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Abstract		
This study explores the use of coevolutionary methods to address the challenge of navigating through 
complex maze environments with autonomous agents controlled by artificial neural networks. It 
underscores a critical impediment to algorithmic optimization: the close interdependence between the 
task's goal and the objective function used for optimal solution discovery. The task's goal is clear — 
identify the most efficient route through the maze. However, the objective function's formulation is more 
complex. In complex maze layouts, numerous deceptive areas may appear proximate to the exit but 
culminate in dead ends. Consequently, an elementary objective function that merely gauges the proximity 
to the exit can encounter numerous local optima within this deceptive search space, hindering the search 
for optimal solution. As maze complexity increases, such an objective function inevitably becomes 
ensnared in a local optimum, rendering the navigation issue unsolvable. 
To counteract this, the study proposes a coevolution strategy involving a population of decision-making 
agents and a population of objective function candidates. This approach diverges from prior research by 
incorporating the NEAT algorithm to steer the coevolution of both populations. Additionally, the Novelty 
Search method was suggested to optimize the search within the potential solution space, favoring the most 
novel solutions. 
The paper details the mathematical framework for crafting the objective function template, which 
integrates the novelty value of the discovered solution and its distance from the maze's exit. This 
framework serves as the foundation for defining the genomes of the organisms — candidates for the 
objective functions. 
For comparison with preceding works, an experiment was conducted to evaluate the efficacy of the 
proposed coevolution method in resolving the problem of navigation within a complex maze environment. 
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1. Introduction	

Application of any evolutionary algorithm (EA) to solve problem of navigation in a complex 
environment can be reduced to finding the optimal path allowing to reach the goal.  This can be 
done by defining an objective function (fitness function) that we are going to minimize of maximize. 
However, in the previous work [1, 2] it was shown that there is a fundamental issue that arise in 
practice. While the objective of a task may be well defined and well known, the objective function 
may be deceptive. 

We can easily illustrate the above statement on the example of building a model of an 
autonomous agent for solving the two-dimensional maze shown in Fig. 1. The task of the agent’s 
control model is to steer the robot in such a way that it can go through the maze from the initial 
position to the exit in a specified number of steps. The control model determines the behavior of the 
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robot (direction of the movement) at each step depending on the current state of the environment: 
the position of the robot in the maze, the distance to the walls, and azimuth to the exit point. 

 

Figure 1:	Two-dimensional maze with local optima cul-de-sacs (shadowed).	
 
By intuition we can define the objective function as distance from the current position of the 

robot in the maze and maze exit point, as was done in [1]. However, in complex maze environment 
solver agent may face the increasing difficulty of choosing an adequate direction of movement 
based only on the distance to the exit. 

As can be seen in Figure 1 even if the distance to the maze exit seems to be minimal, this doesn’t 
mean that the path to the exit has been found. The objective function can have local optima of 
fitness scores in cul-de-sacs of the maze where steep gradients of fitness score values are registered 
[3, 4]. As a result, we have a deceptive landscape of fitness score values, that cannot be solved of a 
goal-oriented objective function. 

Thus, we can see that even if optimal solution can be defined by control model, it cannot always 
be found during the evolutionary process using a simple objective function. Even more, our 
intuition about objective function seems flawed, as it equates the ultimate goal (maze exit) with the 
design of the objective function (distance to the maze exit). 

As a solution for this problem, it was proposed in [5] to separate the optimization of the control 
model and the optimization of the objective function using the SAFE (Solution and Fitness 
Evolution) method. The crucial idea behind this method is following – even if the goal of the solver 
agent is to reach the maze exit point, this doesn’t necessarily mean that the objective function is the 
distance to the exit. Thus, it was proposed to use the method of co-evolution of two populations of 
organisms – the population of control models and the population of candidates for objective 
functions. 

The novelty of the approach considered in this paper is the use of the NEAT neuroevolution 
algorithm [2, 6, 7, 9] for the evolution of the population of controlling models. 

The purpose of this work is the research and implementation of a new method of training of 
artificial neural networks (ANN) that can control the navigation of autonomous robotic systems in a 
complex environment. 
2. Related works 

Navigating optimally in complex environments is crucial for developing autonomous agents, and 
numerous scientific studies have tackled this challenge. In [1] it was proposed to use the NEAT 
algorithm with a simple objective function defined as the distance between the current position of 



the agent and the final goal (exit from the maze). However, this approach is effective for simple 
maze layouts but encounters difficulties with more intricate maze configurations. 

To address the challenge of developing optimal control models for complex maze configurations, 
[3, 4, 8] introduced an optimization method called Novelty Search (NS). This method rewards 
organisms that discover novel solutions within the space of previously found solutions, defining the 
novelty factor as objective function rather than the distance to the goal. The primary driver of NS is 
natural, unrestricted evolution, which often optimizes organisms' genomes by using new 
combinations to explore unknown territories and seek new behavioral patterns. 

NS offers several advantages, including an unlimited search space and the potential to find non-
trivial solutions. However, focusing solely on novelty can be problematic, as it doesn't incentivize a 
control model to stay on a goal-oriented trajectory and improve performance. Additionally, the time 
required to solve navigation problems using NS can be substantial, especially with complex maze 
configurations, making this method impractical in many cases. 

Unlike the above-mentioned optimization methods, the approach of coevolving population of 
solver agent with population of candidates in the objective function, as proposed in this work, 
enables the discovery of optimal navigation solutions for complex maze configurations within a 
reasonable timeframe. Additionally, employing the NEAT algorithm to guide the evolution of solver 
agents results in optimal ANN topologies of control models. As a result, this enhances energy 
efficiency of produced control ANNs, making these models suitable for systems with limited 
computing and energy resources, such as industrial robots or autonomous drones. 

The innovative aspect of the method discussed in this paper lies in the use of the NEAT 
algorithm for evolving the population of solver agents (control models) and the NEAT algorithm 
with NS-based search optimization for evolving the population of candidate objective functions. 
Furthermore, this work introduces a new modification of the NS method designed to limit the 
search space, thereby enhancing performance. 

  
3. Background 

The natural evolution of biological systems is intrinsically linked to the concept of coevolution. 
Coevolution serves as one of the primary driving forces in evolution. Its influence can be seen in the 
current state of the biosphere and the existing diversity of organisms. 

Coevolution can be described as a mutually advantageous strategy where multiple genealogies of 
different organisms evolve simultaneously. The evolution of one species is inherently dependent on 
others. Throughout evolution, coevolving species interact, and these interspecies relationships 
shape their evolutionary strategies. We can define three main types of the coevolution: 

• mutualism, when two of more species peacefully coexist and receive mutual benefit from 
each other, 

• concurrent coevolution: 
a) predation, when one organism kills another and consumes its resources, 
b) parasitism, when one organism uses the resources of another, but does not kill it, 

• predation, when one organism kills another and consumes its resources, 
• parasitism, when one organism uses the resources of another, but does not kill it, 
• commensalism, it occurs when members of one species gain benefits without affecting 

the other species, either positively or negatively. 

 
The last type of coevolutionary strategy has attracted the attention of researchers in [5] due to 

its potential for developing an effective method for training autonomous agents. As a result, the 
implementation of the SAFE algorithm was proposed, which we will consider further. 

 



4. SAFE algorithm features 

As the name suggests, the SAFE coevolution method of the solver and fitness function relies on 
their simultaneous evolution, guiding the optimization of the solution search. The SAFE method is 
centered on the strategy of commensalistic coevolution between two populations: 

a population of potential solutions that evolve to solve the task, 
a population of candidate objective functions that evolve to guide the evolution of the 

population of solutions. 
 
The core concept of the SAFE algorithm is to leverage distinct search optimization methods for 

each of the two populations independently. Objective-based optimization, which measures the 
distance to the maze exit, can be used to estimate the fitness score of each solution in the population 
of potential solutions. NS-based optimization is suitable for guiding the evolution of population of 
candidates for objective functions. With NS optimization, we are not focused on a specific metric 
but rather on exploring various paths in the solution search space. 

This work suggests using the NEAT algorithm to manage the evolution of a population of 
potential solutions, combined with NS (novelty search) to enhance the evolutionary process in the 
population of candidates for objective functions. 

Next, we consider a modified maze experiment that will be used to assess the effectiveness of the 
proposed solution. 

 
5. Maze experiment 

In [1], was presented how to use the NEAT algorithm to address the classic problem of 
navigating through a maze. In this experiment, a straightforward objective function, based on the 
distance from the agent's current position to the maze exit, was used to optimize the search. 

The experiment is built around the robot which navigates the maze using information about 
environment acquired from its sensors, see Figure 2. 

 
Figure 2:	The configuration of sensors of the robot.	

 
In Figure 2, the robot's rigid body is depicted as a filled circle, with an arrow inside indicating its 

heading. The six surrounding arrows represent rangefinder sensors that measure the distance to the 



nearest obstacle in their respective directions. Additionally, the four outer circle segments illustrate 
the four pie-slice radar sensors, which function as a compass guiding the robot to the maze exit. 

Each radar sensor activates when the line from the maze exit to the robot's center falls within its 
field of view (FOV). The detection range of the radar sensor is confined to the maze area within its 
FOV. Consequently, at any given moment, one of the four radar sensors is active, indicating the 
direction of the maze exit. 

The FOV of each radar sensor presented in Table 1. 

Table 1 
Radar sensors FOV 

 
Sensor	 FOV,	degrees	
Front	 315.0	~	405.0	
Left	 45.0	~	135.0	
Back	 135.0	~	225.0	
Right	 225.0	~	315.0	

 
The rangefinder sensor is a ray projected from the robot's center in a specific direction. It activates 

upon intersecting with an obstacle and measures the distance to it. The detection range of this sensor 
is determined by a specific configuration parameter of the robot-navigator. Table 2 presents the 
directions that the rangefinder sensors monitor relative to the robot's heading. 

Table 2 
Rangefinder sensors monitor directions 

 
Sensor	 Direction,	degrees	
Front	 0.0	

Front-Right	 -45.0	
Right	 -90.0	

Front-Left	 45.0	
Left	 90.0	
Back	 -180.0	

 
The robot's movement is controlled by two actuators that apply forces to turn and/or propel the 

agent's frame, altering its linear and/or angular velocity. 
 
In Figure 1 depicted the maze configuration that is used in the experiment. The maze is an area 

enclosed by outer walls. The entry point of the maze at the bottom-left and exit point at the top-left. 
Inside maze area, various internal walls create multiple dead ends with local fitness optima 
(shadowed), making objective-oriented optimization less effective. Additionally, due to these local 
fitness optima, objective-based search agents can become trapped in a specific dead end, completely 
halting the evolution process.  

 
As previously mentioned, the SAFE method involves two distinct evolutionary processes: one for 

the population of potential solutions and another for the population of candidates for the objective 
function. Therefore, we need to define the fitness functions for each evolutionary process. 

6. Maze solver fitness function 

In each generation of the evolution, every solution individual (maze solver) is evaluated against 
all objective function candidates. The fitness score of the solution is determined by the highest 



fitness score obtained during these evaluations. The fitness function of the maze solver combines 
two metrics: the distance from the maze exit (objective-based score) and the novelty of the solver's 
final position (novelty score). These scores are arithmetically combined using a pair of coefficients 
derived from the specific individual in the population of the objective function candidates as can be 
seen from the following formula: 

 𝑂! 𝑆! = 𝑎× !
!!
+ 𝑏×𝑁𝑆!, (1) 

where 𝑂! 𝑆!  – is the fitness score values from obtained by evaluating the solution candidate 𝑆! 
against the objective function 𝑂!. Here, the pair of coefficients, [a, b], is the output of the specific 
objective function candidate. This pair determines how the distance to the maze exit (𝐷!) and the 
behavioral novelty (𝑁𝑆!) of the solution influence the final fitness score of the maze solver at the 
end of its trajectory. 

The distance to the maze exit (𝐷!) is calculated as the Euclidean distance between the maze 
solver's final coordinates and the maze exit coordinates. This is represented by the following 
formula: 

 𝐷! = 𝑎! −  𝑏! !!
!!! , (2) 

where a is the coordinates of the maze solver at the end of its trajectory and b is the maze exit 
coordinates. 

The novelty score 𝑁𝑆! of each maze solver is based on its final position in the maze (point 𝑥). It 
is calculated as the average distance from this point to the k -nearest neighbor points, which are the 
final positions of the other maze solvers. The novelty score value at point 𝑥 of the behavioral space 
can be calculated with following formula: 
 𝑁𝑆! =

!
!

𝑑𝑖𝑠𝑡(𝑥,�!)
!
!!! , (3) 

where �! is the i-th nearest neighbor of 𝑥 and 𝑑𝑖𝑠𝑡(𝑥,�!) is the distance between �! and 𝑥. 
The novelty metric, which measures how different the current solution (𝑥) is from another 

(�!) produced by different maze solvers, is calculated as the Euclidean distance between the two 
points by formula: 

 𝑑𝑖𝑠𝑡(𝑥,�) = 𝑥! −  �!
!

!
!!! , (4) 

where �! and 𝑥! are the values at position j of vectors holding the coordinates of points � 
and 𝑥. 

 
7. Objective function candidates’ fitness function 

The SAFE method employs a commensalistic coevolutionary approach, where one of the co-
evolving populations is neither benefited nor harmed during evolution. In an experiment, this 
commensalistic population consists of candidates for target functions. For these candidates, we 
need to define a fitness function that is independent of the quality of the maze-solving agents 
(controlling models). 

A suitable option here is a fitness objective function that uses a novelty metric to estimate 
fitness. The formula for calculating the novelty score of each objective function candidate is the 
same as for the maze-solving agents (3). The only difference is that, for objective function 
candidates, we calculate the novelty score using vectors with the output values of each 
organism in the population [a, b] (see equation 1). We then use the novelty score value as a 
measure of the organism's fitness. 

In [3, 4, 8], an implementation of the NS optimization method is presented, where 
modifications were forcibly made to limit the search space. This was done to enhance the 
algorithm's performance and ensure its execution within a specified time frame. 

 



8. Novelty Search modifications 

The modifications to the NS method presented in this experiment involve a new approach to 
maintaining the archive of novelty points. An individual novelty point records the maze solver's 
location at the end of its trajectory, combined with its novelty score. In the traditional NS 
method, the size of the novelty archive is dynamic, allowing the addition of a novel point if its 
novelty score exceeds a certain threshold (the novelty threshold). This threshold can be 
adjusted during runtime based on the rate at which new novelty points are discovered, helping 
control the archive's maximum size. However, selecting an initial novelty threshold value is not 
straightforward. 

The modified NS method introduces a fixed-size novelty archive to address the challenge of 
choosing the correct novelty threshold value. New novelty points are added to the archive until 
it is full. After that, a novelty point is only added if its novelty score exceeds the current 
minimum score in the archive, replacing the point with the lowest score. This approach 
maintains a fixed archive size, storing only the most valuable novelty points discovered during 
the evolution. 

 
9. Maze experiment 

In this experiment, we need to establish two co-evolving populations with different initial 
genotype configurations to meet the phenotypic requirements of the resulting species. The 
maze solver's phenotype includes 11 input nodes for sensor signals and two output nodes for 
control signals. Meanwhile, the objective function candidate's phenotype has one input node 
receiving a fixed value (0.5), which is converted into two output values used as the fitness 
function coefficients for the maze solver. 

Additionally, we need to develop a maze-solving simulation environment to evaluate the 
solver agents at each epoch of the evolution. 

 
10. Maze-solving simulation environment 

In this work, software was developed to model the maze-solving problem, like the one 
described in [1], but using the GO programming language with modifications to facilitate the 
coevolution of two populations. The software comprises the following main components, each 
implemented as a separate class: 

1. Agent – a class that stores information related to the maze navigator agent involved in 
the simulation. 
2. RecordStore – a class that manages the storage of records related to the evaluations of all 
decision agents during the evolutionary process. The collected records can be used to analyze the 
evolutionary process after its completion. 
3. Environment – a class that contains information about the maze simulation environment. 
This class also includes methods to control the maze simulation environment and the 
position of the solving agent, detect collisions with maze walls, and generate input data for 
the agent's sensors. 
4. NoveltyItem – a class designed to encapsulate information about specific data item, that 
contains information about the novelty score associated with a particular genome, enhanced by 
supporting information. It is used in conjunction with NoveltyArchive. 
5. NoveltyArchive – a class that manages the storage of all found NoveltyItems and provides 
methods to evaluate their novelty as new items are found. 
Next, we are going to describe the experiment details. 
 



11. Maze experiment details 

This research aimed to develop a control ANN model capable of navigating a complex maze with 
configuration as illustrated in Figure 1. This allows for a comparison between the coevolution 
method and the simple evolution method described in previous work [1]. It has been demonstrated 
that while a simple evolutionary process controlled by the NEAT algorithm can solve basic maze 
navigation problems, it struggles with more complex maze configurations. Therefore, this 
experiment is crucial for demonstrating the effectiveness of the coevolution method. 

The maze features two fixed positions marked by filled circles. The lower left circle indicates the 
starting position of the maze-solving agent, while the upper left circle marks the exact location of 
the maze exit. To complete the task, the robot must reach a point near the maze exit for specific 
number of time steps. 

12. Maze experiment results 

The experiment was conducted using GO programming language version 1.24.1, with the 
goNEAT version 4.0.2 [10] and goNEAT_NS version 4.0.2 [11] libraries used to develop the 
simulation and evaluation source code. The workstation used had the following specifications: CPU 
2.3 GHz 8-Core Intel Core i9, 16 GB 2667 MHz DDR4, running macOS 14.4.1. 

The successful evolutionary process runner has the NEAT hyper-parameters as specified in 
Table 3. 

Table 3 
NEAT hyper-parameters of successful evolutionary process 

 
Parameter	 Value	

trait_param_mut_prob		 0.5	
trait_mutation_power		 1.0	
weight_mut_power	 0.8	

disjoint_coeff	 1.0	
excess_coeff	 1.0	
mutdiff_coeff	 3.0	

compat_threshold	 6.0	
age_significance	 1.0	
survival_thresh	 0.2	

mutate_only_prob	 0.3	
mutate_random_trait_prob	 0.1	
mutate_link_trait_prob	 0.1	
mutate_node_trait_prob	 0.1	
mutate_link_weights_prob	 0.9	
mutate_toggle_enable_prob	 0.1	
mutate_gene_reenable_prob	 0.05	
mutate_add_node_prob	 0.03	
mutate_add_link_prob	 0.1	
mutate_connect_sensors	 0.5	
interspecies_mate_rate	 0.001	
mate_multipoint_prob	 0.6	

mate_multipoint_avg_prob	 0.4	
mate_singlepoint_prob	 0.0	

mate_only_prob	 0.2	
recur_only_prob	 0.2	



pop_size	 300	
dropoff_age	 200	
newlink_tries	 40	
print_every	 100	
babies_stolen	 0	
num_runs	 1	

num_generations	 2000	
log_level	 Info	

epoch_executor	 sequential	
genome_compat_method	 linear	

	 	
After 211 generations of evolution, a successful solver agent was discovered, featuring a 

configuration of 22 nodes interconnected by 47 links. 
During the coevolution process, the optimal coefficients [a, b] for the objective function were 

found and used to train a successful agent-solver: [-0.53283, 0.95889]. Thus, formula (1) can be 
rewritten by substituting these coefficients as follows: 

 𝑂! 𝑆! = −0.53× !
!!
+ 0.96×𝑁𝑆!, (5) 

Based on formula (5), it can be concluded that the identified objective function prioritizes 
training to find the most innovative solutions (𝑁𝑆!), while placing less emphasis on the distance to 
the maze exit (𝐷!). This supports the initial thesis of the paper, which states that in a complex 
environment, a successful objective function differs from merely minimizing the distance to the 
goal (exit from the maze). 

It is worthwhile to examine the visualization of the maze traversal by the successful solver agent 
(Figure 3), noting the smoothness and closeness to the optimal of the route discovered. The path 
includes 400 recorded points marking the agent's location throughout the simulation. 

 

 
Figure 3:	The path of the successful solver agent through the maze.	

 
Additionally, as shown in Figure 4, throughout all epochs of evolution, only one species out of 

the 46 available generated the configuration of the controlling ANN for the successful agent-solver. 
This figure also illustrates that the most of evolutionary losers were trapped in the local optima. 
Meanwhile, the successful agent demonstrated the highest level of innovation, favoring the 
exploration of new areas over the exploitation of known ones (exploration vs. exploitation). 

 



 
Figure 4:	Visualization of evaluation of population of solver agents by species.	

 
In Figure 4, to enhance the informativeness of the visualization, we introduced a fitness 

threshold to filter out the top-performing species. The top subplot displays the final positions of the 
solver agents from the champion species, with fitness scores exceeding 0.8. While bottom one depict 
the final positions of solver agents from species – evolutionary losers. 

 
Conclusions 

This paper demonstrates the application of coevolving two populations – a population of 
decision-making agents and a population of objective function candidates – to address the challenge 
of navigating a complex maze environmant. Experimental results obtained have demostrated that 
this method is more effective than the one discussed in [1]. 

Building on previous work [5], a novel approach to implementing the SAFE (Solution and Fitness 
Coevolution) algorithm was proposed. This approach involves using the NEAT algorithm to manage 
the evolutionary process of both populations linked by commensalistic coevolution. Additionally, the 
Novelty Search method was employed to optimize the search for solutions within a deceptive 
environment of potential solutions. 

As result of this research, the software was developed using the GO programming language [12] to 
conduct the coevolution experiment. Additionally, advanced visualization tools were created to 
visually assess the results of coevolution as input parameters change.  

This method of training controlling ANNs can be applied to create autonomous robotic systems 
(drones) capable of navigating complex environments, making it relevant for both humanitarian 
demining and other specialized tasks. 
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