
The Verification of Decision Tree Model for Coreference
Resolution Using Marked Transition Systems, Petri Nets and
Büchi Automata

Sergiy Pogorilyy1, Maksym Slynko, Pavlo Biletskyi1

1 Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv, 01033, Ukraine

 Abstract		
This paper addresses the problem of coreference resolution, which involves identifying words or phrases
in a text that refer to the same real or imaginary entity. The solution for this task is developed for
Ukrainian-language texts using decision trees, which autonomously structure themselves based on
training data. Decision trees, unlike other machine learning algorithms such as neural networks, allow for
the analysis of their internal structure through graphical representation, significantly easing the formal
verification of their properties. Vector representations of words (such as ELMo) and other linguistic
features are used to create decision trees. These trees are employed for the binary classification of input
pairs potentially referring to the same coreferent objects. Based on the binary classifier, coreferent objects
are grouped into clusters, followed by an evaluation of clustering accuracy using specialized metrics.
To guarantee the reliability of large, complex software systems, formal verification methods are applied. A
formal model of the coreference resolution system is constructed using marked transition systems. This
model describes the system with a set of discrete states and transitions between them under certain
conditions. The properties of the system are formalized and verified using network models, automata
models and linear-temporal logic, ensuring error-free execution on infinite state sequences. The work
explores the use of Petri nets for analyzing the correctness of the system model. The synchronous product
of transition systems is verified for liveliness, boundedness, deadlocks, and traps, ensuring that the model
operates correctly without redundancy. Büchi automata are created to accept words confirming the
properties, with examples and counterexamples found during the analysis.
The proposed method serves as a foundation for creating automated analyzers for coreference resolution
applications based on decision trees, demonstrating high efficiency and accuracy. The approach allows for
the formal verification of system properties on potentially infinite state sequences, ensuring the reliability
and correctness of the coreference resolution system throughout its runtime.

Keywords		1	
artificial intelligence, natural language processing, coreference resolution, decision trees, transition
systems, Büchi automata, Petri nets, formal verification

1. Introduction	

Coreference Resolution is a task in Natural Language Processing (NLP) that involves finding all the
linguistic objects in a text (such as nouns, pronouns, and noun phrases) that refer to the same real or
imaginary entity. The result of solving this task is establishing correspondences between text objects
that indicate the same entity; such correspondence can be established for a pair of objects or their
cluster.

Examples of coreferent objects [1] are provided below; the referent (noun) is highlighted in bold,
and pronouns are underlined.

● Simple anaphora (the noun precedes the pronoun in the text): "He crossed the mountain. It
was high."

● Simple cataphora (the noun is mentioned after the pronoun): "She walked onto the road
leading to the right. Maria was in a good mood today."

14th International Scientific and Practical Conference from Programming UkrPROG’2024, May 14-15, 2024, Kyiv, Ukraine
* Corresponding author.
† These authors contributed equally.

 sdp77@i.ua (S. Pogorilyy); maxim.slinko@gmail.com (M. Slynko); 1234bpv@i.ua (P. Biletskyi)
 0000-0002-6497-5056 (S. Pogorilyy); 0000-0001-9667-8729 (M. Slynko); 0000-0001-5425-3706 (P. Biletskyi)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

● Compound referent: "Ivan, Mykhailo, and Ostap — all worked underground."
Automated methods for solving the coreference resolution task include algorithms based on strict

rules formulated by qualified linguists and artificial intelligence (AI) methods. AI methods include
neural networks, language models, and decision trees. Decision trees, unlike other AI methods, have a
structure that allows relatively easy analysis of their internal logic and corrections to their structure to
change the classification logic.

In the process of creating large complex software systems, errors often arise. Therefore, ensuring
the reliability of such systems is relevant. Testing is a common method to find errors in software
products during the development. However, testing allows for finding errors in the program but
cannot guarantee their absence. For a more detailed analysis of the application reliability, formal
verification methods are used.

To conduct formal verification, it is necessary to build a formal model of the system. The system
can be formally represented using various methods. We propose using the marked transition systems
[2] apparatus, which allows describing the system with a set of discrete states between which
transitions occur under certain conditions, indicating the operations that system performs while
transitioning from one state to another.

Once the formal model is built, the next step of the analysis is to define the properties of the
system to be analyzed and to express them in a formal way - formalize them. After obtaining the
system model and the properties for its verification, formal methods are used to prove the verification
or falsification of the properties. For this, Petri nets and Büchi automata [3] were used.

The paper considers the problem of coreference resolution in Ukrainian-language texts using
decision trees. The application of transition systems is proposed to build a high-level specification
model for coreference resolution. Formalization is carried out, and network/automata models and
linear-temporal logic are used to verify a set of properties of the obtained specification. Büchi
automata are created to accept words confirming the properties, and examples and counterexamples of
the analyzed properties are found.

2. Using Decision Trees for Coreference Resolution

● A decision tree is a hierarchical structure consisting of nodes (the root—the initial node,
internal nodes, and leaf nodes). Each non-leaf node of such a tree refers to two subtrees (or
child nodes). Decision tree structure can be generated automatically based on a training
dataset.

● The dataset should contain elements and class labels for them. Each element consists of
features that can take real or Boolean values (i.e., values that support comparison operations
necessary for the tree's functioning). In the work [1], the dataset for coreference resolution
consists of elements describing pairs of potentially coreferent objects and a label indicating
whether these objects are coreferent. Each element contains features of the pair, such as:
matching number, gender, part of speech of the first and second object, lemmatized versions
of the objects, the number of words between the objects, the cosine similarity measure of the
vectors of the considered objects, and others. All these features are obtained automatically
using the UDpipe library [4], the ELMo model for creating word vector representations [5],
and own algorithms. The dataset (2500 texts containing 2.4 million examples) was divided
into training (1500) and test (1000) samples.

● The decision tree for coreference resolution in the work [1], created using the scikit-learn
library [6], is formed by selecting a specific feature at each step in the process of deepening.
This feature is chosen in such a way as to best separate the set considered in the specific
subtree into classes. The Gini impurity coefficient [7] is used to select this feature, which
allows evaluating the probability of incorrect classification of a randomly chosen object from
the subgroup.

Figure 1: Decision tree (limited size) [1]

As with other AI methods, decision trees are prone to overfitting, which is the excessive adaptation
of the tree structure to the dataset used for its creation. In this case, the algorithm's accuracy on
data not used for training decreases. To overcome this phenomenon, the parameter
`min_impurity_decrease` is used in the work [1], which allows limiting the tree's depth if further
splitting into subsets decreases the Gini coefficient by less than the threshold value. The size of the
decision tree from figure 1 is limited by `min_impurity_decrease` set to 0.00005 for illustration
purposes (in the final decision tree it was 0.000003).
The created decision tree allows classifying input objects by transitioning into subtrees starting
from the root following the rule specified in the current node. Since each input object describes a
pair of potentially coreferent objects, the decision tree performs a binary classification task.
Coreferent links can exist between more than two objects in the text, for example, including three,
four, or more objects. Therefore, to obtain results, coreferent objects are grouped into clusters. In
the work [1], initially, all potentially coreferent objects are considered clusters. Their merging
occurs if at least one pair of potentially coreferent objects from the first and second clusters is
recognized as coreferent.

The quality of clustering is evaluated by comparing the obtained clusters with the original ones
using special metrics. Such an assessment is performed on the test sample. The results obtained in
the work [1] show high algorithm efficiency, close to the results of the BiLSTM neural network-
based model [8].
The parts of the decision tree used for further algorithm analysis are shown at figures 2 and 3.

Figure 2: Decision tree subtree (with root node) [1]

Figure 3: Decision tree subtree (continuation of tree from figure 2) [1]

3. Formal Verification of Algorithms Using Decision Trees

As shown in the review article [9], existing studies use formal verification for machine learning

models using Satisfiability Modulo Theories (SMT) and Linear Programming (LP). In this paper we
propose an approach to verification using automata models and linear-temporal logic, which allows
exploring the temporal characteristics of the model on potentially infinite state sequences. Typically, a
mathematical model of a discrete system represents a graph where vertices correspond to states (or
state classes) the system can be in at different times, and edges represent transitions between states
that may have labels indicating actions or events performed by the system.

The system's functioning is represented by sequences of transitions from one state to another. If an
edge has a label, this label represents the system's action performed when transitioning from the state
at the beginning of the edge to the state at its end. The work uses marked transition systems (marked
TS or MTS) as a discrete model of general-type computations [2].

4. Creation of MTS Models at a High Level of Abstraction

From the modeling perspective, an application using decision trees for coreference resolution can
be represented as the interaction of such systems:

● TS 1 or "control" system: responsible for interaction with external resources;
● TS 2 or "core": system representing the traversal of the decision tree.

The control system is modeled by TS:
𝑀 = ({𝑣!, 𝑣!, 𝑣!}, {𝑎!, 𝑎!, 𝑎!},𝛼,𝛽, 𝑣!), (1)

where v0 is the system in the availability state; v1 is the state where the system processes input
data; v2 is the state where the system outputs the result. Transitions are interpreted as follows: a1 is
receiving a new set of input data; a2 is forming the classification result; a3 is transitioning to the
availability state.

Figure 4: TS representation of the “control” system.

For clarity, let's use a subtree of the decision tree obtained in [1] as the “core”. Note that during the

model creation process, two surrogate states were added to the subtree: the initial s0 and the final s6; as
well as the transition t11 between them. This is necessary to represent the decision tree as a
continuously functioning system, allowing the use of temporal logic for further analysis. The final
model is defined as:

𝑆! = {𝑠!, 𝑠!, 𝑠!, 𝑠!, 𝑠!, 𝑠!, 𝑠!}, (2)
𝑇! = {𝑡!, 𝑡!, . . . , 𝑡!!}, (3)
𝐾 = (𝑆! ,𝑇! ,𝛼,𝛽, 𝑠!), (4)

The set of propositional formulas associated with states and the labeling function for each state
are shown in the figure 5.

Figure 5: TS representation of the “core” system.

It is important to note that in the subtree, which was selected for modeling, each subset of states

{s2, s3, s4} asserts coreference of the input data. Accordingly, each of the states {s0, s1, s5} asserts the
absence of coreference, and the state s6 preserves the coreference class determined earlier.

For the above TS, we construct a synchronized parallel composition (synchronous product) with
global transitions modeling the application's operation as a whole. The set of synchronization
constraints includes the following elements (ε - identical action indicating no transition in TS):

𝑇 = {(𝑎!, 𝑡!), (𝑎!, 𝑡!), (𝜀, 𝑡!), (𝜀, 𝑡!), 𝜀, 𝑡! , 𝜀, 𝑡! , 𝜀, 𝑡! , 𝜀, 𝑡! , 𝜀, 𝑡! ,
(𝜀, 𝑡!"), (𝑎!, 𝜀), (𝑎!, 𝑡!!)}. (5)

Figure 6: synchronized composition of TS 1 and 2.

5. Using Petri Nets for Verifying Model Correctness

Once the synchronous product of the above TS with global transition constraints is defined, it

becomes possible to proceed with its verification. The main models of such a process are automata
and network models. The work considers using Petri nets (PN) for which there is a wide range of
analysis methods. In [10], it is described that the semantics of the TS product and the PN semantics
modeling it are consistent in the sense that the sequence of global transitions t1,...,tk represents the

global history of the TS product if and only if it is an acceptable sequence of transitions in the PN.
Accordingly, the elements of the set T become PN transitions, and the global states of TS (the set of
states of each TS participating in the synchronous product before or after the global transition)
become places in the obtained network. According to the set of synchronization constraints T, we
build a Petri net modeling the joint operation of the core model and the control system:

Figure 7: PN that represents synchronized composition of TS 1 and 2.

We will verify the liveliness of such a system. The "liveliness" property means that all transitions

in the obtained model will participate in its operation process [2]. If certain transitions in the PN
never fire, it means that the system's design is incorrect or redundant. We will examine the PN for
liveliness by solving the state equation of the form 𝐴�𝑥 = 0 where A is the incidence matrix of the
PN.

Table 1
Incidence matrix A

 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

S0 -1 0 0 0 0 0 0 -1 0 0 0 1

S1 1 -1 0 0 0 0 0 0 -1 0 0 0

S2 0 1 -1 0 0 0 0 0 0 -1 0 0

S3 0 0 1 -1 0 -1 0 0 0 0 0 0

S4 0 0 0 1 -1 0 0 0 0 0 0 0

S5 0 0 0 0 0 1 -1 0 0 0 0 0

S6 0 0 0 0 1 0 1 1 1 1 -1 0

S7 0 0 0 0 0 0 0 0 0 0 1 -1

Solutions to the state equations with the incidence matrix from Table 1 are listed in Table 2. The

TSS algorithm [11] was used to solve the state equation.

Table 2
State equation solutions

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

1 1 1 1 1 0 0 0 0 0 1 1

1 1 1 0 0 1 1 0 0 0 1 1

1 1 0 0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

The incidence matrix and the state equation solutions indicate that all transitions in the PN are

covered by positive invariants. Additionally, only transitions corresponding to a single decision tree
branch fire at any given time. Analysis of the boundedness PN property is performed by solving the
system of equations of the form 𝐴!�𝑥 = 0 where 𝐴! is the transposed matrix of A. The set of
solutions includes vector 𝑥 = {1,1,1,1,1,1,1,1}, that covers all places of the PN with positive values.
Therefore, the PN under analysis is bounded, and there are no unreachable places.

Let's consider the Petri net for the presence of deadlocks and traps. Semantically, a deadlock
state is a reachable marking of the net from which no transition is possible [12]. A Petri net is
structurally live if and only if each of its deadlocks has a trap. The logical dependency system for
deadlock detection in Petri nets in Figure 7 is presented as follows:

𝑠! → 𝑠!; 𝑠! → 𝑠!; 𝑠! → 𝑠!; 𝑠! → 𝑠!; 𝑠! → 𝑠!;
𝑠! → 𝑠! ∨ 𝑠! ∨ 𝑠! ∨ 𝑠! ∨ 𝑠!; 𝑠! → 𝑠!. (6)

The system of linear homogeneous Diophantine inequalities (SLHDI), corresponding to this
system of logical dependencies, can be represented in the form of the Table 3:

Table 3
SLHDI for deadlock detection

-1 0 0 0 0 0 0 1 ≥ 0

1 -1 0 0 0 0 0 0 ≥ 0

0 1 -1 0 0 0 0 0 ≥ 0

0 0 1 -1 0 0 0 0 ≥ 0

0 0 0 1 -1 0 0 0 ≥ 0

0 0 0 0 1 -1 0 0 ≥ 0

1 1 1 0 1 1 -1 1 ≥ 0

0 0 0 0 0 0 -1 1 ≥ 0

The set of deadlocks in the Petri net under consideration contains the following elements, among

which the first deadlock is a combination of basic others:
𝐷! = {𝑠!, 𝑠!, 𝑠!, 𝑠!, 𝑠!, 𝑠!, 𝑠!, 𝑠!},

𝐷! = {𝑠!, 𝑠!, 𝑠!},
𝐷! = {𝑠!, 𝑠!, 𝑠!},

 𝐷! = {𝑠!, 𝑠!, 𝑠!}, (7)
𝐷! = {𝑠!, 𝑠!, 𝑠!},
𝐷! = {𝑠!, 𝑠!, 𝑠!},
𝐷! = {𝑠!, 𝑠!, 𝑠!}.

Let's proceed to investigate the traps of the Petri net depicted in Figure 7. The logical
dependency system for trap detection looks like:

𝑠! → 𝑠! ∧ 𝑠!; 𝑠! → 𝑠! ∧ 𝑠!; 𝑠! → 𝑠! ∧ 𝑠!;
𝑠! → 𝑠!; 𝑠! → 𝑠!; 𝑠! → 𝑠!; 𝑠! → 𝑠!. (8)

Table 4

SLHDI for trap detection

-1 1 0 0 0 0 1 0 ≥ 0

0 -1 1 0 0 0 1 0 ≥ 0

0 0 -1 1 0 0 1 0 ≥ 0

0 0 0 0 -1 0 1 0 ≥ 0

0 0 0 0 0 -1 0 0 ≥ 0

0 0 0 0 0 0 -1 1 ≥ 0

1 0 0 0 0 0 0 -1 ≥ 0

The following set of traps is obtained after solving the SLHDI in Table 4:

𝑇𝑟! = {𝑠!, 𝑠!, 𝑠!, 𝑠!, 𝑠!},
𝑇𝑟! = 𝑠!, 𝑠!, 𝑠!, 𝑠! ,
𝑇𝑟! = {𝑠!, 𝑠!, 𝑠!, 𝑠!}, (9)
𝑇𝑟! = {𝑠!, 𝑠!, 𝑠!},
𝑇𝑟! = {𝑠!, 𝑠!, 𝑠!}.

Since a given Petri net is free-choice, the following statement holds for such nets: a free-choice
Petri net is live if and only if every deadlock in such a net includes the trap marked by the initial
marking. As evident from the given Petri net, each of its basic deadlock (7) includes at least one of
the traps (9), thus the Petri net depicted on Fig 7 is live.

6. Verification of Model Properties Using Büchi Automata

We propose using the following algorithm to verify a linear-temporal formula P representing a

property that determines the system's semantic correctness:
1. Create a Büchi automaton that accepts words confirming P.
2. Construct the product of the automaton and the TS modeling the original system.
3. Find the intersection of paths generated by the transition system and the paths accepted by the

automaton. Further analysis of the reachable states of the intersection allows finding both
examples and counterexamples of the formula P [3].

Let's consider the use of the algorithm with an example: suppose there is a hypothesis that,
during the analysis of coreference between two objects, if the length of the second object is small,
then the objects are coreferent. Such a property can be represented by a following formula in linear
temporal logic:

𝑃! = (𝑙𝑒𝑛2 ≤ 1.5) → 𝐺(𝐹(𝑐𝑜𝑟𝑒𝑓)), (10)
In other words, if the condition holds true, the system will eventually transition to a state that

establishes the coreference class and remain in that state.

Figure 8. Representation of a Büchi automaton corresponding to the linear temporal formula P1.

The Büchi automaton that accepts words corresponding to formula P1 has two states: initial

state p0 and final state p1. Once it transitions to p1, the automaton remains in that state regardless
of the input words.

Let's construct the intersection of the Büchi automaton (Figure 8) and TS, which models the
synchronous product of TS 1 and 2 (Figure 6). A simplified visual representation of the obtained
intersection is shown in Figure 9 (for clarity, unreachable states are hidden).

Figure 9. Intersection of the Büchi automaton and the TSю

The obtained intersection allows for further analysis of feasible paths, cycles and traces. In

particular, we observe that there exists a path where a transition occurs from state p1 to state p0
(the final state of such transition is highlighted by two concentric circles on Fig 9), indicating a
counterexample to property P. Indeed, having just the information about the length of one of the
objects is insufficient to assert their coreference: traversal of the tree with the specified constraint
can end in either state s4, which asserts coreference, or state s5, which asserts its absence.

If we consider another linear temporal logic formula, for example,
𝑃! = (𝑙𝑒𝑚𝑆 ∧ 1𝑝𝑟𝑝 ∧ 𝑙𝑒𝑛2 ≤ 1.5 ∧ 𝑙𝑒𝑛1 ≤ 1.5 ∧ 𝑛𝑂𝑏𝑗𝐵𝑡𝑤 ≤ 58.5) → 𝐺(𝐹(𝑐𝑜𝑟𝑒𝑓)), (7)
Then the analysis of the Büchi automaton product and the synchronous product of TS will

demonstrate the absence of a path-cycle that is accessible from the initial state and includes a state
from the set of unreachable states. Thus, formula P2 is true, indicating that the property it
represents holds true universally.

7. Conclusions	

The study presented in this paper explores the use of decision trees for coreference resolution in
Ukrainian-language texts. Decision trees are demonstrated to be an effective method for this task,
providing clear and interpretable structures that facilitate the analysis and formal verification of their
properties. The application of decision trees allows for binary classification of potentially coreferent
object pairs, leading to the formation of coreferent clusters with high accuracy, as evidenced by the
experimental results.

A significant contribution of this work is the integration of formal verification methods to ensure
the reliability and correctness of the coreference resolution system. By constructing a formal model
using marked transition systems, we enable the detailed examination of the system's behavior across
potentially infinite state sequences. This approach guarantees the absence of errors during the entire
runtime of the system, a feat not achievable with other formalization tools such as SMT, which only
address verification at specific static moments.

The use of Petri nets further strengthens the analysis by providing a robust framework for
examining the correctness of the model. The synchronous product of the transition systems is

analyzed for liveliness, boundedness, and the presence of deadlocks and traps, ensuring the system
operates correctly and efficiently without redundancy.

Additionally, the paper proposes using Büchi automata and linear-temporal logic to verify
properties of the AI classifiers. This approach allows for the formal verification of semantic
correctness by intersecting the paths generated by the transition system with those accepted by the
automaton. The approach is illustrated with practical examples, demonstrating both the identification
of counterexamples and the verification of property compliance.

Overall, the research lays a solid foundation for creating automated analyzers for coreference
resolution applications based on decision trees. The methodologies developed in this work ensure
high efficiency, accuracy, and reliability of the system, providing valuable insights for future
advancements in the field of natural language processing and formal verification.

References	

[1] S. Pogorilyy, P. Biletskyi. Coreference resolution algorithm for Ukrainian-language texts
using decision trees, Proceedings of the 13th International Scientific and Practical
Programming Conference UkrPROG, 2022, pp. 81-90.

[2] Y. Boyko, S. Kryvyi, S. Pogorilyy et al. Methods and innovative approaches to designing,
managing, and deploying high-performant IT infrastructures. PPC “Kyiv University”, 2016,
p. 447 [in Ukrainian]

[3] S. Kryvyi, S. Pogorilyy, M. Slynko, A. Kramov. Method of semantic application verification
in GPGPU technology. System Research & Information Technologies № 3, 2020, pp. 7-22.

[4] UDpipe library. Accessed: 06.04.2024. https://lindat.mff.cuni.cz/services/udpipe/
[5] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer.. Deep

contextualized word representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, № 1, 2018, pp. 2227–2237.

[6] Scikit learn for decision trees. Accessed: 06.04.2024. https://scikit-
learn.org/stable/modules/tree.html

[7] S. Tangirala. Evaluating the Impact of GINI Index and Information Gain on Classification
using Decision Tree Classifier Algorithm, International Journal of Advanced Computer
Science and Applications, 2020, pp. 612-619.

[8] S. Telenyk, S. Pogorilyy, A. Kramov. The complex method of coreferent clusters detection
based on a BiLSTM neural network, Knowledge Based Systems, 2021, pp. 205-210.

[9] M. Krichen et al. Are Formal Methods Applicable To Machine Learning And Artificial
Intelligence? In Proceedings of 2nd International Conference of Smart Systems and Emerging
Technologies (SMARTTECH), 2022, pp. 48-53.

[10] A. Arnold. Finite Transition Systems: Semantics of Communicating Systems. - Paris:
Prentice Hall, 1994, p. 177.

[11] S. Kryvyi. Linear Diophantine limits and their application. Chernivtsi: “Bukrek” Publishing
House, 2015, ISBN 978-966-399-650-9 [in Ukrainian]

[12] S. Kryvyi et al. Design of Grid Structures on the Basis of Transition Systems with the
Substantiation of the Correctness of Their Operation. Cybernetics and Systems Analysis,
Volume 53, Issue 1, Springer Science+Business Media New York 2017, January 2017, pp
105–114.

