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Abstract

Natural language processing models have
emerged as a solution to manual curation for
fast and automated annotation of literature
with ontology concepts. Deep learning archi-
tectures have particularly been employed for
this task due to increased accuracy over tra-
ditional machine learning techniques. One of
the greatest limitations in prior work is that
the architectures do not use the ontology hi-
erarchy while training or making predictions.
These models treat ontology concepts as if
they were independent entities while ignoring
the semantics and relationships represented in
the ontology. Here, we present deep learning
architectures for ontology-aware models that
use the ontology hierarchy for training and
predicting ontology concepts for pieces of text.
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We explore the choice of three embeddings -
CRAFT, GloVe, and ELMo to understand the
impact on prediction performance. We evalu-
ate our models using F1 and Jaccard semantic
similarity and show that our ontology aware
models can result in 2% - 10% (depending
upon choice of embedding) improvements over
a baseline model that doesn’t use ontology hi-
erarchies.

1 Introduction

Knowledge representation using ontologies has in-
creased computational access to scientific data by mak-
ing it possible to integrate, query, and run large-scale
analyses on biological data. Computational analy-
ses such as hypothesizing the genetic bases of evo-
lutionary transitions to predicting gene functions to
understanding rare human diseases are made pos-
sible by the availability of bio-ontology annotations
[MBL+15, GKM+15]. These annotations are often the
result of manual curation of literature - a slow and te-
dious process that is unscalable to the rapid pace of
scientific publishing [DDI+15].

Natural language processing (NLP) methods are
one way to automate the manual curation process in an
attempt to create techniques that can “read” and an-
notate biological literature with ontology concepts in
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a fast, accurate, and scalable fashion. NLP techniques
for automated ontology curation began with the use
of traditional machine learning methods, rule based
learning, lexical, and syntactic methods [BM18]. With
limited accuracy, the focus has currently shifted to us-
ing deep learning for the task of automated ontology
curation [MBM18, MSM20a].

Deep learning architectures have gained popularity
in several areas such as image processing, audio analy-
sis, etc, but especially so for text analysis. In ontology-
based NLP tasks, deep learning models have been
applied to named entity recognition (NER), named
entity normalization (NEN), and relation extraction
[SJC+22, YRSE20, XLS20]. NER focuses on identi-
fying entities from unstructured text such as scientific
literature while NEN approaches focus on linking the
entities to unique concepts such as terms in an on-
tology. Relation extraction tasks focus on identifying
relations between the identified ontology concepts and
enable automated creation of structured hierarchies.
Several deep learning models such as Long Short Term
Memory (LSTM), Gated Recurrent Units (GRU), Re-
current Neural Networks (RNN), etc. have been em-
ployed for NER and NEN tasks with varying levels of
success. In prior work, we evaluated several existing
deep learning models and developed new architectures
based on Gated Recurrent Units [MBM18, MSM20a].
While the models presented were successful at per-
forming NER of ontology concepts from text, they
lacked awareness of the underlying ontology hierarchy.
It is critical for ontology-based information retrieval
systems to know the ontology structure and relation-
ships so that they can make intelligent predictions for
concepts that take into account patterns learned from
the training data as well as semantics embedded in the
ontology.

The key difference in traditional information re-
trieval vs. ontology-based information retrieval is the
possibility of partial success. Traditional information
retrieval systems are evaluated based on whether the
target information is retrieved (success) or not (fail-
ure). In contrast, ontology-based information retrieval
systems are evaluated based on three possibilities: ac-
curate retrieval (success), inaccurate retrieval (failure),
or partially accurate retrieval (partial success).

If a model accurately predicts the ontology concept
from the gold standard data, it is counted as success
and is scored a 1. If the model fails to predict any on-
tology concept, it is counted as failure and is scored a 0.
If the model retrieves an alternative ontology concept
from the one in the gold standard (partial success),
the model is scored depending on how semantically
similar the retrieved concept is to the true concept.
Intuitively, the most semantically similar concept for
the true concept would lie in the near vicinity (such as

a sibling, or a parent). Thus, it is important for the
model to be aware of the ontology hierarchy to be able
to make intelligent predictions in cases when it misses
the actual concept. The goal of intelligent concept
annotation presented in this study is to maximize ac-
curate retrieval rates and subsequently maximize par-
tial accuracy in cases where complete accuracy is not
achieved thereby improving overall accuracy.

This nuance of ontology-based concept retrieval
means that the first goal of these models is to pre-
dict the true concept. If the first goal is not achieved,
the model should aim to predict the most semantically
similar concept to the truth so as to maximize the par-
tial accuracy score. The ontology hierarchy contains
valuable information regarding the semantics embed-
ded in the ontology. This crucial information has been
ignored in past work resulting in ontology recognition
models that are not fully aware of the ontology se-
mantics. Here, we present intelligent deep learning
architectures that are ontology-aware and use the hi-
erarchies embedded in the ontology to improve concept
prediction accuracy.

Gold standard corpora annotated with ontology
concepts are necessary for training and evaluating nat-
ural language processing models. Training deep learn-
ing models particularly requires high quality training
datasets. The Colorado Richly Annotated Full Text
Corpus (CRAFT) [BEE+12] is a widely used training
resource for automated annotation approaches. The
current version of the CRAFT corpus (v4.0.1) provides
annotations for 97 biological/biomedical articles with
concepts from 10 ontologies including the Gene Ontol-
ogy (GO).

2 Related Work

The majority of work in the areas of natural lan-
guage processing techniques for ontology-based con-
cept recognition is aimed at predicting GO concepts.
This is understandable since the GO is one of the most
widely used bio-ontologies.

In a previous study [MBM18], we presented a deep
learning architecture that used multiple GRUs with
a character and word based input. The model was
compared to seven models from existing work us-
ing the CRAFT corpus as a gold standard. Results
showed that our GRU-based multi-pipeline model out-
performed prior models such as LSTMs, RNNs, etc.
This work was limited to predicting unigram annota-
tions and did not take into account the rich semantic
information in ontology hierarchies. Subsequent work
[MSM20a] from our group improved on this by expand-
ing the types of annotations predicted and by incorpo-
rating semantics from ontology subsumption into the
prediction. Surprisingly, we found that GRU based



models consistently outperformed the commonly used
LSTM based architectures. We developed a rudimen-
tary approach to incorporate ontology hierarchy into
prediction by generalizing the training data to different
levels in the ontology using subsumption reasoning and
running independent models on the different datasets.
The approach only resulted in a modest improvement
in performance [MSM20a].

Most recent publications in this area have separated
the ontology annotation task to two sub-tasks - 1) span
detection: detecting the part of text that corresponds
to an ontology concept, and 2) concept normalization:
identifying the ontology concept most appropriate for
the identified piece of text [BHB+21, HBHH19]. Using
the CRAFT corpus as a training set, the study reports
that Bidirectional encoder representations from trans-
formers (BERT) resulted in the best performance (0.81
F1) for the span detection sub-task.

Using similar approaches, [FCR19] compared the
performance of an LSTM model with BERT. This
study divided the ontology annotation task into span
detection and named entity normalization (NEN).
This step enables the models to predict concepts that
might not be seen in the training data. Note that this
system currently cannot handle sophisticated annota-
tion formats in the CRAFT corpus.

The application of deep learning architectures such
as RNNs and LSTMs has also been explored for the
task of relationship extraction between ontology con-
cepts [SLC21]. Sousa et. al. discuss neural network
models to perform text mining tasks on data struc-
tures such as ontologies. Biological annotation tools
such as Textpresso [MKSA04] conduct automatic cu-
ration by automatically extracting ontological entities
and the relations between them. Similarly, other stud-
ies have facilitated relation extraction by creating gold
standard datasets such as BioRel [XLS20]. BioRel is
a large-scale dataset designed specifically for relation
extraction problems using Unified Medical Language
System as the source. Self attentive networks have also
been found to be promising and have been applied for
identifying drug-drug interactions, protein-protein in-
teractions, as well as for identifying relations between
medical concepts [YRSE20].

3 Methods

3.1 Training Dataset

This study used version v4.0.1 (https://github.
com/UCDenver-ccp/CRAFT/releases/tag/v4.0.1)
of The Colorado Richly Annotated Full Text Corpus
(CRAFT) [BEE+12], a manually annotated corpus
containing 97 articles each of which is annotated
to 10 ontologies. We selected GO annotations from
the CRAFT corpus as our training and testing set

because the largest number of annotations in CRAFT
are made using the GO.

3.2 Data Preprocessing

The first step is to preprocess each annotation in the
CRAFT into a format that can be used by the deep
learning models. The following preprocessing steps are
performed to translate annotations from the CRAFT
corpus to the desired input formats.

3.2.1 Sentence Segmentation and Tokeniza-
tion

Annotations in the CRAFT corpus are recorded via
character index spans that indicate the beginning and
end of an annotation. First, the segmenter splits the
text into sentences by accounting for sentence end
marks (such as periods, exclamation, question marks,
etc.) and then uses a tokenizer to split the sentences
into individual words (or tokens) by accounting for
word boundaries (such as space, hyphen, tab, etc.).

3.2.2 IOB Tagging

Each extracted word/token is mapped to a GO term or
an out-of-concept annotation. Each token is mapped
to one of the following three categories (T ): 1) GO to
indicate an annotation, ‘O’ for a non-annotation (out-
of-concept), and ‘EOS’ to indicate the end of sentence.

In some cases, a sequence of words/tokens is anno-
tated to a GO term. In these cases, we use the IOB
(Inside, Outside, Beginning) [RM95] standard. The
IOB format uses three prefixes to tag tokens in a sen-
tence: 1) ‘B-GO’ is used to specify the beginning of
the annotation, 2) ‘I-GO’ is used to map the tokens
following the beginning of annotation till the end, and
3) ‘O’ is used to map tokens that don’t correspond to
a GO term.

3.2.3 Annotation Formats

Sentences in the CRAFT corpus are annotated fol-
lowing a set of annotation formats and guidelines
as detailed in https://github.com/UCDenver-ccp/

CRAFT/tree/master/concept-annotation. Below,
we describe how sentences that contain annotations in
different formats are represented in the IOB format.

• No annotations: Some sentences in an article
might not contain any annotations. In this case,
all tokens are represented by ‘O’ tags except the
ending character which is represented by ‘EOS’

tag.

• Disjoint annotations: A sentence might con-
tain one or more annotations that don’t overlap in
terms of annotation span. In this case, all tokens



not corresponding to an annotation are tagged
with O tags. The end of sentence character is
represented by EOS tag. Tokens that mark the
beginning of an annotation are marked with a B-
GO:term followed by I-GO:term to represent
subsequent tokens corresponding to an annotated
phrase.

• Overlapping annotations: Here we show an
example of a sentence containing annotations with
overlapping spans. In this case, a phrase (se-
quence of words/tokens) is annotated to a GO
concept, and a word or a sub-phrase within the
original phrase is annotated to a different GO con-
cept.

Sentence: “Having excluded a direct role in vesi-
cle formation and membrane fusion, annexin
A7 might act by its property as Ca2+-binding pro-
tein”

Annotations: {‘vesicle’ — GO:0031982; ‘vesicle
formation’ — GO:0006900}
In these instances, we make n copies of the sen-
tence where n is the number of different anno-
tations. Each copy contains a modified sentence
that represents the text needed to convey one of
the annotations. The above example is repre-
sented as two sentences with each sentence rep-
resenting one of the two annotations.

Sentence 1: “Having excluded a direct role in
vesicle and membrane fusion, annexin A7 might
act by its property as Ca2+-binding protein”

Annotations: {‘vesicle’ — GO:0031982}
Sentence 2: “Having excluded a direct role in
vesicle formation and membrane fusion, an-
nexin A7 might act by its property as Ca2+-
binding protein”

Annotations: {‘vesicle formation’ –
GO:0006900}
If a sentence contains a case of overlapping an-
notations and other disjoint annotations (non-
overlapping annotations), we create sentences
that capture the different variations of the over-
lapping annotations while keeping the disjoint an-
notations common.

• Multiple overlapping annotations: Sentences
can also have more than one phrase with sub-
annotations. In such a case, where there exist
m phrases with n1, n2, · · · , nm overlapping sub-
phrases, there will n1 × n2 × ...× nm copies with
all possible combinations of sub-phrase mappings.

Sentence: “Having excluded a direct role in vesi-
cle formation and membrane fusion, annexin

A7 might act by its property as Ca2+-binding pro-
tein.”

Annotations: {‘vesicle’ — GO:0031982; ‘vesi-
cle formation’ — GO:0006900; ‘membrane’ —
GO:0016020; ’membrane fusion’ — GO:0061025}
In this example, we have two instances of overlap-
ping annotations with two sub-phrase annotations
each. This sentence would be transformed to four
sentences that each represents a unique combina-
tion of annotations.

Sentence 1: “Having excluded a direct role in
vesicle and membrane, annexin A7 might act
by its property as Ca2+-binding protein.”

Annotations: {‘vesicle’ — GO:0031982; ‘mem-
brane’ — GO:0016020}
Sentence 2: “Having excluded a direct role in
vesicle formation and membrane, annexin A7
might act by its property as Ca2+-binding pro-
tein.”

Annotations: {‘vesicle formation’ —
GO:0006900; ‘membrane’ — GO:0016020}
Sentence 3: “Having excluded a direct role in
vesicle and membrane fusion, annexin A7
might act by its property as Ca2+-binding pro-
tein.”

Annotations: {‘vesicle’ — GO:0031982; ’mem-
brane fusion’ — GO:0061025}
Sentence 4: “Having excluded a direct role in
vesicle formation and membrane fusion, an-
nexin A7 might act by its property as Ca2+-
binding protein.”

Annotations: {‘vesicle formation’ —
GO:0006900; ‘membrane fusion’ — GO:0061025}

• Discontinuous annotations: Some sentences in
the CRAFT corpus contain discontinuous annota-
tions where non-consecutive words/tokens are an-
notated to a single concept, while tokens between
them are not.

Sentence: “Because the F7 is the most severely
affected allele, it is possible that the difference be-
tween the heart and kidney levels is due to a de-
velopmental delay in v/p formation.”

Annotations: “v formation” — GO:0097084

Here we see “v formation” is annotated to
GO:0097084, whereas “/p” is not. In such a case
we represent the sentence by removing the token-
s/words which were not annotated (“/p”). This
is done to represent the continuous span of the
phrase to GO term mapping.



Transformed Sentence: “Because the F7 is the
most severely affected allele, it is possible that the
difference between the heart and kidney levels is
due to a developmental delay in v formation.”

3.2.4 POS Tagging and Token Encoding

Following the tokenization and IOB tagging, we enrich
training data with parts-of-speech (POS) information
and a compressed character representation. POS tag-
ging looks at the contextual information of the word
based on the words surrounding it in a sentence or
a phrase. Here, we tag each token with 15 parts of
speech tags — adjective, adposition (such as - in, to,
during), adverb, auxiliary (such as - is, has done, will
do, should do), conjunction, coordinating conjunction,
determiner, interjection, noun, numeral, particle, pro-
noun, proper noun, punctuation, subordinating con-
junction, symbol, verb, other, space.

While the POS tagging looks at the word level rep-
resentation of the context, we also represent charac-
ter level nuances of a token using character encod-
ings. These encodings represent upper-case and lower
case characters with ‘C’ or ‘c’ respectively. Numbers
are represented using an ‘N’ and punctuation (such
as commas, periods, and dashes) are retained in the
encoding.

3.3 Deep Learning Architecture

After all the preprocessing steps described above are
complete, we develop multidimensional vectors for
each sentence of the articles. Our deep learning ar-
chitecture (Figure 1) consists of three key components
— 1) input pipelines; 2) embedding/latent representa-
tions; and 3) a deep learning model.

Figure 1: Workings of a Gated Recurrent Unit based
model with an example input sequence

3.3.1 Input Pipelines

The neural architectures in this study are designed to
use fixed size inputs. We explored the frequency distri-
bution of words in the CRAFT dataset to determine
the size required for the architectures (71 is 3-SD).
Each sentence was transformed to a size of 71 words
based on the third standard deviation of the word fre-
quency distribution. Sentences with lower number of
words are padded with the token <PAD> and ones with
higher number of tokens are truncated to a length of
71.

We provide three inputs for each word in a sentence
- 1) token (Xtoken

train ), 2) character sequence (Xchar
train), 3)

parts-of-speech (XPOS
train).

The token (Xtoken
train ) input, is a sequential tensor

consisting of 71 tokens, where each token is repre-
sented with a high dimensional one hot encoded vec-
tor (for 34,164 unique words/tokens present within our
corpus vocabulary). Similarly, the character sequence
(Xchar

train) is also a sequential tensor consisting of charac-
ter sequences present in a word/token. Next we pro-
vide POS tags that indicate the type of words in a
sentence (XPOS

train).

3.3.2 Embedding/Latent Representations

Our architecture utilizes embeddings to provide a
compressed latent space representation for very high
dimensional input components. For example, the one
hot vectorization of an individual word has a dimen-
sionality of 34,166. In order to represent them suc-
cinctly and with contextual representation, we evalu-
ated three different approaches for embeddings (shown
as Emb. in Figure 1) - 1) CRAFT 2) Global Vec-
tors for Word Representation(GloVe) , 3) Embeddings
from Language Models (ELMo).

The supervised embedding is a bottleneck layer
which learns to map the one hot encoded input into
a smaller dimensional representation. The resulting
embedding learns the mapping of the IOB tags to the
tokens of the sentences. The layer is used with to-
ken inputs (Xtoken

train ), character sequences (Xchar
train), and

character representation (XPOS
train), each of which have

very high dimensionality in their original vectors.
We also evaluate GloVe [PSM14] and ELMo

[PNI+18] pretrained embeddings for the Xtoken
train in-

put. GloVe uses word co-occurrence statistics to learn
the embeddings. In comparison, the embeddings in
ELMo are learned via a bidirectional language model
where the sequence of the words are also taken into
account. While ELMo and GloVe are large pretrained
(on external corpus) embedding models, we also eval-
uate the models performance using the CRAFT em-
bedding. Here we use a embedding layer which is co-



trained during the model training, where each word is
mapped to an embedding vector which is a continuous
vector of 100 dimensions. Initially the embedding val-
ues of the layer are randomly initialized, but are then
optimized for word lookup during the model training
for the objective of ontology annotation.

3.3.3 Deep learning model

Our architecture utilizes a bi-directional gated recur-
rent model (Bi-GRU). Traditional Recurrent Neural
Networks suffer from short term memory that isn’t
ideal when training using long sentences. In long se-
quences of words, these models will forget patterns
from the beginning of the sentence as they move fur-
ther into the sentence. The gradients computed during
back propagation gradually shrink causing small gra-
dients from earlier parts of the inputs that don’t con-
tribute to learning. This problem known as the van-
ishing gradient problem makes it ineffective for RNNs
to learn from long pieces of text.

Gated Recurrent Units [CVMG+14] employ two
gates a reset gate and an update gate to address the
vanishing gradient problem. The reset gate handles
short term memory while the update gate handles long
term memory. The reset gate allows the user to spec-
ify how much of the prior states to remember. The
combination of these two gates enables GRUs to re-
tain information longer without diluting their impact
to learning.

The choice of GRUs for our architecture is not arbi-
trary. We conducted an evaluation of RNNS, LSTMs,
and GRUs in prior work [MSM20b, MBM18], and
found that the GRU based architecture performed the
best.

Figure 1 shows a snapshot of the model architecture
in the context of training and inference of a sample set
of tokens. Here we show the training/inference on a
sequence of tokens “vesicle”, “formation”, and “in”
(which are parts of a sentence) as it is evaluated by
the network. Each token is preprocessed to obtain the
representative tensors – Xtoken

train , Xchar
train, X

POS
train which

are passed through embedding layers, where the em-
bedding of Xtoken

train can be a complete pretrained ar-
chitecture such as GloVe or ELMo. The embedding
of Xchar

train is also passed via a Bi-directional GRU (Bi-
GRU) layer. All of the resulting values are concate-
nated to be processed via the main Bi-GRU layer.
The bi-directionality allows the architecture to learn
the preceding and succeeding sequence patterns within
the sequence tokens in a sentence. The states of both
the GRU layers are then concatenated to provided to
the final dense layer, which is the softmax classifier of
the architecture, and predicts the associated IOB tags
for the input tokens. Here we select the tag with the
highest probability for each of the tokens.

Architecture hyper-parameters, which include su-
pervised embedding shape ({20, 50, 100, 150, 200}),
dropout ({01, .2, .3, .5, .7}), number of epochs ({50,
100, 200, 300}), and class weighting, were evaluated
using a grid search approach. We used Adam [KB17]
as our optimiser for all of the experiments with a de-
fault learning rate of 0.0001.

We also compare our approach to large scale masked
language models such as BERT. Bidirectional Encoder
Representations from Transformers (BERT) [DCLT18]
is a popular attention model developed by Google.
BERT has rapidly become the state of the art in sev-
eral applications, especially those involving text pro-
cessing. We compared the best model from our exper-
iments above with BERT.

3.4 Target Vector Representation

Target labels to be predicted are typically provided as
a one-hot encoded vector where the size of the vector
equals the number of output labels. In our case, the
output labels correspond to the set of all GO terms.
Typically, the value of the GO term to be predicted is
set to a 1 and the value of all other GO terms is set
to 0. This approach of representing the target labels,
however, does not allow the model to learn the ontol-
ogy hierarchy nor does it allow for semantically similar
partial predictions.

In this study, we use Jaccard semantic similarity
scores as values in the label vector. The value of the
GO term to be predicted is set to 1 and the value of
all other GO terms in the vector is set to the Jaccard
similarity score between that term and the GO term
to be predicted. This representation allows the model
to identify the target GO term followed by “similar”
GO terms that are partially accurate predictions. This
output label representation also helps the model opti-
mize the weights to target more than one prediction
label. We also add in a weighting factor β to modu-
late the effect of Jaccard similarity score on the target
vector. So for each output tag, the representation is
as follows:

Y =

{
l = [1], if T == T̂
l = [β ∗ Jsim(T , T̂ )], if T ̸= T̂ & T ̸= O

(1)

where, Y is the final target vector, l is the label
for the word, T is the ground truth tag, T̂ is the pre-
dicted tag, β is the Jaccard weight, and Jsim is the
Jaccard similarity between T and T̂ . The target vec-
tor Y is computed by comparing the true tag (T ) with

the possible tags (T̂ ), where if the T == T̂ == O (no
annotation) OR a GO annotation then the value is set
to 1. Else, if the ground truth tag (T ) is a GO term,
then we calculate its Jaccard similarity to all possible



GO terms and create the target vector by weighting
it with β. We evaluate β values between {0, .25, .5,
1}, where a β value 0 indicates the traditional one-
hot vectorization (baseline in results) and a β value 1
indicates the full Jaccard score taken into account.

The Jaccard similarity (Jsim) of the ground truth

concept T and a predicted concept T̂ [PFF+09] is cal-
culated as:

Jsim(T , T̂ ) =
|S(T ) ∩ S(T̂ )|
|S(T ) ∪ S(T̂ )|

(2)

where, S(T ) is the set of ontology subsumers of T .
Specifically, Jsim of two concepts (A, B) in an ontol-
ogy is defined as the ratio of the number of concepts in
the intersection of their subsumers over the number of
concepts in their union of their subsumers [PFF+09].

3.5 Performance Evaluation Metrics

The performance of each experiment is evaluated using
a modified F1 score. The model is tasked with predict-
ing non-annotations (indicated by an ‘O’ tag) or anno-
tations (indicated by a ‘GO’ tag). Since the majority
of tags in the training corpus are non-annotations, the
model predicts them with great accuracy. In order
to avoid biasing the F1 score, we omit accurate pre-
dictions of ‘O’ tags from the calculation to report a
relatively conservative F1 score.

F1 quantifies whether the model’s prediction
matches the actual annotation exactly. However,
ontology-based prediction systems need to be evalu-
ated while accommodating partially accurate predic-
tions. For example, a model might not retrieve the
exact ontology concept as the gold standard but a re-
lated concept (sub-class or super-class) achieving par-
tial accuracy. Semantic similarity metrics [PFF+09]
designed to measure different degrees of similarity be-
tween ontology concepts can be leveraged to measure
the similarity between the predicted concept and the
actual annotation to quantify the partial prediction
accuracy. Here, we use Jaccard similarity which mea-
sures the ontological distance between two concepts,
to access the models performance for partial similar-
ity between the predicted tags and the actual ground
truth.

3.6 Top two predictions

The model makes predictions for each GO instance
in the test set. These predictions are expressed as
a probability vector where each potential GO term
is assigned a probability. When evaluating the per-
formance of the model, we typically pick the GO
term with the highest probability and use that as the

model’s prediction. However, it is typical in NLP eval-
uations to consider the top 2, 5, and even 10% of prob-
abilities in evaluating the performance of the model
[BHA+21, JK19, PSY+18]. In one of our prior works,
we showed that using the top 2 probabilities can result
in a substantial increase in accuracy [MSM20a]. Here,
we use the same practice of considering predictions
with the top 2 probabilities to evaluate our model’s
performance.

4 Results and Discussion

The CRAFT v4.0.1 dataset contains 18,689 annota-
tions pertaining to 974 concepts from the three GO
sub-ontologies across 97 articles. The majority of
these concepts belong to Biological Process followed
by Molecular Function, and Cellular Component.

First, we look at a comparison of the three embed-
dings tested - CRAFT, GloVe, and ELMo. We es-
tablish a baseline performance by training the model
with a binary target vector and not using Jaccard sim-
ilarity scores. This baseline can help understand the
performance improvements resulting from training the
model with semantic similarity scores. Row 1 of Table
2 shows the baseline F1 and Jaccard similarity with the
three embeddings. We see that ELMo results in the
highest F1 (0.79) and the highest Jaccard score (0.82).
Considering the top 2 predictions increased the F1 to
0.86 and the Jaccard score to 0.90.

We tested the prediction performance with four dif-
ferent settings of the weight parameter β (0.25, 0.5,
0.75, and 1). We found that the best performance was
obtained with a weight of 0.5 (Row 2, Table 2). In
both the baseline and the ontology aware model, the
ELMo embedding outperforms the other two embed-
dings across all metrics.

The impact of training the model with the ontology
hierarchy is starkly noticeable in both F1 and Jac-
card across all three embeddings. The highest im-
provement is observed for CRAFT embeddings (8%
F1, 10% Jaccard) followed by GloVe (6% F1, 8% Jac-
card). ELMo showed modest improvements between
the baseline and the ontology aware model (2% F1 and
Jaccard). These results suggest that intelligent mod-
els that are trained with the ontology hierarchy make
more accurate predictions as compared to those that
are trained just on the target ontology concept.

We present a few examples of instances where the
model’s predictions match the ontology term in the
gold standard as well as instances where the model
generates false negatives or partially accurate annota-
tions (Table 1).

We also compare the transformer based BERT
model which has been shown to perform state of art
results in a large of named entity recognition and other



Phrase Gold standard annotation Model’s annotation
Accurate annotation prediction

endogenous intracellular GO:0005622 GO:0005622
cell divisions before developmental GO:0051301 GO:0051301

Partially accurate annotation prediction
proper rhabdomere morphogenesis GO:0061541 GO:0031069

auto regulation of blood flow GO:1903522 GO:0008217
Inaccurate annotation prediction

polysomal -associated RNA-binding protein GO:0005844 ‘O’
protein degradation GO:0030163 ‘O’

Table 1: Examples of accurate, partially accurate, and inaccurate annotation predictions.
NLP tasks. Results show that our ontology aware
model outperforms BERT in both F1 and Jaccard by
5%. The baseline model that shows a lower perfor-
mance than the ontology aware model also outper-
forms BERT in our test.

It is interesting to see that a generic ELMo em-
bedding performs better than a domain specific em-
bedding such as CRAFT. However, it is to be noted
that the ELMo and GloVe embeddings are pretrained
on large corpora. They are computationally more ex-
pensive to inference during model training and even
more expensive to develop. In contrast, CRAFT uti-
lizes a simple embedding layer with significantly lower
number of parameters making it more accessible for
scientists.

Prior approaches in the area of automated ontology
annotation treated ontological concepts as a binary
outcome. In our approach, the Jaccard similarity tar-
get vector teaches the model to understand the latent
semantic relationships between the GO concepts.

5 Conclusion

This work introduced approaches for incorporating
the ontology hierarchy to make more accurate con-
cept predictions for text. We show that our intelligent
ontology-aware model results in higher annotation ac-
curacy over a naive baseline model. This work paves
the way for more sophisticated approaches for enabling
deep learning architectures to gain understanding of
the ontology space and semantics.

6 Data and Code Availability

The data used in this work is publicly avail-
able at https://github.com/UCDenver-ccp/CRAFT/

releases/tag/v4.0.1. The code used to generate
the results can be found at https://github.com/

prashanti/intelligentannotation. The code is
archived on Zenodo (doi: 10.5281/zenodo.6964353).

Model Embed. F1 Jaccard
Top
two
F1

Top
two

Jaccard

Baseline
CRAFT 0.74 0.75 0.82 0.86
GloVe 0.75 0.76 0.832 0.87
ELMo 0.79 0.82 0.86 0.90

Ontology
aware
model

CRAFT 0.80 0.83 0.86 0.91
GloVe 0.79 0.82 0.86 0.90
ELMo 0.81 0.84 0.87 0.92

Table 2: Comparison of model performance at the
baseline and after using the ontology hierarchy for
training. Note: F1 scores were modified by omitting
accurate predictions of non-annotations (indicated by
‘O’) for a conservative estimate of performance on an-
notations only.

Model F1 Jaccard
BERT 0.77 0.80

Ontology aware model (ELMo) 0.81 0.84

Table 3: Performance comparison between our best
model and BERT. Note: F1 scores were modified by
omitting accurate predictions of non-annotations (in-
dicated by ‘O’) for a conservative estimate of perfor-
mance on annotations only.
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