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Abstract  
Biomedical imaging is a widely used tool both clinically and for research. Though a standard 
digital format has existed in the biomedical imaging world across modalities for decades in the 
form of the DICOM specification, a formal representation of the kinds of data present in a 
biomedical image (acquired from CT, PET, MRI, etc.) is notably absent from biomedical 
ontologies, and annotation of biomedical imaging data is hindered by decentralization. This has 
contributed to the creation of large and unsorted biomedical imaging silos, preventing clinical 
and translational researchers from effectively sharing and analyzing their data. We present here 
the ‘image data set’ class, along with the ‘image data set analysis’ class, which we have 
developed to capture the processes of acquisition, annotation, and analysis of biomedical 
imaging data in an effort to better harness otherwise-latent imaging datasets. The ‘image data 
set’ class and several of its children are being contributed to OBI and originate from MRIO, an 
application ontology used to guide a neuroinformatics platform working to automate analysis 
of large MRI datasets and facilitate the translation of neuroimaging research into clinical 
science. 
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1. Introduction 

Digital biomedical imaging, a technique 
enabling physicians and researchers to visualize a 
subject’s internal structural and functional 
anatomy, has been a mainstay of modern medicine 
for decades [1]. Techniques for imaging comprise 
several distinct modalities, including computed 
tomography (CT), positron emission tomography 
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(PET), X-ray, as well as nuclear magnetic 
resonance (NMR) spectroscopy and magnetic 
resonance imaging (MRI). The number of 
biomedical imaging scans performed clinically 
increases year-over-year [2], adding to an ever 
growing mountain of imaging data and firmly 
establishing the role of biomedical imaging in the 
future of medicine and clinical research.  

Biomedical imaging in the realm of clinical 
practice is noticeably different from its use in 
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research, with clinical images trading quality for 
general usability for diagnosis in an individual, 
while research often requires higher quality scans 
at a higher price point. Because imaging is 
expensive [3], its potential use in research is 
limited, while clinics produce many images with 
the help of reimbursement from insurance. As 
such, there has been a push in recent years to 
mobilize the large quantity of images acquired via 
clinical routine for use in research [4–9]. 
However, this data is often dispersed and left 
unsorted in data silos, and harmonizing all of this 
data would take considerable time and effort. 
There exists then a need for a standardized method 
of automatically sorting and annotating these 
large amounts of imaging data, which would 
allow researchers to more easily analyze and share 
data.  

1.1. The DICOM Standard 

The widespread use of biomedical imaging is 
due largely to the adoption of the Digital Imaging 
and Communication in Medicine (DICOM) 
standard [10]. Since its major release in 1993, 
DICOM has been the International Organization 
for Standardization (ISO) recognized digital 
format for biomedical imaging, allowing 
interoperability across modalities, scanner 
manufacturers, and healthcare systems. As such, 
DICOM governs the reporting of image 
acquisition, transfer, and display. Furthermore, 
DICOM encodes data pertaining to image 
acquisition (e.g. date, time, patient age, 
acquisition parameters, modality, etc.) in the file 
headers, similar to a JPEG but specifically tailored 
to biomedicine. There exist large datasets of 
biomedical images with the potential to be 
harmonized because they already have DICOM 
annotations. Additionally, the near universal use 
of DICOM has led to the creation of a large 
ecosystem of software and libraries for 
programmatically working with DICOM images 
and headers (e.g. pydicom [11] for python, Java 
DICOM Toolkit for Java [12], Image Toolkit 
(ITK) [13], etc.). 

1.2. The Role for Ontology in 
Biomedical Imaging Datasets 

The adoption of the DICOM standard and 
increasing clinical use of imaging has generated a 
huge amount of data, presenting unique 

opportunities to clinical and translational 
researchers. However, while DICOM offers 
standardized methods for reporting, storing, and 
transferring scans in the form of standard header 
tags, much of the data encoded in DICOM headers 
are semantic strings that often differ between 
institutions and manufacturers. As such, 
important information for sorting and analyzing 
data (e.g. scan type, series description, date of 
birth, etc.) are often disparate from one data set to 
the next, and different methods must be used to 
work with different data sets. Moreover, there is a 
high barrier of entry for working with imaging 
data, requiring experience in fields like computer 
science and informatics that clinical researchers 
might not have. The field of neuroimaging in 
particular has recently been moving towards the 
adoption of the Brain Imaging Data Set (BIDS) 
[14] specification, which is a prescribed format 
for naming and laying out directories of 
neuroimaging data. While newer than DICOM 
and focused on MRI, BIDS also targets additional 
modalities such as PET and provides a framework 
for analysis of BIDS datasets called “BIDS-apps” 
with little-to-no input required from the user. 
However, BIDS is practical rather than 
ontological, and its recommended practices still 
require experience in the fields of computer 
science and neuroimaging analysis. 

Ontology poses an elegant solution to these 
problems, but no term in any OBO Foundry 
ontology quite encapsulates the kind of data found 
in biomedical imaging. The obvious term to use 
would be ‘image’ (IAO:0000101) from the 
Information Artifact Ontology [15], which is 
defined as “[…] an affine projection to a two 
dimensional surface, of measurements of some 
quality of an entity or entities repeated at regular 
intervals across a spatial range, where the 
measurements are represented as color and 
luminosity on the projected on surface.” Analysis 
of a biomedical image requires data such as 
scanning modality (i.e. MRI vs. PET) and scan 
type (anatomical vs. functional) to be known 
beforehand, which may be encoded in a DICOM 
header just as an affine projection of pixels would 
be. Additionally, biomedical images are typically 
comprised of voxels, similar to pixels but 
representing data in three or more dimensions. 
Other candidate terms include ‘image’ 
(NCIT:C48179) and ‘medical image’ 
(NCIT:C19477) from the National Cancer 
Institute Thesaurus [16], but these terms lack 
useful axioms for working with or sharing 
imaging data. 



1.3. An Ontological Representation 
of Imaging Data 

In light of this, we developed the ‘image data 
set’ class out of a need for a more general term for 
an information content entity that more fully 
represents the different kinds of information 
found in biomedical imaging data. Additionally, 
we developed an ‘image data set analysis’ term to 
represent a standard process for analyzing and 
deriving data from biomedical images. Both of 
these terms originate from our work on the MRI 
Acquisition and Analysis Ontology (MRIO) [17], 
an application ontology developed to capture the 
neuroimaging research process primarily focused 
on MRI data (https://github.com/Buffalo-
Ontology-Group/MRI_Ontology). However, 
because ‘image data set’ is a generic child of ‘data 
set’ (IAO:0000100), there is certainly potential 
for the class to be used with other biomedical 
imaging modalities and any other digital image 
format. The ‘image data set’ class, several of its 
subclasses specific to MRI, and the ‘image data 
set analysis’ class are in the process of being 
contributed to the Ontology for Biomedical 
Investigations (OBI) [18].  

2. Development 

The ‘image data set’ and ‘image data set 
analysis’ classes were developed as high-level 
terms to contain the different kinds of MR images 
and analyses present in MRIO. These lower-level 
terms were added as children to the ‘image data 
set’ class. The terms were developed in Protégé 
v5.5.0’s [19] ontology editor, and automated 
reasoning was performed using the HermiT 
reasoner v1.4.3.456 [20]. Table 1 provides the 
higher-level terms and definitions presented here. 

2.1. Image Data Set 

We define ‘image data set’ as, “A data set that 
is comprised of structured measurements about 
some entity and its associated metadata using 
pixels (2D), voxels (3D), or an arbitrary number 
of dimensions. An image data set can be the 
source from which an image is produced.” The 
intent of this class is to provide a general term that 
may be extended to all types of biomedical 
imaging data, since the two-dimensional 
definition of ‘image’ from IAO does not allow for 
the three- or four-dimensional data typically 

found in biomedical imaging. Additionally, 
biomedical images in the form of DICOMs 
contain additional data pertaining to the 
acquisition of the scan that are necessary for 
analysis. The ‘image data set’ class allows for the 
inclusion of these (meta)data in addition to what 
may be thought of as simply the image that the 
DICOM encodes. 

We also developed a dichotomy under the 
‘image data set’ class to represent raw data 
produced by the scanner as well as data that has 
been transformed in some way (i.e. into DICOM 
or as part of any other analysis), using the ‘raw 
image data set’ and ‘computed image data set’ 
classes, respectively. The lower-level MRI scan 
types from MRIO were added under a child class 
of ‘computed image data set’ called 
‘reconstructed magnetic image data set.’ Each of 
these MRI data sets are the output of a ‘magnetic 
resonance imaging assay’ (OBI:0002985), which 
we have expanded to encode information 
pertaining to acquisition parameters for each scan 
type as found in DICOM headers. This provides 
us a higher-level ‘image data set’ class that can be 
used for any biomedical imaging modality as well 
as lower-level terms for different MRI scan types 
logically defined by standardized acquisition 
parameters.  

In addition to the MRI specific ‘image data set’ 
terms, we developed terms for annotating brain 
region atlases and image segmentation, called 
'brain region atlas image data set' and 'image 
segmentation map,’ respectively. 

Figure 1 provides an overview of the 
acquisition of a ‘magnetic resonance image data 
set.’ 

2.2. Image Data Set Analysis 

We also developed a class for formally 
representing the analysis of ‘image data sets’ 
called ‘image data set analysis,’ which we define 
as, “The process of deriving a data item from an 
image data set using computer algorithms. The 
produced data item can be an image data set, data 
measurement, or any other data item.” Different 
imaging analysis software and tools can be and 
have been added as subclasses to the ‘image data 
set analysis’ class, along with logical axioms that 
define the inputs and outputs of the analysis. For 
example, the ‘FreeSurfer analysis’ term 
(MRIO:0000515) has been added as a subclass to 
‘MR image segmentation analysis’ 
(MRIO:0000662) to represent the process of 



cortical segmentation and parcellation via the 
FreeSurfer software suite21. The ‘FreeSurfer 
analysis’ term has logical axioms describing its 
required input of a high resolution T1w image and 
its outputs of (sub-)cortical segmentation maps 
and (sub-)cortical volume measurement data. The 
outputs both have logical axioms linking them to 
all 86 regions of the FreeSurfer atlas that they are 
about via URIs from Uberon22. 

Figure 2 provides an overview of the ‘image 
data set analysis’ process.  

3. Use Cases 

In combination with the SPARQL Protocol 
and RDF Query Language (SPARQL) [23] and 
tools that tie into the DICOM framework (i.e. 
pydicom), we have leveraged the ‘image data set’ 
class and MRIO to work with neuroimaging data 
is several use cases. These use cases come from 
an automated neuroinformatics platform that 
works on large public datasets and real-world 
imaging data. 

3.1. Automated MRI Scan 
Classification 

The first use case to arise from MRIO was the 
automation of scan classification – the process of 
identifying the acquisition type of an MRI from 
its DICOM header. This is an important aspect of 
working with neuroimaging data because some 
analyses can only be performed on specific kinds 
of MR images (e.g. segmentation of brain 
structures using anatomical images vs. mapping 
the tracts that connection brain regions using 
diffusion weighted imaging). Information 
pertaining to the type of MR image may be 
inferred from acquisition parameters present in 
the DICOM header. However, this has historically 
been a difficult problem to solve, as scan type is 
not directly encoded in DICOM header tags, and 
different scanner manufacturers use slightly 
different acquisition parameters for the same scan 
type.  

As previously presented at ICBO 2019, MRIO 
uses a range of values for common acquisition 
parameters to address this, using the HermiT 
reasoner to automatically infer scan type. We have 
expanded this functionality by using pydicom to 
automatically parse useful acquisition parameters 
from DICOM headers and then using 
SPARQL/Update queries to add new scans as 

individuals, followed by calling ROBOT [24] with 
the HermiT reasoner to infer the type of the new 
‘image data set’ individuals. The end result is a 
fully automated method for classifying MRI data 
without much input or experience from the user. 
However, as was pointed out in the initial ICBO 
2019 presentation of MRIO, inference with 
HermiT is slow on consumer hardware. 

A much higher level of performance may be 
obtained using machine learning algorithms, such 
as XGBoost [25], trained on the same acquisition 
parameters used by the ‘MR image data set’ 
subclasses from MRIO. The current iteration is a 
model that predicts scan types using pydicom 
similar to the previous approach, and outputs the 
predicted URI of the ‘MR image data set’ class. 
The model classifies MRI acquisition types based 
on features derived from MRIO with 99.953% 
accuracy, and a macro-averages F1=0.8743. This 
output can then be chained to other SPARQL 
queries for further automation of the 
neuroimaging research process. 

3.2. Automated Assignment of 
Analyses to MRI data 

In order to extract useful information from 
MRI data, the next step to automate was the 
determination of applicable analysis types to the 
now classified ‘MR image data sets.’ This was 
done using the RDFLib Python library [26] in 
conjunction with a function that processes strings 
from user input into a SPARQL query to search 
MRIO for all ‘image data set analyses’ that accept 
the specified ‘MR image data set’ types as input. 
These outputs are then used to coordinate the 
pipeline engine of the neuroinformatics platform 
and direct storage of the data derived from 
analyses. 

Using a Python function to generate the 
SPARQL queries from user input provides a great 
deal of modularity and extends this feature’s use. 
The end result is both a script that may be called 
by a user who simply wants to know what 
programs may be used to analyze their imaging 
data and a tool that powers a sophisticated 
platform that carries out the analyses assigned by 
the SPARQL query. Figure 3 contains an example 
of the script available for end users.   

3.3. Automated Transformation of 
Data into Standard Formats 



Because MRIO focuses on neuroimaging with 
MRI, there is potential to integrate with the BIDS 
specification. BIDS is a standard format for 
organizing neuroimaging datasets and the data 
that may be derived from them. This organization 
is typically hierarchical and follows prescribed 
naming conventions to keep annotated MR 
images consistent across datasets. Although 
developed to be practical rather than ontological, 
the naming conventions used in BIDS mostly 
align with the ‘MR image data set’ subclasses 
(e.g. ‘T2 FLAIR image data set’ -> ‘sub-
id_FLAIR.nii.gz/json’). An additional benefit of 
BIDS is the ability to use “BIDS-apps,” 
containerized neuroimaging programs that expect 
only a valid BIDS dataset as input. These BIDS-
apps typically come preconfigured with sane 
defaults for a one-size-fits-all approach for 
working with neuroimaging data, greatly 
alleviating the burden of writing up processing 
pipeline scripts, cleaning data, and organizing 
results for researchers. Because BIDS-apps are 
typically containerized, methods and data can be 
kept consistent from one dataset or study to the 
next. These factors combine to make BIDS a 
powerful tool for harmonizing large imaging 
datasets. 

One of the largest barriers to the widespread 
adoption of BIDS is the investment required to 
transform neuroimaging data into valid BIDS 
datasets, in terms of both time and effort. It is 
necessary to know the scan types of the MRI data 
at the outset, and the process of generating a BIDS 
dataset typically requires scripting and manual 
annotation of data. BIDS expects images to be in 
the Neuroimaging Informatics Technology 
Initiative (NIfTI) [27] file format commonly used 
in research settings with header data moved to 
accompanying JSON files, rather than DICOM. 
While DICOM provides standardized reporting 
for the acquisition of individual scans, a typical 
scanning session will be dumped into directories 
according to machine-readable IDs that are 
unintelligible to the average researcher. 
Therefore, creating a valid BIDS dataset from 
DICOM requires specialized software and domain 
expertise. Fortunately, a software tool called 
dcm2niix [28] is capable to converting DICOMs 
into the NIfTI format required by BIDS, while 
also automatically parsing data from DICOM 
headers and generating the JSON files for BIDS. 
Using the dcm2niix tool in conjunction with the 
automated ‘MR image data set’ type classification 
from MRIO, it is possible to automatically 
generate valid BIDS datasets from an unsorted 

DICOM directory (Figure 4), greatly reducing the 
time and effort and allowing researchers to easily 
process their data using BIDS-apps. 

4. Discussion 

Our work using the ‘image data set’ and 
‘image data set analysis’ classes helps harmonize 
large datasets in biomedical imaging in several 
ways. It is possible to automate MRI scan 
classification using either the HermiT reasoner or 
a machine learning model to predict the types of 
‘MR image data set’ present in datasets of 
unsorted DICOMS. It is then possible to 
automatically assign programs to analyze the 
newly annotated ‘MR image data sets’ according 
to the relevant ‘image data set analysis’ classes. 
Furthermore, these ‘MR image data set’ classes 
can help transform unsorted DICOM directories 
into standard formats such as the BIDS 
specification. 

In addition, our inclusion of ‘brain region atlas 
image data sets’ provide a template for canonical 
images of the human body and its anatomy, 
allowing for annotation of biomedical imaging 
data according to the body part scanned. We have 
used the Uberon [22] anatomy ontology in our own 
work to annotate the results of an ‘image data set 
analysis’ according to the URI of the anatomical 
brain region they pertain to. 

We have also developed an ‘image 
segmentation map’ subclass that can be used for 
annotating datasets used for machine learning and 
computer vision. This utility extends biomedical 
imaging and reflects the term’s general usability.  

4.1. Limitations 

The ‘image data set’ class, its children, and the 
‘image data set analysis’ class all originate from 
MRIO, which is an application ontology focused 
primarily on neuroimaging in MRI. As such, 
future work will need to be done to include 
additional biomedical imaging modalities such as 
CT and PET. However, the high level ‘image data 
set’ class is broad enough that these can easily be 
added. 

Additionally, there is an editor’s note to ‘data 
set,’ the parent class to ‘image data set’ that states: 

2009/10/23 Alan 
Ruttenberg. The intention is 



that this term represent 
collections of like data. So 
this isn't for, e.g. the whole 
contents of a cel file, which 

includes parameters, 
metadata etc. This is more 

like java arrays of a certain 
rather specific type  

However, it can be argued that the data 
captured in a DICOM is a collection of like data 
all describing the same process of acquiring a 
biomedical image. Or it may simply be that 
‘image data set’ belongs under ‘data item’ 
(IAO:0000027) rather than ‘data set.’ This is an 
issue that demands further discussion with the 
OBI Consortium to resolve. 

5. Conclusion 

Here we presented the ‘image data set’ class, 
along with the ‘image data set analysis’ class, 

which we have developed to capture the processes 
of acquisition, annotation, and analysis of 
biomedical imaging data in an effort to better 
harness the vast amount of untapped imaging 
datasets. We also demonstrated several ways we 
have been using the ‘image data set’ class with 
MRIO to facilitate our work with large public data 
sets and real world imaging data. 

The ontology and related scripts are publicly 
available with CC-BY 4.0 licensing at 
https://github.com/Buffalo-Ontology-
Group/MRI_Ontology. 
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7. Figures and Tables 

Table 1 
Higher-level terms  

Label Definition 

'image data set' 

A data set that is comprised of structured measurements about 
some entity and its associated metadata using pixels (2D), voxels 
(3D), or an arbitrary number of dimensions. An image data set can 
be the source from which an image is produced. 

'raw image data set' An image data set that encodes measurement values produced by 
some instrument before undergoing a data transformation. 

'computed image data set' An image data set that is the output of an image data set analysis. 

'brain region atlas image 
data set' 

An image data set consisting of values computed from multiple 
image data sets encoded to represent the spatial location of 
individual functional or structural regions of a canonical brain. 

'image segmentation map' 

An image data set of integer values in which each value corresponds 
to some shared characteristic or computed property. The values 
often belong to a group of pixels or voxels that share the same 
characteristic, such as a tissue type or anatomical region. 

'image data set analysis' 
The process of deriving a data item from an image data set using 
computer algorithms. The produced data item can be an image data 
set, data measurement, or any other data item. 

 



 

 
Figure 1: An overview of the acquisition of a ‘magnetic resonance image data set.’ 

 

 
Figure 2: An overview of the ‘image data set analysis’ process. 
 
 
 



 
Figure 3: An example of the automate analysis assignment script 

 

 
Figure 4. An example transformation of an unsorted DICOM directory into a BIDS dataset 
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