient-

Centered Clinical Research Network (PCORnet) 

[4] and Clinical Data Interchange Standards 

Consortium (CDISC) [5]. In the N3C data 

integration, the COVID-19 data formulated with 

other CDMs are required to be harmonized based 

on OMOP CDM version 5.3 [6], which is 

separately conducted and difficult to achieve 

robust interoperability and scalability.  

Ontology can be a solution to solve the above 

drawbacks [3, 7]. In the 2018 OHDSI 

Symposium, we proposed a strategy of 

ontological representation of the OMOP CDM 

using the OBO framework [3]. In addition to the 

core OMOP CDM model, the OMOP system also 

includes many standardized clinical terminologies 

that can be used under the OMOP CDM 

framework to collaboratively support 

observational data standardization and 

integration. In the 2020 OHDSI Symposium, 

Callahan et al. reports their development of the 

OMOP2OBO, a health system-wide program of 

the integration and alignment between OMOP’s 

standardized clinical terminologies and eight 

OBO biomedical ontologies spanning diseases, 

phenotypes, anatomical entities, cell types, 

organisms, chemicals, metabolites, hormones, 

vaccines, and proteins [7]. As of the end of May 

2022, the OMOP2OBO mapping program has 

collected 92,367 OMOP Conditions, 8,615 Drug 

Exposure ingredients, and 3,827 Measurements 

(10,673 measurement test results) terms [8]. 

OMOP2OBO allows its users to construct their 

own sets of omop2obo mappings.     

Among >100 ontologies in the Open 

Biomedical Ontology (OBO) library, the 

Ontology of Precision Medicine and Investigation 

(OPMI) is an ontology in the domain of precision 

medicine and investigation [9, 10]. Following the 

OBO ontology principles (e.g., openness and 

collaboration, OPMI reuses many terms of 

existing reference ontologies and include many of 

its own terms in the field of clinical and 

translational precision medicine, supporting non-

redundant and interoperable ontology 

development [11]. OPMI has been developed and 

used to support the Kidney Precision Medicine 

Project [9, 10]. We have been using the OPMI to 

model and represent the core OMOP CDM 

elements and relations among the elements [3]. 

This manuscript reports our usage and 

extension of the OPMI to ontologize the OMOP 

CDM elements and the relations among these 

elements, and how such OMOP-2-OPMI 

ontologization supports systematic clinical data 

interoperability, sharing, and integration.  

2. Methods 
2.1. OMOP CDM resource 

used in the study  

The OMOP version 5.4 was used in our OPMI 

mapping. First, we obtained terms and their 

annotations from the OMOP CDM version 5.4 

resource [12]. The Athena software program 

(https://athena.ohdsi.org/) is the tool used to 

search OMOP CDM terms and related terms from 

OMOP-associated terminologies.    

2.2.  OMOP-2-OPMI 
development strategy  

The OPMI ontology is used as the default 

ontology platform for the ontology mapping and 

new term generation of the OMOP CDM elements 

and semantic relations among the elements. In 

general, the eXtensible Ontology Development 

(XOD) strategy [13], including the methods of 

ontology term reuse, semantic alignment, 

ontology design pattern, and community 

extensibility, were used for the OPMI mapping. 

Specifically, all those OMOP CDM element terms 

were first searched in Ontobee [14]. For those 

terms existing in reference OBO ontologies that 

map to the OMOP CDM elements, Ontofox [15] 

was used to import those terms to OPMI (if the 

import has not been done before). For those 

OMOP elements that cannot be mapped to any 

OBO reference ontology, we generated new terms 

and defined them with OPMI namespace based on 

specific ontology design patterns. The OPMI 

ontology editing was performed using Protege-

OWL editor [16], and the ontology reasoning was 

conducted using the  Hermit reasoner [17]. All the 

terms are aligned under the upper-level Basic 

Formal Ontology (BFO) [18]. Meanwhile, we 

have discussed our project design in different 

scenarios, and community feedback and 

https://athena.ohdsi.org/
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comments were obtained to adjust our definitions 

and design.  

2.3.  Download and license 

The OMOP-2-OPMI GitHub web page is: 

https://github.com/OPMI/OMOP-2-OPMI. The 

source code of the Omop2Opml.owl file is openly 

available at this GitHub website for downloading. 

The OWL file is generated primarily by extracting 

the OMOP CDM-related terms and associated 

relations from the OPMI using Ontofox [15]. 

Considering the usage of OPMI as the platform 

for the OMOP CDM mapping, the OMOP-2-

OPMI source page is designated as a repository 

under the general OPMI organization in GitHub.  

Meanwhile, the OMOP-2-OPMI repository 

has also stored related data files including our  

cleanup spreadsheets of the mapping details 

available at: https://github.com/OPMI/OMOP-2-

OPMI/tree/main/docs.   

2.4. Use case studies 

Three use cases are developed and discussed in 

this study. Specifically, the first use case is about 

the OMOP data standardization and inference. 

The second use case is the development of an 

adverse event model based on the OMOP CDM 

logic and available data formats. The third use 

case is the usage of OMOP-2-OPMI to study N3C 

COVID-19 related clinical data.   

3. Results 
3.1. General OMOP CDM 

ontologization architecture  

Figure 1 represents the hierarchical structure 

of the OMOP-2-OPMI, which is the 

ontologization of the OMOP CDM using the 

OPMI as the ontology platform. Specifically, all 

the terms are aligned under the Basic Formal 

Ontology (BFO) [18], an ISO-approved upper 

level ontology [19]. BFO includes two branches: 

continuants and occurrents. Continuants cover 

time-independent entities including material 

entities, quality, realizable entities such as 

disposition, and information content entities. 

Occurrents are time-dependent entities including 

temporal region and processes. All the OMOP 

CDM elements can be categorized under these 

two categories (Figure 1). BFO has been used by 

over 300 ontologies. The alignment with BFO 

allows us to integrate our ontology with the large 

number of other ontologies, supporting data 

interoperability.  

 

 
 

Figure 1: OMOP-2-OPMI top level hierarchical structure and representative terms. Ontology names 
are highlighted with different colors. Ontology-mapped OMOP terms are also provided. 

 

Figure 2 is a simplified high level OMOP-2-

OPMI ontology design pattern (ODP) that covers 

the major elements in 11 OMOP tables.  

Specifically, the person (usually here it refers to 

patient in OMOP) is centric to the ODP. The 

person participates in five medical occurrences 

(i.e., visit/condition/procedure occurrences, and 

drug/device exposure) and the observation 

process, which are all under BFO:process (Figure 

1). The observation happens during a specific 

observation period. The person is also the target 

of measurement.  A specimen derives from some 

organ or tissue of the person. The person has 

https://github.com/OPMI/OMOP-2-OPMI
https://github.com/OPMI/OMOP-2-OPMI/tree/main/docs
https://github.com/OPMI/OMOP-2-OPMI/tree/main/docs
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different phenotypes, and death is a specific 

phenotype (Figure 2).    
 

 
Figure 2: General ontology design pattern that 
links CDM elements from 11 OMOP tables. Note 
one box covers five OMOP occurrence/exposure 
tables. Mapped ontology terms are also labeled.  

3.2. OMOP-2-OPMI statistics 

A total of 165 terms from 15 OMOP CDM 

tables has been mapped to OPMI, with 46 terms 

newly generated with OPMI namespace and the 

other terms reported from OBO reference 

ontologies. In addition to the 11 tables listed in 

Figure 2, the other four tables are Care Site, Payer 

Plan Period, Episode, and Location, which are not 

included in Figure 2 to simplify that figure. Table 

1 lists ontology mapped CDM element terms from 

10 representative OMOP tables.  

Our current mapping primarily covers those 

clinical data tables and health system data tables. 

We have not yet included the Metadata Tables, 

Vocabulary Tables, Standardized Derived Tables 

except for Episode, and the Cost table which 

belongs in the Health Economics Data Tables 

category. These missing tables do not directly 

involve clinical investigation, which is our current 

focus. Also as shown in Table 2, many terms are 

not mapped to ontology. Most of these missing 

terms are various “source value” or source 

concept ID terms. Throughout OMOP CDM, 

there are similar terms representing various 

source concepts and source values. In the OMOP 

structure, a source concept set organizes terms 

into groups called source value sets. A value set 

(e.g., ‘procedure_source_value’) is a set of codes 

whose context and usage are defined by one or 

more code systems in which the clinical data came 

from. However, the organization of value sets is 

not often ontology-based. In most cases, we have 

decided to not incorporate terms for “source 

concept” and “source value” sets until we figure 

out a place for these terms to make sense 

ontologically within OPMI. In our ontologization, 

we have also included specific source value terms 

as seen in Table 1 and detailed later in the 

manuscript.  

  

Table 1. CDM terms from 10 representative OMOP tables mapped to OPMI 
 

Selected OMOP 

tables  

Mapped 

OMOP terms 

Mapped Ontology Term Examples 

PERSON  13/19* person ID (OPMI_0000470), gender (PATO_0001894), year of birth 

(OPMI_0000473), race (NCIT_C17049) 

PROVIDER 9/13 care provider (OPMI_0000163), National Provider Identifier (OPMI_0000503), 

DEA identifier (OPMI_0000504) 

SPECIMEN 6/15 specimen ID  (OBI_0001616), date of specimen collection (OBIB_0000714), 

anatomical structure (UBERON_0000061) 

VISIT 

OCCURRENCE 

26/17 visit occurrence (OPMI_0000482), visit start date (OPMI_0000487), preceding 

visit occurrence (OPMI_0000492) 

PROCEDURE 

OCCURRENCE 

13/16 procedure (NCIT_C25218), procedure start date (OPMI_0000508), procedure 

end date (OPMI_0000510) 

DRUG 

EXPOSURE  

18/23 drug exposure (OPMI_0000572), drug product (DRON_00000005) drug 

exposure start time (OPMI_0000565) 

CONDITION 

OCCURRENCE 

38/16 condition occurrence (OPMI_0000527), medical condition status 

(OPMI_0000533), admission diagnosis status (OPMI_0000542) 

DEVICE 7/15 device exposure  (OPMI_0000554), device (OBI_0000968), device exposure 
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EXPOSURE start date (OPMI_0000562) 

MEASUREMENT 11/20 clinical measurement identifier (OPMI_0000582), measurement time 

(OPMI_0000579), measurement unit label (IAO_0000003) 

OBSERVATION 

PERIOD 

5/6 observation period start date (OPMI_0000577),  

observation period end date (OPMI_0000578),  

Note: *13/19 represents that 13 out of 19 OMOP CDM terms in the specific category have been mapped to terms 

in the OPMI ontology. The unmapped terms are primarily those terms related to “source value”. More terms in 

the visit/condition occurrences are mapped because some specific source value terms are ontologized.  

 
In addition to source values or source concept 

IDs, there are also many terms in OMOP CDM 

not yet ontologized. The reasons of such 

imcompleteness include the lack of necessity of 

many terms, and the complexity of many other 

terms in terms of ontology modeling. We will 

continue this work later, ideally by involving 

more collaboration and discussion with the 

ontology and clinical informatics communities.   

 

Table 2. Ontology mapping of OMOP CDM terms 
by element types 
 

types 
OMOP 

terms 

OMOP 

mapped 

percent 

mapped 

_id 23 19 82.61% 

_date 34 27 79.41% 

_concept_id 41 29 70.73% 

_concept_name 30 16 53.33% 

_source_concept_id 17 1 5.88% 

_source_value 34 1 2.94% 

Total 179 93 51.96% 

 

 Next we will focus on a few major ontology 

modeling topics to show how we model and 

ontologize the OMOP CDM elements. 

3.3. Ontologization of OMOP 
medical occurrences  

By examining the OMOP CDM elements, we 

found that five OMOP tables can be categorized 

under an ontology class called ‘medical 

occurrence’, which is defined as a process event 

that a patient experiences over a period of time 

(Figure 3). These five OMOP tables are: 

‘condition occurrence’, ‘device exposure’, ‘drug 

exposure’, ‘procedure occurrence’, and ‘visit 

occurrence’ (Figure 3).  

 

 

Figure 3: Modeling of 5 medical occurrence 
categories and 11 specific visit occurrences. 
  

In two of the five OMOP tables, Visit 

Occurrence and Condition Occurrence, in 

addition to mapping the elements in original 

tables (Table 1), we also added some terms from 

the supporting OMOP vocabularies for 

developing a complete semantic model. In the 

case of Visit Occurrence, the extra terms are due 

to the ontologization of 11 types of visit 

occurrences (e.g., ‘emergency room visit’, ‘home 

visit’) that are originally not defined in OMOP’s 

CDM model and instead are from the supporting 

OMOP vocabularies identified on the Athena 

program. We have ontologized such terms under 

‘visit occurrence’ (OPMI) (Figure 3). These terms 

represent the overarching types of encounters 

between a person and the healthcare system, 

which are adopted in most healthcare systems 

worldwide.  

In the case of Condition Occurrence, the extra 

22 terms come from the incorporation of medical 

condition statuses (e.g., ‘admission diagnosis’, 

‘cause of death’, and ‘confirmed diagnosis’), 

which were defined by OMOP and searchable in 

Athena. In OMOP, a medical condition status 

denotes the stages of a patient’s diagnosis, not the 

actual state of the disease by itself. OPMI 

represents these medical condition statuses in two 
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strategies. First, OPMI includes a term called 

‘medical condition status’ under the ‘status’ term, 

which is a subclass of BFO:‘realizable entity’. In 

this classification, a medical diagnosis status, 

such as admission diagnosis, represents a patient 

diagnosis status such as the status of diagnosis at 

the time when the patient is admitted to the 

hospital.  

We have also adopted the OGMS:diagnosis 

classification and defines various diagnosis types 

under the OGMS:diagnosis (Figure 4). According 

to the Ontology for General Medical Science 

(OGMS), diagnosis (OGMS_0000073) is a 

subclass of clinical data item and represents the 

conclusion of a diagnostic process. Based on the 

OMOP classification, OPMI has defined different 

categories of diagnosis, including ‘admission 

diagnosis’, ‘primary diagnosis’, ‘secondary 

diagnosis’, and ‘death diagnosis’, etc. (Figure 4). 

These specific diagnosis types are commonly 

used at the clinical setting. The classification of 

these diagnosis types facilitates the clinical data 

annotations.  

 

 

Figure 4: Modeling of different medical diagnosis 
under the OGMS:diagnosis, which is a subclass of 
clinical data item.  
  

As OPMI separates diagnosis clinical data 

type vs the diagnosis medical condition status, we 

can define different diagnoses and diagnosis 

statuses. For example, ‘discharge diagnosis 

status’, ‘referral diagnosis status’, and ‘admission 

diagnosis status’ are realizable entities, and 

‘discharge diagnosis, ‘referral diagnosis status’, 

and ‘admission diagnosis’ are data items. The 

main benefit of separate representation of status 

and data is the semantic separation and clarity. 

The medical condition status represents the 

current status of the patient at a specific stage. For 

example, ‘admission diagnosis status’ represents 

the status at which a person is diagnosed at the 

admission stage. On the other hand, as the data 

item, the ‘admission diagnosis’ indicates the 

conclusion or outcome of the diagnosis process at 

the stage of patient admission. A diagnosis 

conclusion made at the admission or discharge 

stage may be the same or different.    

Meanwhile, the diagnosis clinical data type vs 

the diagnosis medical condition status are closely 

related. In OPMI, we propose to generate a 

relation term called ‘has status content’, which 

represents a relation between a status and an 

information content entity where the status has its 

content information defined by the information 

content entity. For example, we can define an 

axiom that links a diagnosis status to a diagnosis 

data item: 

 ‘admission diagnosis status’: ‘has status 

content’ some ‘admission diagnosis’         

However, such duplicated representation may 

not be needed. It is possible to just define 

‘admission diagnosis status’ and remove the term 

‘admission diagnosis’. We will examine more use 

cases and discuss with the ontology and medical 

informatics communities on this regard.  

 

3.4. Ontologization of 
temporal date/time in OMOP  

To ontologically represent various entities 

denoting time that can be found throughout 

OMOP, we have mapped 24 temporal terms from 

6 tables. The OMOP tables that have temporal 

terms ontologized are Visit Occurrence, Device 

Exposure, Drug Exposure, Procedure Occurrence, 

Condition Occurrence, and Person. For all tables 

but Person, the entities are ontologized with 

temporal terms for -start date, -start datetime, -end 

date, and -end datetime. Meanwhile, temporal 

terms related to the Person table are instead 

ontologized with more familiar terms which are 

‘birth datetime’, ‘day of birth’, ‘month of birth’, 

and ‘year of birth’. All temporal terms are 

grouped under a higher level term for a better 

organizational purpose (e.g., ‘visit start 

date/datetime’, ‘end date/datetime’ are all 

grouped under ‘visit temporal region’) (Figure 5).  
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Figure 5: OPMI modeling of date and time used 
in OMOP CDM. 

3.5.  Ontologization of entity 
identifiers in OMOP CDM  

 In OMOP, fields with the suffix “_id_” 

usually denote identifiers, which function as 

primary keys in their respective OMOP tables 

along with other supporting entities (e.g., 

person_id in Person table). These identifiers can 

also be used as foreign keys to connect other 

related OMOP tables (e.g., person_id to connect 

Provider and Care Site tables).  

OPMI has ontologized OMOP CDM related 

identifiers under the class of ‘centrally registered 

identifier’, a subclass under ‘information content 

entity’. Example identifiers defined include 

‘person ID’, ‘care site identifier’, ‘clinical 

measurement identifier’, ‘DEA identifier’ and 

‘National Provider Identifier’. These identifiers 

identify assets belonging to different but  centrally 

registered local databases.   

3.6.  Ontologization of 
provenance records in OMOP  

In OMOP, most entities from various tables 

have their own “type_concept” terms, which 

indicate the provenance, or the source of the 

record in which it comes from. For instance, drug 

exposure entries could come from either 

prescriptions list or self-reported by patients, the 

provenance of which can differ from a patient’s 

measurement records.  

In OPMI, type_concepts are mapped as 

various terms under ‘provenance of record’, a 

class under ‘information content entity’. So far, 

we have generated 12 terms for the provenance of 

records for 12 corresponding entities of OMOP 

CDM tables. The provenance of records is 

dedicated for each corresponding OMOP entity 

since the sources of the entries can vary across 

different fields.  

Meanwhile, OPMI also defines most of the 

records for the OMOP provenance purposes under 

‘electronic health record’, such as ‘electronic 

medical visit record,’ ‘electronic death record,’ 

‘electronic device record,’ etc. (Figure 6). The 

users can choose the usage of these electronic 

health records as the sources of the data collected 

to the OMOP database. Note that not all the 

provenance records are electronic health records 

(EHR). For example, in addition to the record 

from an EHR system, the measurement record 

might also come from an insurance claim, 

registry, or other sources.   

    

 
  

Figure 6: OPMI modeling of different records 
used as data provenance in OMOP CDM. 

Next, we will focus on the description of three 

use cases of the OMOP-2-OPMI approach.  

3.7.  Use case 1: Ontology-
level data standardization   

The first use case is rooted in the nature of 

ontology. As an open access ontology following 

the OBO ontology development principles, 

OMOP-2-OPMI provides the standard 

representation and definitions of the OMOP CDM 

mapped terms and the axioms among these terms. 

The OMOP-2-OPMI ontology terms can be used 

to support standardized clinical data 

representation and annotation. The semantic 

relations among the OMOP CDM terms and their 

associated other terms provide solid semantic 
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associations, which addresses the OMOP CDM 

drawback of weak semantics.   

The ontologized terms are also interoperable. 

For example, the Coronavirus Infectious Disease 

Ontology (CIDO), a biomedical ontology in the 

domain of coronavirus diseases [20], has imported 

the OMOP-2-OPMI ontology contents. The 

contents of OMOP-2-OPMI fit seamlessly with 

the other CIDO contents, providing another 

demonstration of the ontology-supported 

knowledge and data interoperability, sharing, and 

integration. It is also possible to use the some 

ontology terms for mapping to the other CDMs 

such as PCORnet [4] and CDISC [5], which will 

be explored in the future. 

Such interoperable ontology representation 

also supports data and knowledge inferencing. 

This is also rooted from the nature of ontology. 

The following two other use cases provide such 

demonstrations.  

3.8.  Use case 2: Adverse 
event modeling and analysis 

Another use case of the OMOP CDM 

ontologization is the modeling of adverse events 

(AEs) post medical intervention. The OMOP 

CDM does not include AE per se. However, by 

specific modeling, we can find the OMOP CDM 

data can be processed to support specific AE 

identification and analysis.  

Figure 7 is a general OMOP-AE ontology 

design pattern, which follows the AE definition 

by the Ontology of Adverse Events (OAE) [21]. 

According to the OAE, an adverse event (AE) is a 

pathological bodily process that occurs following 

some medical intervention [21]. In order to model 

AEs with OMOP data, we need to identify the 

medical intervention vs. adverse events to be 

mapped in OMOP. By examining all the five 

medical occurrence types defined in OMOP, only 

three of them are considered as medical 

interventions: Drug Exposure, Device Exposure, 

and Procedure Occurrence (e.g., surgical 

procedure). Vaccination can be considered as a 

special drug exposure.  

Note that the visit occurrence and condition 

occurrence are regarded as natural occurrence 

events without medical intervention. Based on the 

AE definition, contracting a natural infection is 

not an AE since the patient does not receive an 

adverse outcome after a medical intervention. 

However, the condition occurrence may include 

conditions of different phenotypes that are the 

outcomes of specific adverse events (Figure 7).   

 

 
Figure 7: General OMOP-AE model based on 
OMOP-2-OPMI. The red boxes represent OMOP 
tables and their mapped ontology terms. The 
black boxes are added ontology representation 
to fill up the gaps for adverse event modeling. *, 
OMOP uses SMOMED-CT concepts for disease or 
symptom representation. These can be mapped 
to Human Phenotype Ontology (HP) terms.  
 

Our original OPMI conference proceeding 

paper presented a use case study of identifying 

and analyzing the acute kidney injury (AKI) AE 

following heart surgery [9]. Using OHDSI data 

provided by the IQVIA Pharmetric Plus database, 

our OHDSI cohort study identified a total of 

15,548 patients that fulfilled our predefined model 

of AKI AE following heart surgery. Specific 

patterns were identified. For example, 72% of the 

identified patients were  male and 28% were 

female patients. Over 78% of these AE cases 

occurred in patients aged greater than 55 years 

old. Many phenotypes, such as coronary 

arteriosclerosis, kidney disease, pain, dyspnea, 

hyperlipidemia, and Type II diabetes, were found 

in these patients as well [9].  

Our OMOP AE model is a very general model 

in that it can be used to study specific adverse 

event profiles following various medical 

interventions including different drug/medicine 

exposure and procedure occurrence. We are 

currently applying such a strategy to design a 

pattern for identifying and analyzing the vaccine 

and drug AEs in COVID-19 patients using the 

N3C data. Note that if a patient contracted 

COVID-19 in a natural environment, the patient 

has a condition, which is not an adverse event 

(because an AE is always associated with medical 

intervention). However, the occurrence of new 
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phenotypes after medical treatment on these 

COVID-19 patients are considered AEs.   

3.9. Use case 3: COVID-19 
clinical data standardization, 
modeling, and analysis   

In addition to the import of the OMOP-2-

OPMI to CIDO and the study of COVID-19 

associated AE modeling and analysis as described 

above, we are also applying the OMOP-2-OPMI 

for more COVID-19 clinical data modeling and 

analysis. Two data resources for our OMOP-2-

OPMI based studies are the literature reports and 

N3C clinical data.   

One specific use case is the study of the 

relation between the COVID-19 infection and the 

increased risk for kidney diseases. For example, 

acute kidney injury (AKI) is a significant 

complication of COVID-19. The incidence of 

AKI in hospitalized patients varies from 0.5% to 

75%. The mortality rate for patients with kidney 

disease is also significantly higher than the 

general infected population. However, the big 

variation of AKI incidence in COVID-19 patients 

appears to depend on many factors such as race, 

region, and disease severity. The N3C cohort data 

is being used to detect, compare, and analyze the 

occurrences of kidney disease following COVID-

19 infection. The OMOP-2-OPMI model, 

together with the OMOP2OBO, can be used to 

support data modeling, integration, and analysis. 

The integrated data can also be further used for 

machine learning tool development for kidney 

disease prediction following COVID-19 

prediction. We have registered for an N3C 

program to perform related research.  

Another use case in this category is the 

application of OMOP-2-OPMI and CIDO for 

secondary literature data analysis and knowledge 

representation. There have been a big number of 

COVID-19 studies reported in the literature, many 

of which involve the usage of OMOP CDM 

model. For example, one study examined the 

association between immune dysfunction and 

COVID-19 breakthrough infection after SARS-

CoV-2 vaccination in the US using N3C data [22]. 

The N3C data and the results out of the data 

analysis can both be modeled, annotated, and 

represented using ontology including our OMOP-

2-OPMI and CIDO.  

The above two studies are currently ongoing 

and we expect to have more specific results 

available in near future.  

4. Discussion 

This manuscript has made two main 

contributions. First, we report our systematic 

survey and ontologization of the OMOP CDM 

elements using the OPMI ontology. The Omop-

2Opmi.owl file is the OWL file that includes only 

the OMOP CDM-related ontology terms, their 

directly associated terms (e.g., their parent terms), 

and the semantic relations between these terms 

that are presented as ontology axioms. Second, we 

presented three categories of use cases of our 

OMOP CDM ontologization, including ontology-

level OMOP CDM element standardization and 

inferencing, adverse event modeling and analysis, 

and COVID-19 clinical data studies. Overall, our 

systematic ontologization of the OMOP CDM 

complements and empowers the OMOP CDM 

system, providing a new way of supporting 

systematic clinical data interoperability, sharing, 

and integration.  

A similar and related system is OMOP2OBO, 

a systematic mapping tool that maps OMOP 

related terms to OBO ontologies [7]. The terms 

mapped in OMOP2OBO cover 8 OBO ontologies, 

including Cell Ontology (CL), ChEBI chemical 

entity ontology, Human Phenotype Ontology 

(HP), MONDO disease Ontology, NCBI 

Taxonomy Ontology (NCBITaxon), Protein 

Ontology (PR), Uberon anatomy ontology, and 

Vaccine Ontology (VO). While OMOP2OBO 

includes the mapping of over 100,000 terms in the 

OMOP terminology system, it does not cover the 

OMOP CDM elements in the over 10 basic 

OMOP tables. Instead, OMOP-2-OPMI focuses 

on the core OMOP CDM level mapping and 

representation. In addition to ontology term 

mapping, since many high level  terms in OMOP 

CDM are not yet represented in OBO ontologies, 

we have taken extensive effort to generate many 

new terms in OPMI. We have also generated 

ontological relations among these OMOP CDM 

elements using the OPMI ontology platform. 

Overall, OMOP2OBO and OMOP-2-OPMI are 

complementary in that they map and integrate 

OMOP data from different aspects.  

There are still many issues to consider in our 

ontologization. For example, we presented two 

types of methods for representing medical 

condition statuses and two types of methods of 
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representing provenance records in our work. 

Since most medical condition statuses are 

different types of diagnosis, such status 

representations can be defined under “status”, 

which is defined as a BFO:‘realizable entity’, or 

under OGMS:diagnosis, which is basically a type 

of clinical data item. Similarly, for the provenance 

records, they can be represented under 

provenance itself or under electronic health 

record. The ICBO-2022 conference will provide 

us a discussion platform to discuss the pros and 

cons of different representation styles.    

Several use cases are introduced in this article. 

We demonstrated the development of a new 

OMOP-based adverse event model based on the 

OMOP CDM data structure. Such an OMOP-AE 

model can be used to support various specific AE 

studies, including the modeling of adverse event 

cases post COVID-19 vaccination (or drug 

admin) using N3C data. In addition to the AKI AE 

study following heart surgery [9], we are currently 

applying the OMOP AE model for more COVID-

19 related AE studies. Furthermore, we can 

develop new models to apply OMOP CDM to 

study other topics such as long COVID and the 

effects of different variables to the disease 

outcomes.      

One future project is to map the CDM terms 

from other systems, including PCORnet [4] and 

CDISC [5],  to the OPMI ontology using the same 

OMOP-2-OPMI development strategy. These 

different CDMs are overlapped. For example, 

There are similarities between the organizations 

of OMOP and PCORnet CDMs, evidenced by the 

overlaps of certain tables such as Demographic, 

Procedures, or Condition [23]. When all these 

CDM elements and relations are mapped to the 

same OPMI structure, we can integrate all the data 

using different CDMs, leading to compatible and 

interoperable clinical and observational data 

standardization and integration. A recent study 

reports the development of an ETL tool for 

converting the PCORnet CDM into OMOP CDM 

to facilitate the COVID-19 data integration [24]. 

It is possible to apply our ontology approach to 

enhance such an ETL tool.  
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