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Abstract		
The work discusses a novel approach to modelling supply chain networks that makes use of centralized 
approach on the supply centers and emergent behavior on the separate nodes of the network. This find its 
usage in the tasks of big data modelling and supply chain problems, which came of interest in recent time 
because of emergence of such area as e-commerce which is empowered by data driven technologies, such 
as data mining, intelligent data processing and AI. To address this task, we suggest: 1) approach to 
representation of network dynamics of separate supply chain nodes; 2) utilizing special methods and 
algorithms from theory of automated control, in particular model predictive control. In order to study this, 
we made an overview of the problem, suggested different levels of detail of our model, starting from the 
most simple ones, gradually approaching to more complex ones by engineering features of the models. We 
also addressed the issue of three-dimensional prediction horizon, that appears when modelling behavior of 
supply chains within spatial (node-wise) and temporal dimensions. To address this, we suggested to 
decouple the problem into separate dimensions, solving it accordingly by a set of methods, in particular, 
optimal model predictive control, radio frequency distribution problem, multiple travelling salesman 
problem and some others. The optimal model predicting control, devised in the paper, takes benefits from 
model predictive control method by adding an optimal control and constraining the system by a set of 
adjacent equations and Pontryagin maximum principle. As a result, we constructed few test models to 
study supply chain behavior in time, utilizing different models, like model predictive control, optimal 
predictive control and neural optimal differential controllers. As a result of conducted study, we got 
experimental results as well as analyzed an overall behavior of the model in terms of its stability, 
controllability and overall accuracy of the model. The experimental studies allow getting some useful 
recommendations to represent supply chain networks as well as advantages and disadvantages of different 
types of controllers, that define the behavior of nodes and the supply chain network in time.  
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1. Introduction	

The main goal of the study is focused into studying the underlying nature of decentralized supply 
chain networks and their behavior, including the supply chain analysis. There are a few problems to 
overview in this chapter of the paper, in particular: 

1. how the agents in the big data systems interact one with another (RQ1)? 
2. how actions of each agent affect other agent and vice versa (RQ2)? 
3. how the agents interact with the environment (RQ3)? 
4. how one does describe the network structure and its behavior (RQ4)? 
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5. Summarizing these questions, to address them, let’s analyze them one by one. 
 
On RQ1, if analyzing the big data decentralized systems, one can observe, that the agents act in 

independent, or in other terms, emergent behavior, which makes actions of each actor likely 
unpredictable, if observed per each actor only. This makes creating policies, business decisions and 
strategies of stakeholders and owners of the supply chains as well as data brokers on such low level 
very uncertain which makes, on one hand the overall actions and responses quite unknown, adding 
a lot of risks in operating such systems, on one hand, and on another the problem of scalability of 
such systems in time and scalability of responses, making these systems to respond to user actions 
accordingly, depending on overall power of requests or density of these requests if you wish. To 
address this issue, one has to analyze the behavior of the system and agents of the system either on 
system level or in simple case whereas all interactions are isolated with no node-to-node 
interactions. 

On RQ2, we have to admit, that despite the task of isolating informative features and observing 
them either on large or small scale, one may notice that all interactions between agents indeed are 
interconnected. This is presented in self-reinforcing effects, that include the network and 
synergistic effects [1-3]. The network effects describe how a network structure (nodes) can multiply 
actions of each other by multiplying the effect of the whole network over the sum of separate 
nodes. On the other hand, synergistic effects mean how actions of different actors within a system 
amplify actions of other actors, making, as a result, the overall power of interaction bigger than 
separate actions of actors, as if they acted independently. In overall, the network and synergistic 
effects may affect drastically the efficiency of the system, and they should be carefully considered 
and studied. 

On RQ3, as a continuation of the RQ2, we must ask own self, what is important, the actions of 
separate agents or reaction of the environment. If these are the first, then the policy of the system is 
likely to be user driven, if the second, then it is likely system driven by policies, studied on overall 
behavior of agents and their interaction with the environment [4]. To do this, we can focus on 
approaches that are accepted and well known within the scientific community. One can classify 
them into separate categories, that study the system depending on 3 main criterions - first is how 
active the big data system compared to the agents of the system (criterion A), second is how active 
the agents in the system (criterion B) and how subjective factors - e.g. personal thoughts affect the 
system behavior (criterion C). By utilizing these criterions, one can define categories of big data 
systems models [5-8]: 
• models based on physical and mathematical modelling (criterion A is bigger than B or C), in 
particular feedback loop, avalanche or key break effect models; 
• models mostly economical by nature (criterion A and B are greater to C), which consist of 
Matthew effect models, game theory models and some other; 
• models based on population models or models of spreading the diseases (criterion B is 
greater than A and C), for instance Frank’s Bass model or any similar models; 
• models that describe psychology or behavior of the large social groups (criterion C is 
greater than A or B), for instance Robert Gibrat’s model or bandwagon effect.  
• Summarizing these questions, to address them, let’s analyze them one by one. 
• After summarizing all of this, we can then step to RQ4, which asks us how the network 
structure is designed. For stakeholders or big business, the model is defined by their business 
centers and the dependent centers behavior is dictated by the policy or business strategy of the high 
tier centers. However, due to re-emergence of decentralized supply chain networks, one can assume 
that lower-level centers can make informed decisions based on the flow of information available on 
their level. It means that while the supply chain network can be centralized by design, it still can 
have features of decentralized networks, since the network defined rather by its behavior than by 
its design. Because of that, we want to focus our study mostly on the systems with hybrid behavior, 



which in turn allows us to combine the advantages of centralized and decentralized approaches in-
one. 
• Based on the answers to RQ1-RQ4, we can formulate the goals of the study, in particular in 
task of studying the model of the big data, which has a hybrid structure, to suggest models that 
describe behavior of such systems as well as to analyze model decision made by the suggested 
models in context of the task of optimization of flow of supply in supply chain networks with 
decentralized structure in time. To do this, we suggest solving such tasks: 
• to suggest a model of supply chain network, that describes the interaction of agents with 
environment and supply chain network; 
• to suggest a model of decentralized supply chain network, which utilizes a hybrid approach, 
using centralized structure with emergent behavior of separate nodes; 
• to compare the suggested model based on some already developed models in case of low 
level (one node) and system level (supply chain network) 
• to suggest an approach to simplify the model in terms of its complexity and time needed to 
find optimal model solutions and overall formulations 

2. Methodology 

To assess the result of the research, we have to suggest some methods, that may fit our purpose. 
Based on preliminary analysis (see RQ3), we can say, that models defined by the mathematical 
apparatus, and considering the system active over the agents are likely to be simpler to implement. 
However, we must take into account the simplicity vs accuracy tradeoff. Because of that we also 
must consider how the physical elements present in the decentralized network such as supply 
stores, distribution centers etc., and virtual elements like data centers and analysis software interact 
one with another. If classifying the models by their features, we can say that physical models 
somehow may lack features as the economic, social or human oriented models for instance [9], but 
in overall allow to narrow the simulation environment by the system itself. On the other hand, the 
economical models are more balanced, in terms of representing the users as well as the big data 
system as active elements. The population models are shifted more towards users or agents and 
consider them the only active elements, so as the system reactions are derived only as a 
consequence of independent actions of separate users. The social and psychological models increase 
this to a bigger extent, focusing on a will and desires of the users, rather than a “game” played 
versus the environment, which is the big data system in our case. 
To assess this problem, we devise to focus mostly on the physical or mathematical models, so as we 
can develop them more easily and have a bigger control over the environment by integrating 
strategies to counter synergistic effects in the model by countering them using adaptive control of 
the decentralized supply network. To do this, we have to assess the amount of disruption or 
disturbance created by agents and to compensate it via means of the models we do consider. In this 
case we can observe this as sort of feedback loop [10], whereas the agents make some actions and 
the system responds to their action, feeding the input to compensate the difference, using from the 
automated control theory thereof. 

 
3. Identifying the Parameters of the Model 

To create a model, at first, we must define the set of parameters within a decentralized supply 
network. To do this, we may analyze the interactions within a system. This can be explained by a 
simplified model, which connects the utility and usefulness of the system with actions of the agents 
in the system. The agents create some interactions that generate feedback, communication, 
engagement and different type of interaction of the system. 



Based on these general considerations, we can assume that there is a set of controlled as well as 
non-controllable parameters within a system. As a result, a parameter set can be defined as a 
following tuple: 

 
P=<F, E, T, S, V>. (1) 

 
 

 Whereas P is a set over parameters F, E, T, S, V which define own type of action or interaction; F 
defines the feedback provided by agents, and basically it is a positive feedback value, which is 
passed to the input of the system, which contributes to new actions of users and control the amount 
of the input disruptions; E, on its hand is a level of engagement or interest of the agents that define 
the likelihood of the interaction, made by their own, in simple words it can be used as a measure of 
usefulness or utility of the system overall; T is an amount of trust the agents put into system 
decisions and overall trustworthiness of the algorithms that drive the system; S is an amount of user 
satisfaction, which defines how well the system is answering their needs; V is for value concept 
from 4V concept (value, volume, velocity and veracity) from big data system which allows 
accounting for data value itself, basically similar to trustworthiness, but pointed to the users instead 
[11]. 
Obviously not all of these parameters can be controlled or observed, by the system, the P set or 
tuple defines the qualitative parameters of the system, when the quantitative parameters are ones 
that can be easily measured and monitored via the system [12]. 
These parameters can be separated into two big categories, which include user and system-
controlled factors, as well as derived factors (integral or differential characteristics): demand which 
shows how often the users interact with the system, connected with their specified needs for goods 
or services depending on the platform; supply, which shows how good the system can satisfy the 
needs of the users and can be considered literally the opposite of what the demand is. 
To add this all above, we can now introduce some other parameters as: volume or stocks, available 
at the warehouse as a reserve; resupply speed, which shows the highest momentary demand to 
supply in time; transaction quantity, which defines the overall number of interactions per user; 
transaction speed, which is the same as above, but divided by average time; ordering quantities - 
which is similar to demand, but is a cumulative sum of them; utility – the overall efficiency of the 
system. 
These parameters are very important, but in real time situations, one have to consider ones that can 
be utilized in some formulae or optimization procedures in real time scenarios [13]. 

4. A Model of Action and Reaction in a Potential Field of Forces 

To start a task, let’s consider a model of a node in a supply chain, that is affected by two actions - 
the action of the environment and the response of the system to such actions. To assess this, we 
may utilize some known models, that are used both in robotics and to describe actions in some 
kinematic systems. For, instance, here we suggest applying the approach to formalize interactions 
in manipulation systems, using a model of action and reaction in a potential field of forces. This 
model is quite known from theory of automated control as well as robotics to plan the movement of 
a manipulator system [14, 15]. 
We can utilize this approach by defining our key parameters, elements, as well as interactions: the 
network in the simplest one-chain case represents a motion planning system whereas the central 
node allows interpreting the central warehouse, whereas all child nodes represent the distribution 
centers of the low level. Approaching our task with such analogy, we can benefit from known 
model by utilizing it in the other area of research. 



Let’s define a general model first. Consider a model of a manipulator system (a node), that acts 
within a potential field of attractive and repulsive forces; to describe the model let’s introduce the 
potential field U, as well as Uatt and Urep that represent the attractive and repulsive potentials 
respectively. In this case, U can be defined as follows: 

att repU U U= + , 
(2) 

whereas 
21

2 attU k goal position= −
. 

(3) 

21
2 rep

i
U k position obstacle= −∑

. 

(4) 

where goal defines a target position of the manipulation system, position is a current coordinate 
and obstacle is a certain obstacle or place to avoid or to overcome. 
We can now narrow the general model into a narrow, partial case, where we consider actions in a 
decentralized supply chain network, in its node; to do this we can substitute some terms in previous 
equation, in particular replacing attractive and repulsive potentials with potentials of demand and 
supply – Ud and Us respectively. This overall allows us to define the relationship between supply 
and demand by the modified model of potential fields: 

d sU U U= + . 
(5) 

Since we operate slightly different values than physical attractive and repulsive forces, but 
quantitative characteristics of the system, such as supply and demand, we must modify the 
equations for the substituted values – Ud and Us: 

21
2d dU k G e= −

, 

(6) 

21
2s s i

i
U k e pδ= −∑

, 

(7) 

where the G term defines the goal of the system, that is represented by a desired amount of 
demand, e, on the other hand represents an epsilon value, which shows the amount of input 
disturbance on demand, and δ pi define the policy that restricts or suppresses some amount of 
demand to exclude the situation of infinite growth of supply. This substitution allows us to utilize 
the same principles that are used in a single chain in a manipulator system in the supply chain that 
is also represented by a single chain of sequential nodes. 

As a result, we can design a supply chain network as a composition of separate chains, that 
act simultaneously; because of that on each node as well as a separate chain we can define a 
separate controller, a chain of controllers as well as a network of controllers. Thus, in such a 
network, the controllers generate reactions on a specific event which is represented by the input 
demand disturbance and this reaction is measured as a change of supply on a fixed time step. This 
approach allows as not only to construct a model of a complex supply chain network, but also 
allowing to have independent network dynamics within a supply chain. 

5. A Model of a Node in a Supply Chain Using Model Predictive Control 

To assess the task of modelling the supply chains, we devise starting from the simplest models (one 
node) to more complex (a chain and or a network). In the case of single node system, one has to 
select a model which is best suited to fulfill such a task. Based on our overview done in the section 



Introduction, we may say that quite many models may fulfill such a task, for instance economical 
models, models from game theory, social models and physical models. Among these models, we 
considered that physical ones are more fitting our task, in particular models from theory of 
automatic control and robotics.  

Our model, suggested before, such as model of attractive and repulsive forces is quite promising, 
however, we think we can modify it or substitute by more advanced models, that take in account 
the reaction of the system and its feedback, which underscores the models based on a feedback loop. 
The benefit of this model that they introduce positive or negative control into input, depending on 
the value of the input disturbance and prediction of its changes based on the previous observations. 
This introduces time dynamics and allow accounting for changes in time, which is very important 
in modelling of such systems. 

To suggest a better analogy, we may consider 4 types of regulators, that are commonly used to 
control processes in dynamical systems of different nature, and based on theory of optimal control 
as well as robotics and theory of automatic control in general. These are neural regression model, 
proportional integral and differential controllers (PID), model predictive control (MPC) as well as 
neural optimal differential controllers (NDEC) [16].  

These models differ by their complexity as well as accuracy of their predictions in time. In 
general, the neural regression is a simple analytical function or regression constructed on the data, 
which consists of previous observations of the system in a fixed amount of time. While these 
models are simplest, they tend to overfit on data and work the best on typical situations, which may 
happen quite unlikely in big data systems, that have non-deterministic nature and unpredictable 
behavior of agents in the system. The PID regulators make some step forward, since they account 
for integral and differential parameters of the system, which allows accounting to some changes on 
short interval of time and being adaptive to typical trends such as growth or decline of the input 
parameters. However, they are not as accurate as MPC regulators, for instance. MPC regulator, on 
its hand includes as a partial solution a simple regulator, however, it defines an observation horizon, 
over which the control is performed as well as prediction horizon over which one can predict the 
change of parameters in time [17, 18]. It also includes optimization procedures (which will be 
discussed further), that enable near-optimal control of the variables in time. There are more 
advanced models, like neural-optimal differential controllers that combine features of neural 
regulators and model predictive control models in one: each step of prediction horizon is 
approximated by the neural regression, and its optimal solution is found by following an 
optimization procedure, in similar way, as done in MPC regulator, however these solutions are 
approximated with neural regressions. 
Because some models didn’t answer our requirements in terms of their stability and overall ease of 
implementation, we considered the MPC model as a prototype of the model of a node of a big data 
system, assuming that it has only one input and one output. In this case the model allows 
representing, a chain in a supply chain network separately and model spatial-temporal dynamics 
per node separately if needed. 

Let show a simple solution. The task is to find the optimal (minimal) solution for cost function J, 
based on overall costs that are comprised of ordering, delivery and storage on the fixed and defined 
prediction horizon N. Consider the objective function J: 

1

0
( )

N

k o k h
k

J U C Y C
−

=

= +∑ ï ï

, 

(8) 

whereas the terms Uk and Yk are column vectors of orders and available stocks (volumes of 
goods or services) on a given time step l, the cost vectors are defined as Co and Ch as cost per order 
and  storage of a single unit respectively. 

The objective function is bound by system dynamics constraint, which is denoted as follows 



 1    k k d kX X U D+ = + − , 
(9) 

where Xk+1 defines the state (state value) on a following step k +1 , Xk – on a current step and 
Ud is utility volume, and Dk demand value on K-th step respectively. 

The supply is constrained by the expression 

 k kY X=  (10) 

which denotes that the volume of goods, available at the moment, at any given kth step is equal 
to the state variable on the same time step. 

The productivity is bound by inequality: 

, ,    min k k max kU U U≤ ≤
, 

(11) 

where Uk, Umin,k, Umax,k are current, minimum and maximum  ordering quantities on a k-th time step 
respectively. 

Based on that we assume that on initial stage 

X0 = x, (12) 
where x is the initial state of the studied system. 
Doing so, we may utilize different approaches to get an optimal solution using an optimization 

procedure presented above. The key outcome is that the optimization procedure tries to minimize 
the running cost by ensuring that the solution satisfies the dynamics, supply and productivity 
constraints within the desired prediction horizon [19]. 

We may modify this model further, by introducing the Pontryagin maximum principle [20]. The 
key idea lies behind is to introduce cost or costate variables, that complement a system of equations 
per each constraint and state equation. These dynamics constraints allow one to ensure the optimal 
(we speak about minimal in terms of cost) solution of the system. Let’s modify the previous example 
(7) to assess the Hamiltonian: 
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(13) 

whereas, λk is the cost variable (costate) bound to the state equation at a given time step k. The 
dynamics constraint bound with the costate value allows one to utilize the costate multipliers, 
which affect the general solution. 

 1

    k

k

d H
dt X
λ

+

∂
= −

∂ . 

 

 

(14) 

In order to utilize the maximum principle, the Hamiltonian has to be bound by conjugate equations, 
also called as costate equations [20]. These equations can be obtained by applying partial 
derivatives of the Hamiltonian with respect to each state variable. To derive the Hamiltonian, let’s 
substitute the H value first: 

 1
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(15) 

Since the partial derivative is taken with respect to a specific value of k, all other terms of the 
sum (i.e. on k-1 and k+1 step) will be zero, since derivative of a constant is always zero. 

To get a specific form of conjugate equations, let’s unravel the expression. Since other terms but 
Xk+1, such as UkTCo and YkTCh don’t depend on itself, we can simplify the expression. 



By expanding the expression further, we get a linear ordinary differential equation (ODE) which 
for specific k can be written as follows in a general form (using substitute for dλk /dt as λk’): 

λk’ + λk = 0 (16) 
 

If we consider a system with N states, we also get a set of N conjugate linear ODEs: 
λ1’ + λ1 = 0  
λ2’ + λ2 = 0 

… 
λN’ + λN = 0 

(17) 
 
 

So, the resulting set of conjugate ODEs allows utilizing the principle of optimal control by 
having the conjugate equations per each given time step k in prediction horizon N. In practical 
applications, however, this system of conjugate equations has to be solved first, and only after that 
being applied directly to optimization problem, for the control variables Uk to define the policy that 
answer the requirements for optimal control depicted above. 

 
6. A Model of a Supply Chain with Multiple Separate Chains 

Usually models of supply chains are more complicated. In fact, we can observe a model having a 
network structure, that moves in time along the time prediction horizon. In this case one has to 
model complex time-spatial relationships which may not be practical for real time situations. So, to 
overcome this one may suggest per se some simplifications that include: 

simplification of the network structure overall; 
using some techniques to modify observation horizon; 
to propose a simplified model of the existing model. 
Let’s observe all these three possibilities. Obviously, some network structures can be combined 

into bigger units and hence allow one to deal with less amount of nodes and different branches of 
the tree. Ideally this has to be a binary tree that would allow easy traversal up and down and 
propagate solutions using exact same formulae on each level of the structure. This may have some 
positive things compared to the irregular structure that has the different number of child nodes in 
the different level so as the solution per each level and per each node would be quite unique, 
however still be applicable, so as one propagates the solution up by gathering the solutions on the 
lower levels using some techniques of combining solutions in one, that we will discuss a little bit 
later. 

However, this approach has one serious flaw. The network on each level has only 1 level or 
prediction horizon in space and, contrary to example we discussed in the previous chapter, would 
likely have more than one step in time, which allow us to build a prediction function on a reliable 
number of observations and on quite long prediction horizon in the future steps. Also, we have to 
do something with the prediction horizon, which would have to possess a balanced number of 
points of prediction horizon in time. Since we observe the model in three dimensions, in means that 
the prediction horizon changes both in depth, width of the supply chain network and time as well. 
So, the next problem is to deal with the increased number of inequalities and conjugate equations if 
we suggest using Pontryagin maximum principle. 

This give one simple solution - is to simplify the number of equations, tied to the system and 
somehow observe the network dynamics in time in such way, so we could solve as little number of 
optimization procedures as possible. The best way to do this is to modify the network, whereas we 
observe not a tree-like structure, but a set of independent parallel nodes of the same length which 
allows us to separate each coordinate in the prediction horizon and in fact, to decouple the system 
into a sequence of separate coordinates, in which we solve the system step by step per each 
coordinate of the prediction horizon. 

So, in simple words the solution can be found as follows: at first, we solve the network dynamics 
in depth per each link in parallel chains, then combine the solutions to get solution in width of the 
network, and lastly solve the prediction horizon problem in time. 

 



7. Finding an Approximate Solution for a Three-Dimensional Horizon 

The main feature of the proposed simplified model is that it unravels a graph (network) from a 
hierarchical structure to another graph-like structure consisting of several parallel links of the same 
length. Despite the fact that they are independent, there is still a need to control the distribution of 
demand between distribution centers of goods or services and to reward their use in proportion to 
their size [21, 22]. 

The first option is to physically determine the location of distribution centers and weights of the 
network by solving the multiple traveling salesman problem (MTSP). 

The problem can be formulated as follows: it is necessary to minimize the total distance traveled 
by each of the suppliers, taking into account a set of constraints: 

1 1
min

P P

ij ij
i j

l x
= =

⋅∑∑ , 
(18) 

where xij : a binary variable indicating whether the arc (i , j ) is included in the route, lij : the 
distance (or path cost) between i and j, P: the number of nodes, M: suppliers. 

At the same time, the following restrictions must be ensured. First, each node must be visited 
exactly once by exactly one supplier: 
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(19) 

Restrictions for which each provider has an associated route: 
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(20) 

Binary constraints are also imposed on the decision variables: 
{0,1}ijx ∈ , (21) 

where, xij =1 indicates that node j is visited immediately after node i in the tour. 
The second option is to use a joint solution of the problem of radio frequency distribution, which 

consists in finding the solution for the best distribution of the bandwidth and power of the transmitted 
signal. In the optimization procedure, a fixed amount of power, a non-zero transmitted power of each 
of the data transmission channels, and a non-zero bandwidth of the channel are used as constraints. 
This procedure can be modified by replacing the transmission rate with traffic and the capacity with 
reserves. If these parameters are replaced, the optimization procedure will consist of maximizing the 
expression with the constraints imposed on it: 

1
,(

( ))

   

  
  

i i

i i i i

i

P

i

i i

KL traffic

traffic supply
supply

α

α β

α β

=

⋅

⋅ + ⋅ −

− ⋅ ⋅

∑
 

(22) 
 

0,isupply ≥  (23) 

0,itraffic ≥  (24) 

1
tot

P

i
isupply supply

=

=∑  
(25) 

1
tot

i
i

P

traffic traffic
=

=∑  
(26) 

where (22) is an optimization procedure, (23) is a supply constraint, (24) is a traffic constraint 
between distribution centers, (25) is a fixed amount of traffic, (26) is a fixed amount of supply, and 



KL is the Kullback-Leibler's divergence , supplyi : supply at point i , where i =1,2,…, p, traffici : 
traffic (restocking rate) at point i, αi and βi : parameters related to endpoint i, supplytot, traffictot – 
total permitted volume of supply and permitted traffic, respectively. 

This way of solving the problem allows scaling it to other coordinates of the prediction horizon, 
since the prediction horizon must take into account 3 coordinate axes, where one axis is the depth 
of the supply chain, the second is the width of the supply chain, and the third is time. To overcome 
this, a solution is proposed, which involves the aggregation of individual network solutions on 
parallel links of the network structure, with the further restriction of the dynamics equations for 
the defined structure of the supply chain and the solution of the above problems. 

In theory, this allows replacing an entire network of nodes or links with a single node that 
contains a solution that extends the network structure to a single element. This means that 
solutions are first propagated in the supply chain and then a partial solution is used for the initial 
conditions of the single-node structure, which allows us to focus on the time dynamics, with a loss 
of some accuracy. Thus, instead of a network with variable spatio-temporal dynamics, it is proposed 
to use a so-called "frozen" network, which is based on a partial solution for the prediction horizon. 

 
8. Experimental Implementation and Testing 

For a practical assessment of the proposed approach to solving the problem, a software 
implementation was developed that performs a step-by-step solution of the following problems: the 
problem of several traveling salesmen (to obtain the structure of the supply chain), the problem of 
forecasting in the depth of the chain supply with parallel branches (to obtain network dynamics), 
aggregation of results by a modified model of radio frequency distribution (to extend the solution 
and obtain initial conditions for a problem with one node) and solution of system dynamics in time 
using by the NDEC regulator. 

The implementation used a number of libraries in the Python language, which included, in 
particular, cvxpy [23] - for describing the prediction horizon and network dynamics of individual 
chains, aggregation and prediction of the results of individual chains, nnc [24] for describing neuro-
differential equations for one network node with one group of goods or services. To run, the test 
system had the OS Ubuntu 22 with machine learning libraries installed, including the above. 

For the solution, data from open sources were used, namely, the structure of the branch of the 
Agromat company and the location of its warehouses and branches according to Google Ukraine 
map data. 

According to the previous solution of MTSP, the supply chain forms a circular route in which 
there are two branches of approximately the same size (see fig. 1). 

The main element is point 0 (the central composition), from which 2 main rays emerge, 
consisting of segments 0-2-3-5 and 0-1-4-6, respectively. This allows us to reduce this problem to 
the solution of a linear horizon with a depth of 3. 

 
Figure 1:	Structure of supply chain obtained from MTSP.	

 
Let's consider the result of an experiment on modeling a model with a consolidated structure 

with one node and two types of regulators - MPC and NDEC. Below in fig. 2 shows the simulation 
plots for MPC. 

 



 
Figure 2:	Simulation results for MPC.	

 
During the experiments, the effectiveness of two distinct approaches to optimal control was 

compared. The first approach utilized the cvxpy library [23] to simulate the Model Predictive 
Control (MPC) regulator. The second approach employed the nnc library [24] to simulate the neuro-
differential optimal controller (NDEC). Each approach brought unique methodologies and 
computational requirements to the table. The NDEC, in particular, involved solving the differential 
equations that govern system dynamics, which added a layer of complexity to the simulation 
process. 

The simulation period for both methods spanned 100 virtual days. Within this period, supply and 
demand values were updated 10 times a day to closely mimic real-world fluctuations and dynamics. 
The primary objective of the optimization method was to minimize the costs associated with the 
supply of goods while maintaining an adequate stock level of goods or services to meet demand. 

During the testing phase, it was observed that the implementation of the nnc library was highly 
demanding in terms of hardware and memory resources. Specifically, the nnc repository required a 
CUDA-compatible graphics card with at least 8GB of memory to effectively perform the 
computations. However, at the time of the experiments, the training of both the NDEC models and 
the MPC regulator was conducted on the central processing unit (CPU). This reliance on the CPU 
for calculations significantly neutralized the primary advantage of the NDEC models, which is their 
high-speed computational capability when run on a graphics processing unit (GPU). 

Consequently, the execution times for training the MPC and NDEC models showed a stark 
contrast. The training of the MPC regulator took approximately 10 seconds, demonstrating its 
efficiency and speed. In contrast, a complete training cycle for the NDEC model took around 15 to 
18 minutes, depending on the system load and computational intensity. This significant time 
difference highlighted the impact of not utilizing the GPU for NDEC training. 

The training regimen for the NDEC models included 4000 epochs, within which the controller 
achieved an acceptable error margin after about 750 epochs. The asymptotic behavior of the 
training continued to improve up to the 4000 epochs mark, indicating that prolonged training did 
yield better results but at a considerable computational cost. 

One notable advantage of the NDEC regulator was its adaptability and learning efficiency. 
Unlike the MPC regulator, which required constant re-optimization, the NDEC regulator needed 
retraining only at specific intervals. This intermittent training requirement reduced the 
computational burden and allowed for periodic updates to the control strategy, thus improving 
overall system performance. 

The improved adaptability of the NDEC regulator was clearly demonstrated in the results. As 
illustrated in Figure 2 (right), the supply curve for the NDEC regulator closely followed the demand 
curve, indicating a more responsive and efficient control mechanism. Despite this advantage, the 
slow training speed on the CPU necessitated further investigation into methods to enhance 
efficiency. Future studies were planned to explore ways to leverage GPU capabilities fully and to 
optimize the training process, thereby reducing the time required for NDEC model training while 
maintaining its high adaptability and control precision. 

In summary, while the MPC regulator offered speed and ease of use, the NDEC regulator 
provided superior adaptability and closer alignment with demand patterns. The primary challenge 
for the NDEC approach was the computational time required for training on the CPU, suggesting a 
clear need for hardware optimization and potential GPU utilization to unlock its full potential. 



 
9. Conclusions 

In this work, we proposed a comprehensive model, which is based on a predictive control model 
that effectively combines the features of a decentralized and centralized big data network. By 
utilizing this approach, specific models address the emergent (independent) behavior of each 
individual network nodes while keeping a centralized structure for overall ease of control. Using 
this approach, we integrate decentralized network dynamics approaches into a centralized 
framework, and obtain a robust approach to manage complex supply chain networks. 

During the study, we formulated a problem of multidimensional prediction horizon. To address 
this problem, our model suggests an approach to obtain separate solutions for each coordinate of a 
three-dimensional prediction horizon by decoupling the system into separate dimensions such as 
width, depth, and time. This multidimensional approach improves our confidence of the solution 
and enables more precise and effective control strategies. 

One of important results emphasizes on exploration of possibilities of an optimal model of 
predictive control, which achieves the requirements of optimal control by applying the Pontryagin 
maximum principle. To apply this approach, we also aggregated model solutions from different 
levels of the supply chain model (warehouses, distribution centers), in particular by utilizing 
multiple travelling salesman problem as well as power and frequency distribution problem, which 
allowed us to more easily understand and more easily implement the control mechanism within 
such synthetic networks. 

In the experimental part of the study, we focused our tests on practical evaluation of the 
software implementation, by utilizing both Model Predictive Control (MPC) and neuro-differential 
optimal controllers (NDEC) to simulate supply-demand fluctuations within the system in space and 
time. The experimental results highlight some bottlenecks and potential issues that need to be 
evaluated in future research. For instance, the learning time of the NDEC controller was relatively 
big, which may be caused by some hardware limitations and memory bottlenecks that lead to the 
computational intensity and possible less efficiency utilization of the graphic processing unit (GPU) 
on the training stage. However, such a bottleneck does not affect the quality and accuracy metrics 
of the NDEC controller solution, but only highlights potential issues that need to be addressed in 
the future. 
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