
Autonomous Navigation Through the Maze Using
Coevolution Strategy

Iaroslav Omelianenko1, Anatoliy Doroshenko1 and Yevheniy Rodin1

1 Institute of Software Systems of NAS of Ukraine, 40, Academician Glushkov avenue, Kyiv, 03187, Ukraine

Abstract		
This study explores the use of coevolutionary methods to address the challenge of navigating through
complex maze environments with autonomous agents controlled by artificial neural networks. It
underscores a critical impediment to algorithmic optimization: the close interdependence between the
task's goal and the objective function used for optimal solution discovery. The task's goal is clear —
identify the most efficient route through the maze. However, the objective function's formulation is more
complex. In complex maze layouts, numerous deceptive areas may appear proximate to the exit but
culminate in dead ends. Consequently, an elementary objective function that merely gauges the proximity
to the exit can encounter numerous local optima within this deceptive search space, hindering the search
for optimal solution. As maze complexity increases, such an objective function inevitably becomes
ensnared in a local optimum, rendering the navigation issue unsolvable.
To counteract this, the study proposes a coevolution strategy involving a population of decision-making
agents and a population of objective function candidates. This approach diverges from prior research by
incorporating the NEAT algorithm to steer the coevolution of both populations. Additionally, the Novelty
Search method was suggested to optimize the search within the potential solution space, favoring the most
novel solutions.
The paper details the mathematical framework for crafting the objective function template, which
integrates the novelty value of the discovered solution and its distance from the maze's exit. This
framework serves as the foundation for defining the genomes of the organisms — candidates for the
objective functions.
For comparison with preceding works, an experiment was conducted to evaluate the efficacy of the
proposed coevolution method in resolving the problem of navigation within a complex maze environment.

Keywords		1	
genetic algorithms, neuroevolution of augmenting topologies, autonomous maze navigation, NEAT,
coevolution, CEUR-WS

1. Introduction	

Application of any evolutionary algorithm (EA) to solve problem of navigation in a complex
environment can be reduced to finding the optimal path allowing to reach the goal. This can be
done by defining an objective function (fitness function) that we are going to minimize of maximize.
However, in the previous work [1, 2] it was shown that there is a fundamental issue that arise in
practice. While the objective of a task may be well defined and well known, the objective function
may be deceptive.

We can easily illustrate the above statement on the example of building a model of an
autonomous agent for solving the two-dimensional maze shown in Fig. 1. The task of the agent’s
control model is to steer the robot in such a way that it can go through the maze from the initial
position to the exit in a specified number of steps. The control model determines the behavior of the

14th International Scientific and Practical Conference from Programming UkrPROGР’2024, May 14-15, 2024, Kyiv, Ukraine
 yaric.mail@gmail.com (Iaroslav Omelianenko); doroshenkoanatoliy2@gmail.com (A. Doroshenko);
yevheniy.s.rodin@gmail.com (Yevheniy Rodin)

 0000-0002-2190-5664 (Iaroslav Omelianenko); 0000-0002-8435-1451 (Anatoliy Doroshenko; 0000-0003-2416-8572
(Yevheniy Rodin)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

robot (direction of the movement) at each step depending on the current state of the environment:
the position of the robot in the maze, the distance to the walls, and azimuth to the exit point.

Figure 1:	Two-dimensional maze with local optima cul-de-sacs (shadowed).	

By intuition we can define the objective function as distance from the current position of the

robot in the maze and maze exit point, as was done in [1]. However, in complex maze environment
solver agent may face the increasing difficulty of choosing an adequate direction of movement
based only on the distance to the exit.

As can be seen in Figure 1 even if the distance to the maze exit seems to be minimal, this doesn’t
mean that the path to the exit has been found. The objective function can have local optima of
fitness scores in cul-de-sacs of the maze where steep gradients of fitness score values are registered
[3, 4]. As a result, we have a deceptive landscape of fitness score values, that cannot be solved of a
goal-oriented objective function.

Thus, we can see that even if optimal solution can be defined by control model, it cannot always
be found during the evolutionary process using a simple objective function. Even more, our
intuition about objective function seems flawed, as it equates the ultimate goal (maze exit) with the
design of the objective function (distance to the maze exit).

As a solution for this problem, it was proposed in [5] to separate the optimization of the control
model and the optimization of the objective function using the SAFE (Solution and Fitness
Evolution) method. The crucial idea behind this method is following – even if the goal of the solver
agent is to reach the maze exit point, this doesn’t necessarily mean that the objective function is the
distance to the exit. Thus, it was proposed to use the method of co-evolution of two populations of
organisms – the population of control models and the population of candidates for objective
functions.

The novelty of the approach considered in this paper is the use of the NEAT neuroevolution
algorithm [2, 6, 7, 9] for the evolution of the population of controlling models.

The purpose of this work is the research and implementation of a new method of training of
artificial neural networks (ANN) that can control the navigation of autonomous robotic systems in a
complex environment.
2. Related works

Navigating optimally in complex environments is crucial for developing autonomous agents, and
numerous scientific studies have tackled this challenge. In [1] it was proposed to use the NEAT
algorithm with a simple objective function defined as the distance between the current position of

the agent and the final goal (exit from the maze). However, this approach is effective for simple
maze layouts but encounters difficulties with more intricate maze configurations.

To address the challenge of developing optimal control models for complex maze configurations,
[3, 4, 8] introduced an optimization method called Novelty Search (NS). This method rewards
organisms that discover novel solutions within the space of previously found solutions, defining the
novelty factor as objective function rather than the distance to the goal. The primary driver of NS is
natural, unrestricted evolution, which often optimizes organisms' genomes by using new
combinations to explore unknown territories and seek new behavioral patterns.

NS offers several advantages, including an unlimited search space and the potential to find non-
trivial solutions. However, focusing solely on novelty can be problematic, as it doesn't incentivize a
control model to stay on a goal-oriented trajectory and improve performance. Additionally, the time
required to solve navigation problems using NS can be substantial, especially with complex maze
configurations, making this method impractical in many cases.

Unlike the above-mentioned optimization methods, the approach of coevolving population of
solver agent with population of candidates in the objective function, as proposed in this work,
enables the discovery of optimal navigation solutions for complex maze configurations within a
reasonable timeframe. Additionally, employing the NEAT algorithm to guide the evolution of solver
agents results in optimal ANN topologies of control models. As a result, this enhances energy
efficiency of produced control ANNs, making these models suitable for systems with limited
computing and energy resources, such as industrial robots or autonomous drones.

The innovative aspect of the method discussed in this paper lies in the use of the NEAT
algorithm for evolving the population of solver agents (control models) and the NEAT algorithm
with NS-based search optimization for evolving the population of candidate objective functions.
Furthermore, this work introduces a new modification of the NS method designed to limit the
search space, thereby enhancing performance.

3. Background

The natural evolution of biological systems is intrinsically linked to the concept of coevolution.
Coevolution serves as one of the primary driving forces in evolution. Its influence can be seen in the
current state of the biosphere and the existing diversity of organisms.

Coevolution can be described as a mutually advantageous strategy where multiple genealogies of
different organisms evolve simultaneously. The evolution of one species is inherently dependent on
others. Throughout evolution, coevolving species interact, and these interspecies relationships
shape their evolutionary strategies. We can define three main types of the coevolution:

• mutualism, when two of more species peacefully coexist and receive mutual benefit from
each other,

• concurrent coevolution:
a) predation, when one organism kills another and consumes its resources,
b) parasitism, when one organism uses the resources of another, but does not kill it,

• predation, when one organism kills another and consumes its resources,
• parasitism, when one organism uses the resources of another, but does not kill it,
• commensalism, it occurs when members of one species gain benefits without affecting

the other species, either positively or negatively.

The last type of coevolutionary strategy has attracted the attention of researchers in [5] due to

its potential for developing an effective method for training autonomous agents. As a result, the
implementation of the SAFE algorithm was proposed, which we will consider further.

4. SAFE algorithm features

As the name suggests, the SAFE coevolution method of the solver and fitness function relies on
their simultaneous evolution, guiding the optimization of the solution search. The SAFE method is
centered on the strategy of commensalistic coevolution between two populations:

a population of potential solutions that evolve to solve the task,
a population of candidate objective functions that evolve to guide the evolution of the

population of solutions.

The core concept of the SAFE algorithm is to leverage distinct search optimization methods for

each of the two populations independently. Objective-based optimization, which measures the
distance to the maze exit, can be used to estimate the fitness score of each solution in the population
of potential solutions. NS-based optimization is suitable for guiding the evolution of population of
candidates for objective functions. With NS optimization, we are not focused on a specific metric
but rather on exploring various paths in the solution search space.

This work suggests using the NEAT algorithm to manage the evolution of a population of
potential solutions, combined with NS (novelty search) to enhance the evolutionary process in the
population of candidates for objective functions.

Next, we consider a modified maze experiment that will be used to assess the effectiveness of the
proposed solution.

5. Maze experiment

In [1], was presented how to use the NEAT algorithm to address the classic problem of
navigating through a maze. In this experiment, a straightforward objective function, based on the
distance from the agent's current position to the maze exit, was used to optimize the search.

The experiment is built around the robot which navigates the maze using information about
environment acquired from its sensors, see Figure 2.

Figure 2:	The configuration of sensors of the robot.	

In Figure 2, the robot's rigid body is depicted as a filled circle, with an arrow inside indicating its

heading. The six surrounding arrows represent rangefinder sensors that measure the distance to the

nearest obstacle in their respective directions. Additionally, the four outer circle segments illustrate
the four pie-slice radar sensors, which function as a compass guiding the robot to the maze exit.

Each radar sensor activates when the line from the maze exit to the robot's center falls within its
field of view (FOV). The detection range of the radar sensor is confined to the maze area within its
FOV. Consequently, at any given moment, one of the four radar sensors is active, indicating the
direction of the maze exit.

The FOV of each radar sensor presented in Table 1.

Table 1
Radar sensors FOV

Sensor	 FOV,	degrees	
Front	 315.0	~	405.0	
Left	 45.0	~	135.0	
Back	 135.0	~	225.0	
Right	 225.0	~	315.0	

The rangefinder sensor is a ray projected from the robot's center in a specific direction. It activates

upon intersecting with an obstacle and measures the distance to it. The detection range of this sensor
is determined by a specific configuration parameter of the robot-navigator. Table 2 presents the
directions that the rangefinder sensors monitor relative to the robot's heading.

Table 2
Rangefinder sensors monitor directions

Sensor	 Direction,	degrees	
Front	 0.0	

Front-Right	 -45.0	
Right	 -90.0	

Front-Left	 45.0	
Left	 90.0	
Back	 -180.0	

The robot's movement is controlled by two actuators that apply forces to turn and/or propel the

agent's frame, altering its linear and/or angular velocity.

In Figure 1 depicted the maze configuration that is used in the experiment. The maze is an area

enclosed by outer walls. The entry point of the maze at the bottom-left and exit point at the top-left.
Inside maze area, various internal walls create multiple dead ends with local fitness optima
(shadowed), making objective-oriented optimization less effective. Additionally, due to these local
fitness optima, objective-based search agents can become trapped in a specific dead end, completely
halting the evolution process.

As previously mentioned, the SAFE method involves two distinct evolutionary processes: one for

the population of potential solutions and another for the population of candidates for the objective
function. Therefore, we need to define the fitness functions for each evolutionary process.

6. Maze solver fitness function

In each generation of the evolution, every solution individual (maze solver) is evaluated against
all objective function candidates. The fitness score of the solution is determined by the highest

fitness score obtained during these evaluations. The fitness function of the maze solver combines
two metrics: the distance from the maze exit (objective-based score) and the novelty of the solver's
final position (novelty score). These scores are arithmetically combined using a pair of coefficients
derived from the specific individual in the population of the objective function candidates as can be
seen from the following formula:

 𝑂! 𝑆! = 𝑎× !
!!
+ 𝑏×𝑁𝑆!, (1)

where 𝑂! 𝑆! – is the fitness score values from obtained by evaluating the solution candidate 𝑆!
against the objective function 𝑂!. Here, the pair of coefficients, [a, b], is the output of the specific
objective function candidate. This pair determines how the distance to the maze exit (𝐷!) and the
behavioral novelty (𝑁𝑆!) of the solution influence the final fitness score of the maze solver at the
end of its trajectory.

The distance to the maze exit (𝐷!) is calculated as the Euclidean distance between the maze
solver's final coordinates and the maze exit coordinates. This is represented by the following
formula:

 𝐷! = 𝑎! − 𝑏! !!
!!! , (2)

where a is the coordinates of the maze solver at the end of its trajectory and b is the maze exit
coordinates.

The novelty score 𝑁𝑆! of each maze solver is based on its final position in the maze (point 𝑥). It
is calculated as the average distance from this point to the k -nearest neighbor points, which are the
final positions of the other maze solvers. The novelty score value at point 𝑥 of the behavioral space
can be calculated with following formula:
 𝑁𝑆! =

!
!

𝑑𝑖𝑠𝑡(𝑥,�!)
!
!!! , (3)

where �! is the i-th nearest neighbor of 𝑥 and 𝑑𝑖𝑠𝑡(𝑥,�!) is the distance between �! and 𝑥.
The novelty metric, which measures how different the current solution (𝑥) is from another

(�!) produced by different maze solvers, is calculated as the Euclidean distance between the two
points by formula:

 𝑑𝑖𝑠𝑡(𝑥,�) = 𝑥! − �!
!

!
!!! , (4)

where �! and 𝑥! are the values at position j of vectors holding the coordinates of points �
and 𝑥.

7. Objective function candidates’ fitness function

The SAFE method employs a commensalistic coevolutionary approach, where one of the co-
evolving populations is neither benefited nor harmed during evolution. In an experiment, this
commensalistic population consists of candidates for target functions. For these candidates, we
need to define a fitness function that is independent of the quality of the maze-solving agents
(controlling models).

A suitable option here is a fitness objective function that uses a novelty metric to estimate
fitness. The formula for calculating the novelty score of each objective function candidate is the
same as for the maze-solving agents (3). The only difference is that, for objective function
candidates, we calculate the novelty score using vectors with the output values of each
organism in the population [a, b] (see equation 1). We then use the novelty score value as a
measure of the organism's fitness.

In [3, 4, 8], an implementation of the NS optimization method is presented, where
modifications were forcibly made to limit the search space. This was done to enhance the
algorithm's performance and ensure its execution within a specified time frame.

8. Novelty Search modifications

The modifications to the NS method presented in this experiment involve a new approach to
maintaining the archive of novelty points. An individual novelty point records the maze solver's
location at the end of its trajectory, combined with its novelty score. In the traditional NS
method, the size of the novelty archive is dynamic, allowing the addition of a novel point if its
novelty score exceeds a certain threshold (the novelty threshold). This threshold can be
adjusted during runtime based on the rate at which new novelty points are discovered, helping
control the archive's maximum size. However, selecting an initial novelty threshold value is not
straightforward.

The modified NS method introduces a fixed-size novelty archive to address the challenge of
choosing the correct novelty threshold value. New novelty points are added to the archive until
it is full. After that, a novelty point is only added if its novelty score exceeds the current
minimum score in the archive, replacing the point with the lowest score. This approach
maintains a fixed archive size, storing only the most valuable novelty points discovered during
the evolution.

9. Maze experiment

In this experiment, we need to establish two co-evolving populations with different initial
genotype configurations to meet the phenotypic requirements of the resulting species. The
maze solver's phenotype includes 11 input nodes for sensor signals and two output nodes for
control signals. Meanwhile, the objective function candidate's phenotype has one input node
receiving a fixed value (0.5), which is converted into two output values used as the fitness
function coefficients for the maze solver.

Additionally, we need to develop a maze-solving simulation environment to evaluate the
solver agents at each epoch of the evolution.

10. Maze-solving simulation environment

In this work, software was developed to model the maze-solving problem, like the one
described in [1], but using the GO programming language with modifications to facilitate the
coevolution of two populations. The software comprises the following main components, each
implemented as a separate class:

1. Agent – a class that stores information related to the maze navigator agent involved in
the simulation.
2. RecordStore – a class that manages the storage of records related to the evaluations of all
decision agents during the evolutionary process. The collected records can be used to analyze the
evolutionary process after its completion.
3. Environment – a class that contains information about the maze simulation environment.
This class also includes methods to control the maze simulation environment and the
position of the solving agent, detect collisions with maze walls, and generate input data for
the agent's sensors.
4. NoveltyItem – a class designed to encapsulate information about specific data item, that
contains information about the novelty score associated with a particular genome, enhanced by
supporting information. It is used in conjunction with NoveltyArchive.
5. NoveltyArchive – a class that manages the storage of all found NoveltyItems and provides
methods to evaluate their novelty as new items are found.
Next, we are going to describe the experiment details.

11. Maze experiment details

This research aimed to develop a control ANN model capable of navigating a complex maze with
configuration as illustrated in Figure 1. This allows for a comparison between the coevolution
method and the simple evolution method described in previous work [1]. It has been demonstrated
that while a simple evolutionary process controlled by the NEAT algorithm can solve basic maze
navigation problems, it struggles with more complex maze configurations. Therefore, this
experiment is crucial for demonstrating the effectiveness of the coevolution method.

The maze features two fixed positions marked by filled circles. The lower left circle indicates the
starting position of the maze-solving agent, while the upper left circle marks the exact location of
the maze exit. To complete the task, the robot must reach a point near the maze exit for specific
number of time steps.

12. Maze experiment results

The experiment was conducted using GO programming language version 1.24.1, with the
goNEAT version 4.0.2 [10] and goNEAT_NS version 4.0.2 [11] libraries used to develop the
simulation and evaluation source code. The workstation used had the following specifications: CPU
2.3 GHz 8-Core Intel Core i9, 16 GB 2667 MHz DDR4, running macOS 14.4.1.

The successful evolutionary process runner has the NEAT hyper-parameters as specified in
Table 3.

Table 3
NEAT hyper-parameters of successful evolutionary process

Parameter	 Value	

trait_param_mut_prob		 0.5	
trait_mutation_power		 1.0	
weight_mut_power	 0.8	

disjoint_coeff	 1.0	
excess_coeff	 1.0	
mutdiff_coeff	 3.0	

compat_threshold	 6.0	
age_significance	 1.0	
survival_thresh	 0.2	

mutate_only_prob	 0.3	
mutate_random_trait_prob	 0.1	
mutate_link_trait_prob	 0.1	
mutate_node_trait_prob	 0.1	
mutate_link_weights_prob	 0.9	
mutate_toggle_enable_prob	 0.1	
mutate_gene_reenable_prob	 0.05	
mutate_add_node_prob	 0.03	
mutate_add_link_prob	 0.1	
mutate_connect_sensors	 0.5	
interspecies_mate_rate	 0.001	
mate_multipoint_prob	 0.6	

mate_multipoint_avg_prob	 0.4	
mate_singlepoint_prob	 0.0	

mate_only_prob	 0.2	
recur_only_prob	 0.2	

pop_size	 300	
dropoff_age	 200	
newlink_tries	 40	
print_every	 100	
babies_stolen	 0	
num_runs	 1	

num_generations	 2000	
log_level	 Info	

epoch_executor	 sequential	
genome_compat_method	 linear	

	 	
After 211 generations of evolution, a successful solver agent was discovered, featuring a

configuration of 22 nodes interconnected by 47 links.
During the coevolution process, the optimal coefficients [a, b] for the objective function were

found and used to train a successful agent-solver: [-0.53283, 0.95889]. Thus, formula (1) can be
rewritten by substituting these coefficients as follows:

 𝑂! 𝑆! = −0.53× !
!!
+ 0.96×𝑁𝑆!, (5)

Based on formula (5), it can be concluded that the identified objective function prioritizes
training to find the most innovative solutions (𝑁𝑆!), while placing less emphasis on the distance to
the maze exit (𝐷!). This supports the initial thesis of the paper, which states that in a complex
environment, a successful objective function differs from merely minimizing the distance to the
goal (exit from the maze).

It is worthwhile to examine the visualization of the maze traversal by the successful solver agent
(Figure 3), noting the smoothness and closeness to the optimal of the route discovered. The path
includes 400 recorded points marking the agent's location throughout the simulation.

Figure 3:	The path of the successful solver agent through the maze.	

Additionally, as shown in Figure 4, throughout all epochs of evolution, only one species out of

the 46 available generated the configuration of the controlling ANN for the successful agent-solver.
This figure also illustrates that the most of evolutionary losers were trapped in the local optima.
Meanwhile, the successful agent demonstrated the highest level of innovation, favoring the
exploration of new areas over the exploitation of known ones (exploration vs. exploitation).

Figure 4:	Visualization of evaluation of population of solver agents by species.	

In Figure 4, to enhance the informativeness of the visualization, we introduced a fitness

threshold to filter out the top-performing species. The top subplot displays the final positions of the
solver agents from the champion species, with fitness scores exceeding 0.8. While bottom one depict
the final positions of solver agents from species – evolutionary losers.

Conclusions

This paper demonstrates the application of coevolving two populations – a population of
decision-making agents and a population of objective function candidates – to address the challenge
of navigating a complex maze environmant. Experimental results obtained have demostrated that
this method is more effective than the one discussed in [1].

Building on previous work [5], a novel approach to implementing the SAFE (Solution and Fitness
Coevolution) algorithm was proposed. This approach involves using the NEAT algorithm to manage
the evolutionary process of both populations linked by commensalistic coevolution. Additionally, the
Novelty Search method was employed to optimize the search for solutions within a deceptive
environment of potential solutions.

As result of this research, the software was developed using the GO programming language [12] to
conduct the coevolution experiment. Additionally, advanced visualization tools were created to
visually assess the results of coevolution as input parameters change.

This method of training controlling ANNs can be applied to create autonomous robotic systems
(drones) capable of navigating complex environments, making it relevant for both humanitarian
demining and other specialized tasks.

References
[1] Omelianenko, Iaroslav. Simulation of the autonomous maze navigation using the NEAT

algorithm. Problems in programming 4, (2023), 76-89. doi:10.15407/pp2023.04.076
[2] Omelianenko, Iaroslav. Hands-On Neuroevolution with Python: Build high-performing

artificial neural network architectures using neuroevolution-based algorithms. Birmingham,
UK: Packt Publishing Ltd, 2019. ISBN: 9781838824914, 368 p.

[3] J. Lehman, K.O. Stanley. Revising the evolutionary computation abstraction: minimal criteria
novelty search. In Proceedings of the 12th annual Genetic and Evolutionary Computation
Conference (GECCO-2010). ACM, 103–110. doi:10.1145/1830483.1830503

[4] J. Lehman, K.O. Stanley. Abandoning objectives: Evolution through the search for novelty
alone. Evolutionary computation 19, 2 (2011), 189–223. doi:10.1162/EVCO_a_00025

[5] M. Sipper, J. H. Moore and R. J. Urbanowicz. Solution and Fitness Evolution (SAFE): A Study of
Multiobjective Problems. In proceedings of the 2019 IEEE Congress on Evolutionary
Computation (CEC), Wellington, New Zealand, 2019, pp. 1868-1874,
doi:10.1109/CEC.2019.8790274.

[6] K. O. Stanley, R. Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation 10, 2 (2002), 99–127. doi:10.1162/106365602320169811

[7] I. Sinitsyn, A. Doroshenko, T. Mamedov, O. Yatsenko. A method of automated design of
neuroevolution algorithms based on Glushkov algebra of algorithms. International Scientific
Technical Journal” Problems of Control and Informatics”, 68, 3 (2023), pp. 74–85.
doi:10.34229/1028-0979-2023-3-8

[8] Omelianenko, Iaroslav. Creation of Autonomous Artificial Intelligent Agents Using Novelty
Search Method of Fitness Function Optimization. hal.science, 2018, url: https://hal.science/hal-
01868756.

[9] Omelianenko, Iaroslav. Autonomous Artificial Intelligent Agents. In: Machine Learning and the
City. John Wiley & Sons, 2022. Chap. 12, pp. 263–285. ISBN: 9781119815075,
doi:10.1002/9781119815075.ch21

[10] Omelianenko, Iaroslav (2023). The GOLang implementation of NeuroEvolution of Augmenting
Topologies (NEAT) algorithm (v4.0.2). [Computer software]. Zenodo.
doi:10.5281/zenodo.10119451

[11] Omelianenko, Iaroslav (2024). The GOLang implementation of NeuroEvolution of Augmenting
Topologies (NEAT) with Novelty Search optimization (v4.0.2). [Computer software]. Zenodo.
doi:10.5281/zenodo.10951521

[12] Cox, R., Griesemer, R., Pike, R., Taylor, I. L., & Thompson, K. The Go programming language
and environment. Communications of the ACM, 65, 5 (2022), pp. 70–78. doi:10.1145/3488716

