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Abstract		
The article describes the ergonomic programming language interface for working with monadic effects, 
which encapsulate the logic of computation and associated non-computational operations. It describes 
representations of computation in the direct form with the direct context encoding technique in the Scala 
language. A Scala compiler plugin, available as an open-source, translates direct representation into the 
monadic form. Also discussed is conditional effects compilation to organize cross-platform interfaces that 
combine different methods of implementing effects on different platforms. 
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1. Introduction	

Effect systems have taken an essential place in modern programming. In the community of 
developers, we can see two views on the effects: 

1. An effect is a program property that changes the execution environment. Unlike pure 
computations, effects are not reflected in the language's type system. This view is characteristic 
mainly of developers in imperative programming languages. 

2. An effect is a property of a program's interpretation that changes the interpretation process. 
Effects are reflected in the type system as higher-order types, a view characteristic of functional 
programming. 
In industrial programming, the first view wins regarding development speed and fewer concepts to 
master. However, the cost is the inability to automatically analyze effects using the type system and 
more incredible difficulty in finding errors. Eventually, these concepts still appear as exception-free 
code descriptions and analysis tools. However, programmers will use them later in the development 
stage. Such an approach speeds up the initial development cycle.  The functional approach typically 
represents the type of an expression with effects as a monadic expression F[T], where T is the type of 
expression without explicit effects in an imperative programming language.  
We will use Scala as our representation language.  Standard monad signature includes two operations, 
flatMap and pure: 

 
def flatMap[A,B](fa: F[A])(f: A => F[B]): F[B] 
 
def pure[A](a: A): F[A] 
 
   

 
Analogical signatures in the Haskell standard library bind for flatMap and return for pure. 
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For a detailed description of monadic-type interfaces and effects applications, look at Moody[1] or 
Wadler[1,2]. 
Classic examples of monadic effects are input/output operations, usually represented as IO[X], or 
exceptions, represented as Try[X]. 
An interpreter of an effect monad is a function that transforms a monadic expression into its value 
and performs the side effects. We can describe the type of interpreter function in meta-notation that 
reflects the computation environment. 
Now, let's move from monads with single effects to effect systems. Suppose we are developing a 
program that performs both input and output and can terminate unexpectedly. What type can it 
have? It is on IO[T] and not Try[T]. It is some kind of monad that includes both effects. There are 
many ways to build such monads; let's present the most well-known ones: 
     One practical approach, often used in practice, is the 'god monad.' This monad combines 
input/output processing and error generation, making it a convenient choice when the number of 
effects used is small. While it may not be a full-fledged effect system, it provides a practical 
solution. However, unlike full-fledged effect systems, it is only possible to add a new effect or 
replace the implementation of an existing one by rewriting the monad interpreter. On the other 
hand, we can say that any actual semantics of the executable language assume that some 'god 
monad' is defined by the computation environment. 

Historically, the first full-fledged effect stack was built based on monad transformers. The main 
idea is quite simple – the logical type for the result of a program that has input/output and can 
generate exceptions is IO[Try[T]]. We cannot use IO[T] directly, but we can rewrite IO as IOT[F[], 
T]. The interpreter of this monad converts IOT[F,T] to T using the interpreter of F. (Or, in some 
cases, you can build a partial interpreter, which can already be called an effect handler, that converts 
IO[F, T] to F[T]. Then, having the interpreter of F[T], we can build a full interpreter of the complex 
monad.) This scheme is simple and intuitive. This approach is used in industrial functional 
programming when we have one or two effects, which is quite a standard case. However, when 
working with an extensive list of effects, performance issues arise, as each operation has to go 
through a series of calls for each monad in the stack. 

The next step is to use horizontal composition instead of nesting, i.e., separating the "monad-
containing effects" from the pure effects. For example, let us have effect types , and the 
programming language capabilities allow us to construct a type-level list . Then, we 
can build a monad  with effect interpreters of the form: 

], where  the list of effect types  is 
without . The effect types  themselves do not necessarily have to be monads. 

The Freer monad[6] is a classic example of such a construction. Currently, in the context of 
industrial programming, when talking about a monadic effect system, it generally refers to a similar 
construction with a series of optimizations. For Haskell, there are about ten implementations, and for 
Scala, several systems are currently in development, such as eff [7],  kryo [8],  turbolift [9]. 

Another approach for effect description is the so-called tagless final style of description [11], 
where effects are referred to not as specific types but as type classes that implement some API [10]. 
Indeed, the only thing that characterizes an effect is a set of methods. For example, a hypothetical 
input/output effect can be characterized by a pair of functions: 

 
trait StdIO[X] { 
 def write(line: String): StdIO[X] 
 def read: StdIO[String] 
} 

 
If we can "push" these functions into the main monad, then this API can be written as: 
 
trait StdIO[F[_]] { 
   def write(line: String): F[Unit] 
   def read: F[String] 



} 
 
Then, use this type class as a characteristic of the effect monad, regardless of how it is 

constructed—as a standalone effect monad, an element of a monad transformer, or an element of an 
effect system. 

Now we can formulate the problem that direct representation of monadic effects solves: we have 
two methods of organizing effects. Can we unify these two forms in such a way that it is possible to 
use monadic effects without complicating the syntax, while still allowing the analysis of expressions 
with effects using type system? 

This problem has two practical applications. The first is to simplify working with monadic 
interfaces for developers, removing syntax overhead of the monadic interfaces, and the second is for 
building multi-platform systems with different runtime capabilities on different platforms. Then, 
effects that can be represented in direct form on one platform (for example, asynchrony on post-Loom 
JVM) should be monadic on a platform without support for continuations, such as JavaScript. 

 
 

2. Direct Syntax 

Methods for easing syntactic burden appeared simultaneously with monadic interfaces. The 
approaches can be divided into two groups:  

- Special constructions that create a 'sub-language' of the programming language for monadic 
DSLs. 

- Transform regular language constructs into monadic form inside the scope of established 
pseudo-operators. 

   An example of the first approach is do-notation in Haskell [11], Computation Expressions in C# 
[12], and for-comprehensions in Scala [13]. On the one hand, this is convenient in implementation 
because the compiler can transform these syntactic constructs before type analysis. On the other hand, 
the user sees two similar but different languages, which causes additional difficulties in learning and 
application.  Below is how typical request processing logic looks in Scala monadic DSL:  
 
def myFun: IO[HttpReply] = { 
 for {result1 <- talkToServer("request1", None) 
      _ <- IO.sleep(100.millis) 
      results2 <- talkToServer("request2", Some(results1.data)) 
      _ <- if results2.isOk then 
             for { _ <- writeToFile(results2.data) 
                   _ <- IO.println("done") 
             } yield () 
           else 
             IO.println("abort") 
      } yield results2 
} 
 
 
    An example of the second approach is bind notation in Idris [14] and async/await (though limited to 
asynchrony) in C# and most modern programming languages [15]. The author has developed a similar 
system for Scala: dotty-cps-async 16][17], which supports a pair of pseudo-operators reify/reflect (or 
async/await as traditional synonyms) for any monad as macros. Practically, this solution partially 
addresses the issue of reducing cognitive load when using asynchronous APIs and "softening" the 
learning curve.  Here is the same code fragment as in the previous example, rewritten with the help of 
the `dotty-cps-async`:  
   
def myFun: IO[HttpReply] = async[IO] { 
 val results1 = await(talkToServer("request1", None)) 
 await(IO.sleep(100.millis)) 
 val results2 = await(talkToServer("request2", Some(results1.data))) 



 if results2.isOk then 
   await(writeToFile(results2.data)) 
   await(IO.println("done")) 
 else 
   await(IO.println("abort")) 
 results2 
} 
 
 
But we can say that syntax overhead is fully eliminated: issues that are still left are: 

- Since most operations are monadic in effect systems, the source code is still overloaded with 
reflect (or await) operators that do not carry non-technical meaning. So, in the example 
above, see an await expression in almost every line. 

- The second problem is specific to effect systems. In the example above, we work with a 
single IO monad, which we specify as the type parameter async[IO]. If we work with effect 
systems, the monad type is complex, and the async expression will look like: 

 async[[X] => Eff[IO::*Error::*Config, X]] 
The programmer has to write this full-type signature, which sometimes changes depending on 
the effects used. Writing big signatures when the compiler can deduce them from the code is 
an ergonomic issue. 

    To address the issue of the overhead of awaits inside the async block, the early versions of dotty-
cps-async proposed an automatic coloring mode based on implicit conversions. We allow implicit 
conversion between IO[T] and T if the only use of the asynchronous expression is to take or ignore 
the value.  We report an error if our expression, which we apply unwrapping conversion, is also used 
differently (for example, passed to another function that accepts IO[T] instead). An example of using 
automatic coloring with the same functionality as in the previous code fragment is: 
 
def myFun: IO[HttpReply] = async[IO] { 
 val results1 = talkToServer("request1", None) 
 IO.sleep(100.millis) 
 val results2 = await(talkToServer("request2", Some(results1.data))) 
 if results2.isOk then 
   writeToFile(results2.data) 
   IO.println("done") 
 else 
   IO.println("abort") 
 results2 
} 
 
As we can see, there is some visual improvement, but this solution did not gain widespread adoption 
because analyzing such code is somewhat more complex (for instance, why is there no await near 
result1, but there is one near result2?). To independently understand which types are inferred, one 
needs to consider not only the language rules but also how each async expression is used.  
Despite the macro performing type analysis and generating an error for potentially incorrect usage, 
such transformations were perceived by developers as unsafe. 
   
3. Using context functions for a direct style 

 
   Instead of the automatic coloring mode, a compiler plugin has been developed that allows the direct 
style of monadic expressions using contextual arguments and functions. 
  Let's remember what are context arguments and context functions in Scala3: 
    A contextual argument called an implicit argument in Scala 2, is a function argument that the 
compiler can automatically synthesize on the call side without mentioning this argument in the 
program code. Argument lists of context methods and functions are marked with the `using` keyword, 



and the compiler, when generating the function call, will look for the values of these parameters in the 
context. For example, the following definition: 
 
  def write[A](a: A)(using Writer[A]): Unit 
 
defines a function with a contextual parameter Writer[A], and we can call it as write(10). 
    Context functions (A ?=> B) represent computations that depend on context A and return B. We 
can understand it as a shortcut for the lambda function that accepts the implicit argument.  A valuable 
feature for us is the short syntax of context lambda functions: in a method that takes a context 
function A ?=> B as input, you can pass an expression of type B.  Inside this expression, a 
programmer can use the context value of A (notation: summon[A]) and, therefore - other context 
values that depend on summon[A]. For example, let's say we have an object from which we can derive 
a Writer for elementary types: 
 
trait Writers { 
 given Writer[Int] ... 
 given Writer[String] ... 
} 
 
and a function 
    def withJsonWriters[A](f: Writes ?=> A): A 
 
Then, the call to such a function can take the form: 
 
withJsonWriters { 
 write(1) 
 write("abc") 
} 
 
Returning to monadic effects: we can represent a monadic computation F[X] as a context function 
that returns X: CpsDirect[F] ?=> X. Using the properties of context functions described above, we 
can freely use the results of asynchronous calls within the scope of CpsDirect[F] as values of type 
X. 
  The compiler plugin transforms functions and methods that contain the context parameter 
CpsDirect[F] and returns values of type X into methods that return F[X] and converts the body of 
these methods into monadic form. The previous example is now shown: 
 
def myFun(using CpsDirect[IO]): HttpReply = { 
 val results1 = talkToServer("request1", None) 
 sleep(100.millis) 
 val results2 = talkToServer("request2", Some(results1.data)) 
 if results2.isOk then 
    writeToFile(results2.data) 
    println("done") 
 else 
    println("abort") 
 results2   
} 
 
 
(Here, we implicitly assume that the API is also converted into a direct context representation.) 
 
We can call functions with the CpsDirect[F] parameter from async blocks and other direct context 
functions and freely use the pseudo-operator await/reflect to convert F[T] to T when necessary.  
    The transformation schema is simple: we transform a function definition to return a value wrapped 
in monad if any of the arguments (regardless of whether implicit or explicit) is CpsDirect[F]. 



 
 

 
 
 

  where 

            
 
    Let's name functions that satisfy this condition: a context-direct function,   
 
   On the call side, we should add to cps-transformation schemas, defined in[16] appropriate 
translations rules: 
 

- for direct context functions without lambda arguments.  
 

 
 

- for high-order direct context function with nontrivial lambda arguments we can substitute 
async shifted version in the same way as for ordinary functions. 

 

 
 
Here   is a shortcut for a function call with possibly more than one argument list: 

   
A full set of CPS transformation rules is presented in Appendix A. 
 
Also, to ensure the correctness of transformations, we impose a number of restrictions on expressions 
of type CpsDirect[F] - they cannot be used in assignment statements, function return values, or 
matched with type parameters. In the future, these restrictions may be expressed using capture 
tracking, which is currently being developed as an experimental extension of Scala. 
    We can call the direct context function from the async blocks, where our API assumes the existence 
of CpsMonadContext[F]. CpsDirect[F] is implemented as an opaque type over  CpsMonadContext[F], 
where conversion is performed by the compiler plugin. 
   The resulting model of asynchrony is quite close to the model of suspended functions in Kotlin. 
Note that, unlike the "automatic coloring" mode of functions, here the types F[X] and CpsDirect[F] 
?=> X are different types for the programmer, and for each function, we need to choose how it should 
be called. Thus, the problem of coloring has not disappeared: it just became possible to lower the 
syntax noise by changing the main method of invocation to quasi-synchronous. 
   Note that using only direct syntax notation limits the expressivity of the language. We need to mix 
monadic and direct syntax to express explicit parallelism. For instance, suppose we need to read 
several data streams in parallel. If we assume that fetch is also written in direct form, then the 
following block of code 
 
def readFirstN(urls: Seq[String])(using CpsDirect[Future]): Seq[String = 
 urls.map(url => fetch(url)) 
 



will read all the data sequentially, one after another. If we need parallel processing, we have to 
convert the direct API into monadic form: 
 
 
def readFirstN(urls: Seq[String])(using CpsDirect[Future]): Seq[String] = 
 urls.map(url => 
   asynchronized(fetch(url)) 
 ).map{ 
   future => await(future) 
 } 
 
Therefore, for direct syntax, a pseudo-operator `asynchronized` (or `reified`) is introduced, which 
converts a pseudo-synchronous expression into a monadic one, dual to `await`.  The translation 
function just leave the underlaying expression unchanged, assuming it already has wrapped type. 
 

 
 
   In the case where F[_] is a complex monad of effects, a concise syntax can be developed to specify 
the set of effects in F as a set of contexts or type constraints of F.  The direct syntax can contain not a 
context for the monad but the context for effects and the compiler plugin can assemble the needed 
monad from the set of effects. Yet one option is to abstract from the specific effect system F in the 
form of a tagless final. The optimal form of such a record is an open question that is the subject of 
further research. 
 
 

4. Compatibility	with	the	algebraic	effect	systems.		

 
Another common development problem is supporting cross-platform libraries where the runtime 
environment has different properties on different platforms. Specifically, on the Java platform starting 
from version 21, it has become possible to develop algebraic effect systems based on continuations, 
while a similar API in non-monadic form is impossible in scala-js. Is it possible to build a compilation 
mode so that the same code is compatible with an asynchronous programming library on the JVM 
based on virtual threads and a system based on the asynchronous concurrency model of JavaScript? 
   The main problem is that non-monadic effects are currently not reflected in the type system, so we 
do not have the information for correct translation from the side of the continuation-based system. 
Therefore, we cannot transfer code from a continuation-based system to a monadic one. But we can 
do the opposite: in a monadic system, the types have all the necessary information. Thus, we can write 
the API of the continuation system as a direct representation of the monadic form, then compile it into 
JavaScript as a monadic form, and in JVM, simply erase the context parameter (i.e., the plugin should 
convert CpsDirect[F] ?=> X to F[X] on JavaScript, and to X on JVM for effects that are implemented 
through JVM continuations). This will allow programs to use the same basic API on both platforms. 
   In gears[20], suspended functions always accept context parameter of the special type `Async` . 
Therefore, it is possible to implement source-compatible API-s in direct form, where define Async as 
a context type in our monadic representation. 
   
5. Conclusions 

Direct context representation of effects can be a useful tool in software development as it reduces the 
cognitive load on the programmer from syntactic noise while preserving information about effects in 
the types. Additionally, using such a representation, it is possible to build cross-platform applications 
that can use both monadic and non-monadic effect systems. 



    In the dotty-cps-async project, a Scala compiler plugin has been developed that converts direct 
context representation into monadic form. Further research directions include finding the optimal 
form for supporting complex effect systems, continuing experiments in the direction of cross-platform 
effect translation, and improving the generation of the monadic representation of the program. 

6. Appendix	A:		Rules	for	Cps	Transformation	

Here is a full combined list of rules for monadic cps transform of  in scala in dotty-cps-async without 
optimization. 
Here 
   - Set of lambda functions. 
  Direct - set of direct functions, which accept CpsDirect[F] parameter 
   - set of invariant lambda functions, i.e. functions like  or  
   

name rule 

trivia 
 

t is an expression without async subexpressions. 

sequential 
 

valdef 
 

condition 
 

match 
 

while  

 

def whileHelper[F:CpsMonad](c:F[Boolean])(body: F[Unit]): F[Unit] = 
 F.flatMap(c) { b => 
   if b then 
     F.flatMap(body) { _ => whileHelper(c)(body) } 
   else 
     F.pure(()) 
 } 



try/catch/finally 

 

throw 
 

lambda 

 

application  
   (non-ho, non-direct) 

 

application 
  (non-ho, lambda ) 

 

application 
  (non-ho, direct) 

 

application 
  (ho) 

 

   

asynchronized 

 

await (non-conversion) 
 

await (conversion) 
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