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Abstract		
Height-based vector vegetation segmentation is one of the critical aspects of spatial analysis. This segmented data 
is used in radio propagation modeling, environmental monitoring, and vegetation mapping. Many studies on vector 
vegetation segmentation focus on delineating individual tree crowns, allowing detailed data sets to be obtained. 
However, the high level of detail results in a substantial data volume, making it impractical to use these datasets 
over large areas, such as an entire country. Segmentation of large vector data sets remains a significant challenge 
in geospatial data creation. In our study, we developed three different segmentation pipelines: hexagon 
segmentation, convolution segmentation, and random points. A test data fragment was processed to compare the 
proposed methods and accuracy and volume metrics were calculated. 
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1. Introduction	

Integrating diverse datasets is a pivotal challenge in geospatial data production, particularly in vegetation 
analysis, where combining vector-based vegetation cover with Canopy Height Models (CHM) is essential 
for depth-enhanced segmentation. This study tackles such integration, aiming to segment vegetation based 
on height — a crucial step for comprehensive environmental and geographical analyses. Through the lens 
of satellite and aerial imagery, vegetation segmentation unlocks insights into vegetation distribution, 
health, and variety across vast areas. We introduce and assess three segmentation approaches: Hexagon 
Segmentation, Convolution Segmentation, and Random Points prioritizing their applicability to large-scale 
datasets, potentially encompassing entire countries. This comparative evaluation showcases the method's 
precision and practicality and advances our methodological toolkit for environmental studies. 

2. Literature review  

Image segmentation is one of the most challenging tasks in image processing. Currently, there are 
numerous approaches and methods for image segmentation, such as the hexagon segmentation method 
Hofmann & Tiede [1] and the Point Initialization Approach Mueller & Corcoran [2]. Most of the research 
in vegetation segmentation has focused on identifying individual tree crowns. This direction has been 
instrumental in detailed studies of forest ecosystems, as exemplified by the works of Douss et al. [3], Li et 
al. [4], Lindberg et al. [5], and Jakubowski et al. [6]. These studies have significantly advanced our 
understanding of individual tree characteristics, forest structure, and biomass distribution. 

In contrast to the detailed focus on individual tree crowns, our research aims to develop methods for 
generalized segmentation that represent large arrays of vegetation with similar (or nearly identical) 
heights. These approaches are well-suited for segmenting vegetation over vast areas, such as entire 
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countries, addressing the need for macro-level vegetation analysis. Such analysis is essential for regional 
and national environmental assessments, land use planning, and large-scale conservation efforts. 

Our study on vegetation segmentation will leverage CHM data with a 10-meter resolution, as developed 
by Liu et al. [7]. This CHM data is crucial for our methodology as it provides a detailed representation of 
vegetation height across large areas. Using a 10-meter resolution matrix allows for a fine-grained analysis 
of vegetation structure, making it manageable for large-scale applications like country-wide segmentation. 

3. Methodology	

We developed three distinct automated pipelines to address the challenge of segmenting vegetation based 
on height. We aimed to understand the complexity of accurately determining vegetation at different 
altitudes on large datasets. The methods described in the article were developed using FME (Feature 
Manipulation Engine). FME is a data integration platform developed by Safe Software. It is widely used for 
transforming, integrating, and automating spatial data workflows. A series of specific metrics were 
selected to assess the effectiveness and appropriateness of these approaches. These metrics serve as a 
foundation for evaluating each method's performance, ensuring a balanced analysis between the 
innovative aspects of our methodologies and their practical outcomes. 

The following metrics were used for comparison:  

Accuracy (1). This is the ratio of correctly identified pixels, TruePixels (2) to the total number of 
pixels. It is a straightforward measure of how accurately a model classifies or segments pixels. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑃𝑖𝑥𝑒𝑙𝑠
 (1) 

Where: Total Number of Pixels is the sum of all pixels within all vegetation segments. 
 

𝑇𝑟𝑢𝑒𝑃𝑖𝑥𝑒𝑙𝑠 = ℎ!"#$% 𝑝 − ℎ!"#$"# 𝑝 ≤ 3  (2)
!

!!!

 

Where: ℎ!"#$% 𝑝  is the height associated with pixel p in the input data, ℎ!"#$"# 𝑝  is the height 
associated with pixel p in the output data, as determined by the segmentation process. 

Volume. This metric is expressed in the number of vertices after segmentation. It reflects the 
segmentation's complexity and detail. A more significant number of vertices usually implies a more 
detailed segmentation but negatively affects the display speed and processing. 

3.1. Hexagon segmentation  

Hexagonal grids offer several advantages over square grids, primarily due to their low perimeter-to-
area ratio, which reduces sampling bias related to edge effects. Unlike circles with the lowest ratio 
but cannot tessellate, hexagons can form a continuous grid while being the most circular-shaped 
polygon. This allows hexagonal grids to more naturally represent curves in data patterns compared 
to square grids. Additionally, points within hexagons are closer to the centroid than points within 
equal-area squares or triangles, making hexagons ideal for analyses involving connectivity or 
movement paths. Hexagons also reduce orientation bias and distortion over large areas, and finding 
neighbors is simpler due to the equidistant centroids of adjacent hexagons. 



 
Figure 1:	Hexagon segmentation workflow.	
 
The Hexagon segmentation method (Figure 1) involves creating a hexagonal grid with uniform 
hexagons (each side is 100 meters long) and generalizing the height matrix to a 3-meter interval. The 
vegetation vector is clipped according to the hexagon grid to form segments. Heights from the 
height matrix are then assigned to each segment, with the most frequent height value in the 
segment being selected (using the MODE function). Adjacent segments with the same height are 
merged.  

We used Pierre’s Gauthier algorithm [8] to generate a hexagonal grid. This algorithm's core involves 
generating a grid of points that will serve as the centers of the hexagons. The primary parameter is 
SIDE_LENGTH, the length of a hexagon's side. 

Two point grids are generated with the following parameters: the first grid is defined by 
hoffset(1) and voffset(2): 

 
offset =  SIDE_LENGTH ∗  3 (1) 
voffset = cos 30° ∗ SIDE_LENGTH ∗  2 (2) 
 

The second grid is a copy of the first grid with shifts applied to the x and y coordinates: 
 

X!"#$%  =  hoffset/2 
Y!"#$%  =  voffset/2 

 
The last step of the algorithm involves creating circles at the generated points with a radius of 

SIDE_LENGTH and then simplifying these circles into six-sided polygons. The result is a grid of regular 
hexagons with a side length of SIDE_LENGTH. 

 



 
Figure 2:	Result of the hexagon segmentation workflow.		

3.2. Convolution Segmentation 

The convolution function filters the pixel values in an image, which can be used for sharpening, 
blurring, edge detection, or other kernel-based enhancements. Filters enhance raster image quality 
by removing spurious data or highlighting features. These convolution filters are applied with a 
moving, overlapping kernel (window or neighborhood). They calculate pixel values based on the 
weights of neighboring pixels. In our approach, we used several iterations of convolutional filters to 
obtain areas with the same height. 

 
Figure 3:	Convolution segmentation workflow.	

 
Like the first method, the Convolution Segmentation method also generalizes the height matrix 

to a 3-meter interval. The matrix is then generalized using a convolutional filter (kernel = 5x5). 
Several iterations are conducted using the "Majority" operation (4 iterations), selecting the most 
frequently occurring value, as in the first method. The next stage is converting the raster to a vector. 
RasterToPolygonCoercer(FME) and AreaGapAndOverlapCleaner(FME) are used. To make a better 
shape of polygons after conversion, we used a combination of generalization and smoothing: 
Douglas–Peucker(Generalize 7 meters)[9] à NURBfit(Smooth ) [10] à Douglas–Peucker(Generalize 



2 meters). Such a combination of generalization and smoothing allows for eliminating pixel steps 
and obtaining an acceptable density of polygon vertices. The final stage combines the resulting 
polygons and vector vegetation layer by AreaOnAreaOverlayer(FME). 

 

 
Figure 4:	Result of the convolution segmentation workflow. 

3.3. Random Points 

The Random Points method is based on creating random points within a vegetation polygon using 
several steps: 1) Generation of random points across the polygon's bounding box. Two sets of coordinates 
are generated (X, Y). The number of random coordinates depends on the polygon`s area: larger area – 
more coordinates; 2) Generating points along the central line of the polygon created by 
CenterLineReplacer(FME); 3) Extracting the central point of the polygon: CenterPointExtractor(FME). 4) 
Snapper(FME) and DuplicateFilter(FME) were applied to the resulting points to avoid duplicates or near-
duplicate points. Different approaches are used to generate random points due to the different shapes of 
the input polygons. This combination of point-generation methods allows us to get uniform point 
distribution over all polygons. The next step involves using the ArcGIS procedure 'Generate Subset 
Polygons'[11] activated by Python script. This function creates a subset of polygon features from input 
points without gaps and overlaps. The goal is to divide the points into compact, nonoverlapping subsets, 
and create polygon regions around each subset of points. The minimum and maximum number of points in 
each subset can be controlled.  

Generate Subset Polygons' function based on Thiessen polygons also known as Voronoi diagram or 
Voronoi polygons. [12, 13]. 



 
Figure 5:	Random points segmentation workflow.	

 
The methodology for assigning elevations to segments follows the approach established in previous 

methods. Each segment intersects with a generalized elevation matrix up to 3 meters. The elevation 
assigned to each segment is determined by the most frequently occurring pixel values within that 
intersection. This technique ensures consistency in elevation assignment across different segments, 
leveraging the established practices from prior methodologies for effective elevation mapping. 

 

 
Figure 6: Result of the convolution segmentation workflow. 

4. Evaluation of the quality of the proposed approaches 

For this study, a test site covering an area of 430 square kilometers in the western Czech Republic 
was selected as the primary focus (Figure 7). The data concerning vegetation heights was sourced 



from a detailed 10-meter CHM. The vegetation data itself was derived from a comprehensive vector 
dataset. This dataset was generated through machine learning techniques to automatically analyze 
high-resolution satellite imagery, a process meticulously carried out by the Visicom company. 

 

 
Figure 7:	Research area location.	

The methods discussed in this article, as well as the analysis of the results, were implemented on 
PC using the Feature Manipulation Engine (FME). The obtained Accuracy and Volume results are 
shown in Tables 1,2,3.  

 
Table 1 

Hexagon method statistics 
Vegetation 

Height Accuracy % Total pixels in CHM Volume 
0 66.22 980 

558338 

3 58.92 1020 

6 87.51 4485 

9 94.05 28114 

12 93.19 80631 

15 89.95 145203 

18 82.01 219782 

21 80.75 343390 

24 82.07 512259 

27 85.62 749204 

30 88.73 905916 

33 90.17 517650 

36 90.29 94701 

39 84.83 3723 
 
 
Table 2  



Convolution method statistics 
Vegetation 

Height Accuracy % Total pixels in CHM Volume 
0 76.29 949 

752412 

3 58.6 1256 
6 69.77 8657 
9 79.43 44705 

12 87.72 98143 
15 92.41 156412 
18 95.2 238215 
21 96.38 360859 
24 97.26 534555 
27 98.17 741339 
30 98.92 836759 
33 99.39 485668 
36 99.65 94605 
39 99.73 5176 

 
Table 3  

Random point method statistics 
Vegetation 

Height Accuracy % Total pixels in CHM Volume 
0 65.57 909 

737853 

3 58.26 1567 
6 83.38 6361 
9 88.01 41188 

12 88.55 87758 
15 82.67 141607 
18 82.01 213139 
21 80.75 360787 
24 82.07 542611 
27 85.62 780707 
30 88.73 905794 
33 90.17 516782 
36 90.29 93784 
39 84.83 4905 
42 86.36 374 

 
To evaluate the segmentation's accuracy, 3-meter height ranges were selected. After testing various height 
range options (1m, 3m, and 5m), the 3-meter range was chosen as optimal. This selection was based on its 
ability to accurately reflect the vegetation's true height while minimizing the amount of "noise" from 
individual pixels with varying heights. This compromise ensures a balance between precision and the 
reduction of outliers, providing a more reliable assessment of segmentation performance.  

It is worth noting that in some methods, the 42-meter height category is not represented on the 
histogram. This is due to the very small number of pixels in this category. The most representative heights 
are those between 12 and 36 meters, with a sufficient number of pixels.  



 
Figure 8:	Comparative assessment of accuracy by height categories.	
 
We did not consider the performance evaluation of the segmentation methods within the scope of 
this study. This decision was based on the understanding that performance assessments conducted 
on a limited test dataset would not yield representative results. 

5. Conclusion 

The comparative analysis reveals that each method has its merits in terms of accuracy and volume 
of the final segmented vector. The choice of method may depend on specific research needs, 
available computational resources, and the scale of the analysis. Although the hexagon method has 
the lowest accuracy, it differs from the simplicity of the other presented methods and can be 
successfully applied to large data sets. The convolutional method has the highest accuracy in 
representing heights but has a "bottleneck" at the raster-to-vector conversion stage. This stage 
requires significant computing resources and can become an obstacle in processing extensive data.  
Future work should focus on refining these methodologies, exploring their application in different 
ecological contexts, and integrating additional data sources to enhance the accuracy and utility of 
vegetation segmentation for environmental monitoring and management. 
Considering the rapid development and high efficiency of machine learning methods, future 
development of this research aims to incorporate AI-based approaches alongside the methods 
already compared. This expansion will comprehensively evaluate traditional segmentation 
techniques against AI-powered models, potentially setting a new benchmark in vegetation 
segmentation methodologies.  
Additionally, plans are underway to apply the described segmentation methods to large countrywide 
datasets. In this context, it would be prudent to analyze each method's performance speed and 
calculate the computational resources required for its implementation. This comprehensive 
evaluation will ensure the methods' scalability and efficiency when applied to extensive data sets. 
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