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Abstract  
The work is devoted to the development of the structure of the algorithm for modeling the optimal movement 
of complex dynamic systems (SDS) along a branched trajectory. Complex systems are called systems 
consisting of separate subsystems, the flight trajectories of which differ and are called branched. Branched 
trajectories should consist of trajectory segments, the first of which will be common to the entire SDS, and the 
other trajectory branches will be different, as each subsystem moves to its goal along its own trajectory 
segment. The proposed algorithm makes it possible to optimize such trajectories in real time and to carry out 
operational correction of SDS trajectories in the event of the occurrence of unpredictable influencing factors. 
It is known that the effectiveness of the SDS functioning between structural transformations depends on the 
coordinates of the mutual location and speed of each subsystem and the choice of optimal moments of time for 
structural transformations. The efficiency of determining these parameters during the flight is fundamentally 
important. The necessary conditions for the optimality of the trajectory of the SDS movement are found, which 
are universal for problems with any finite number of trajectory branches. The implementation of the proposed 
conditions will allow to reduce the number of computational procedures in the control calculations in conditions 
of uncertainty of the initial conditions. These conditions are the methodological basis for the development of 
computational algorithms for modeling the optimal trajectories of the SDS movement. The necessary 
optimality conditions have a clear physical meaning and are technological and user-friendly. The results of the 
research presented in the article are important and relevant for the construction of the laws of trajectory control 
of existing and prospective SDS  
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1. Relevance of the topic  

Modern achievements in the creation of complex mechanical objects, communication and data 
transmission systems, and high-performance on-board computers open the way to the design of complex 
technical systems of the new generation, capable of solving a single technical problem without 
mechanical communication and only on the basis of information exchange between individual 
subsystems of such objects. 

Examples of such systems are complex dynamic systems (CDS). These include dynamic systems 
consisting of separate subsystems (sets of objects) that interact with each other in flight. And the 
synthesis of motion control of each subsystem is coordinated. At the same time, the subsystems can 
function together or separately. Their separation takes place according to separate commands, which 
are given in a strictly defined spatial position of each subsystem and at given moments of time. 

                                                      
14th International Scientific and Practical Conference from Programming UkrPROG’2024, May 14-15, 2024, Kyiv, Ukraine 
* Corresponding author. 
† These authors contributed equally. 

 lysenko_home@ukr.net (O. Lysenko); tachinina5@gmail.com (E. Tachynina); sol_@ukr.net (S. Ponomarenko); 
guydasg@ukr.net (O. H. Guida) 

 0000-0002-7276-9279 (O. Lysenko); 0000-0001-7081-0576 (E. Tachynina); 0000-0001-5512-3778 (S. Ponomarenko); 
0000-0002-2019-2615 (O. Guida) 

 
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).   

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



Examples of modern SDS are reusable air-launched aerospace systems (ASS) and groups of 
unmanned aerial vehicles (UAVs) that form "flying sensor networks" or swarms (robotic sensor 
networks) based on wireless telecommunication systems. 

In the scientific literature, it is customary to call the trajectories of complex dynamic systems 
branched, since they consist of the initial section of the joint movement of the entire system and sections 
of individual movement of individual subsystems of the SDS along separate branches of the trajectory. 

It was established [1, 2] that the effectiveness of the operation of the SDS between structural 
transformations depends on the coordinates of the mutual location and speed of each subsystem and the 
choice of optimal moments of time for structural transformations. The efficiency of determining these 
parameters during the flight is fundamentally important. 

Therefore, the task of operational construction of the optimal branched trajectory of the SDS 
movement during the flight is key and is recognized as relevant in the world both from the scientific 
and practical points of view [1, 2, 5]. 

2. Analysis of the state of the issue 

The mathematical theory of impulse differential equations with a discontinuous right-hand side is used 
to solve the problem of optimal control of the SDS on branched trajectories [4]. The concept of 
"disruptive system" is generalizing and covers a significant class of dynamic objects: with impulse 
influence, with discontinuities, multi-stage, with relay control, with intermediate conditions, composite, 
etc. Mathematical models of discontinuous systems are mainly described by differential equations with 
discontinuous (piecewise continuous) right-hand parts. The theory of discontinuous dynamic systems 
and methods of finding optimal solutions for such systems were developed by such researchers as 
L. S. Pontryagin, V. G. Boltyansky, R. V. Gamkrelidze, and M. M. Krasovsky, V. A. Troitskyi, 
V. I. Utkin. For specific types of discontinuous systems, theoretical and applied results were obtained 
in the works of V. A. Bodner, L. T. Ashchepkov, B. F. Krotov, Bryson Ho Yu Shea, A. M. Samoilenko, 
N. A. Perestyuk, A. A. Aslanyan, O. I. Lysenko and other authors. 

The peculiarity of the theoretical results of these authors is that they formulated optimal control 
problem statements in terms of discontinuous systems and proposed optimal solutions for specific 
dynamic systems with the presence of the main element (main subsystem) of the SDS. In their works, 
the overdetermination method, or the method of linear time transformations, was used to create 
mathematical models of discontinuous systems. In such a statement, the task of managing the SDS was 
formulated as the task of managing a discontinuous system with a selected priority element, in relation 
to which the theory of discontinuous systems was applied for individual components. The consequence 
of this formulation of the problem was an increase in the size of the state vector and the control vector 
of the discontinuous system. Their number increased in proportion to the number of branches of the 
SDS trajectory. And the formulation of the problem of finding the optimal branched trajectory for the 
entire SDS (holistic, generalized formulation of the problem) was not considered. 

To date, the theoretical solutions obtained by previous researchers have not been put to practical use, 
and there are no design solutions for synthesizing the trajectories of the SDS movement in real time. 
This is explained by the complexity of the mathematical models themselves and the methods of their 
multiple solution, since the use of an abstract-formal description of the optimization problems of 
branched SDS trajectories leads to an increase in the dimension of the state vector and the dimension of 
the control vector of the discontinuous system. And this dimension increases in proportion to the number 
of branches of the trajectory. The increase in the dimension of the entire problem leads to the 
impossibility of practical implementation of the algorithm of operational optimization of branched 
trajectories in the on-board computer. 

Also, no applied studies were conducted, which would be based on an adequate physical 
understanding of the "scheme" of the movement of the SDS along the branches of the trajectory. 
Therefore, the results of the practical verification of the mechanism for building optimal branched 



trajectories according to an arbitrary scheme with the possibility of organizing operational 
computational procedures are currently unknown. 

As a result, the actually existing SDS of the type "air launch" and "flying sensor networks" do not 
fully realize their potential of technical capabilities due to the fact that large-scale methods and models 
are used to control them. The solution to this problem requires the construction of sufficient conditions 
for the optimality of the branched trajectories of the SDS movement. Moreover, these requirements 
should be formulated in a form convenient for implementation on a real time scale (for operational 
synthesis of trajectories). 

In this regard, solving the problem of operational synthesis of optimal branched trajectories of 
movement and operational optimization of the SDS traffic management process on existing on-board 
computing devices is an urgent scientific and technical need. And, the research carried out in this article 
is relevant for trajectory control systems of modern and promising SDS [3, 5, 6]. 

2.1. Presentation of the main material 

The SDS is a collection of dynamic subsystems, which in the process of movement can be combined 
into groups for joint movement, separate for the purpose of independent maneuvering, and exert a 
mutual influence on the dynamics of movement [1, 3]. 

Let's consider an example of the movement of a hypothetical SDS according to the scheme shown 
in Figure 1 

 
Figure 1: Scheme of a branched trajectory 

 
At the moment of time t1, four subsystems in a single block begin to move, during which at the 

moment of time t3, two auxiliary subsystems are separated from the original unit, which end their 
movement at the moments of time t4 and t5. At the moment of time t6, the third auxiliary subsystem is 
separated, the movement of which ends at the moment of time t8. At time t7, the fourth subsystem is 
connected to the subsystem that started moving at time t2. After the end of the joint movement at time 
t9, the subsystems are uncoupled and carry out independent maneuvering, which ends at time t10 and 
t11. The trajectory of the analyzed SDS belongs to the branched class. Let's set the efficiency criterion 
taking into account the nature of the movement of the subsystems along all the branches of the trajectory. 
It is necessary to simulate the optimal trajectory of the SDS movement according to the given criterion. 
When solving such tasks, branched trajectories of varying complexity are possible. Currently, optimality 
conditions of only partial schemes of branched trajectories are formulated. 

Let us formulate in terms of the theory of optimal control the sufficient conditions for the existence 
of optimal control of the SDS of an arbitrary scheme. Consider the simplest branched trajectories, the 
time diagrams of which are presented in Figure 2. 

The equations describing the movement of the SDS along the trajectory with separation and grouping 
[3, 5] have the form (Figure 2, a, б): 



.  

 
Figure 2: Time diagram of the simplest branched trajectory (a – with separation; 2 – with grouping). 
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The optimality criteria corresponds to the Bilets form, according to which the function S() physically 
reflects the requirements for the movement parameters of individual subsystems. Such parameters are 
the values of the coordinates at the beginning and end of each branch of the trajectory, as well as the 
values of the moments of time of the structural transformations of the SDS. The integral members of 
the criterion set requirements for the nature of the movement of the subsystem along the corresponding 

branches of the trajectory. The mutual influence of the subsystem in the time interval  1 12,t t  is reflected 

in equation (1) and (2) and in the partial integral terms 11I , 12I . The equations describing the criteria 

and dynamics of movement of subsystems that are grouped (Figure 2, b) have the same form as for a 

system with separation, and differ only in that 11 12 1 0t t t t   . 

Omitting the proof [1], we formulate the theorem taking into account the two systems shown in 

Figure 2. The equations    1 0 1, ,u t t t t     11 1 11, ,u t t t t     12 1 12, ,u t t t t  of the phase 

coordinate vectors 1 0( ),x t  1 1( ),x t  11 12( ),x t  12 12( ),x t  11 11( )x t  and the moment of time 0t , 1t , 11t , 12t  

should be chosen such that the functional I assumes the smallest possible value. 

Theorem  

Let 1 ( ),x t   1u t   0 1, ;t t t   11 ,u t  12 ( ),x t   12u t   1 12, ;t t t 11 11( )x t ,  11u t   12 11,t t t , 

be admissible processes. 



The optimality of processes requires the existence of solutions  1 t   0 1, ,t t t   12
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The minimum of the Hamiltonians at the instant of time  1,ht t t  for the equations 

   l lu t    will have the following form:  
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The minimum of the linear combination of Hamiltonians at the instants of time  1 12,t t t  for 

equations    l lu t    (l=11, 12) will have the following form: 

 ( ), ( ) ( ), ( )11 12 11 12

12 12
11 12 11 12. .

min
u t u t u t u t

H H H H
   
                                  (8) 

where       ( ) ( ) ( )T
l l l lH f       ( 1, 11,   2) 1l  ,  12 12 12 12

11 11 11 11( ) ( ).TH f      

Here the sign   means optimality of variables and parameters; symbol 
.

 means that the 

expression is determined at optimal values of variables and parameters, except  ; parameter β takes 

the value 1 or 2, respectively: 1 - for a scheme with division; 2 – for a scheme with grouping, Figure 2; 
Note that for mechanical systems, the condition for a jump along the n-th phase coordinate, which 

denotes the mass, has the form [5-7] 

11 0,   12 0,  11 12 1.    

The proof of the theorem can be carried out according to the method described in [1] if the SDS is 
resolved as a system with a variable structure and size of the state vector.  

According to the stated theorem, considering a complex branched trajectory as a collection of 
simple ones, we formulate the structure of the algorithm for modeling the optimal movement of the 
SDS. 

For the optimality of a branched trajectory of an arbitrary scheme, the existence of a solution of the 
associated vector equations in the time intervals between the moments tN (start-current of movement), 
tR (separation), tG (grouping), tK (end of the subsystems movement) 
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where L is the index of the section of the branched trajectory; 
M, q are, respectively, the number of subsystems, the dynamic properties of which depend on the 

phase coordinates of the L-th section, and the indices of the sections of the branched trajectory through 
which these subsystems move. The following conditions apply to such equations: 

1) transversality in moments 1
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where P is the number of subsystems, the dynamic properties of which change at the moment of 
the start or end of the movement of the subsystem moving along the L-th section of the trajectory; 

v is indexes of sections of the branched trajectory through which these subsystems are moved; 

2) a jump in moments 1
ˆ ˆRt   and 2

ˆ ˆGt   associated with the division of a subsystem moving 

along the L-th section into r subsystems, or the grouping of r-subsystems into a subsystem that moves 
along the L-th section of a branched trajectory, 
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where q are the indices of the sections of the branched trajectory along which the subsystems move 
after division or before grouping; 
Р  is the number of subsystems that do not participate in division or grouping, but change dynamic 

properties at time points tR and tG;  
   is the indices of sections of the branched trajectory through which the specified subsystems are 

moved. A phase coordinate ( )L nx t  that describes the change in mass.  

The condition for a jump on the μ-th section of a branched trajectory at the moment of time ˆ ,St  that 

coincides with the moment of structural transformations in the SDS that do not belong to the μ-th 
section, but affect it, has the form 
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3) the minimum of the linear combination of Hamiltonians at the moments of time between N̂t , 
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where   is the number of subsystems that have mutually influencing control in the specified time 
intervals;  

q  is the indices of the sections of the branched trajectory along which these subsystems move. 

The formulated rule is a methodological basis for the synthesis of computational algorithms that 
allow modeling optimal trajectories of movement of various SDS. The program for modeling optimal 



branched trajectories can become a part of the mathematical support of the system of automated design 
of prospective SDS. 

3. An example of the structure of the algorithm for modeling the optimal 
movement of a dynamic system component along a trajectory branch 

According to the given scheme of the branched trajectory (Figure 1), we will make its time diagram 
(Figure 3). On this diagram, the moments of time at which structural transformations corresponding to 
the pattern of movement of the SDS take place are located in a sequential order. In addition, the 

belonging of these moments to the corresponding moments of time is noted: Nt , Rt , Gt , Kt . The 

crossed-out arrow marks the sections of the trajectory along which the subsystems interact with each 
other. 

 
Figure 3: Time diagram of a branched trajectory 

 

The additive optimality criterion is determined by the terminal part ( )S  , and the sum of partial 

integral criteria ( )
b

a

t

i i

t

I dt    ( 1,15)i  ; ,a b  ( 1,11a  ; 1,11)b  , recorded for each section of 

the trajectory branch (Figure 3). The terminal part depends on the coordinates of the subsystems at the 
instants of time and these instants of time. Partial integral criteria correspond to areas located between 
adjacent points of the SDS transformation. 

The movement of subsystems along the branches of the trajectory is described by the equations 
( )x f  , where ( )f   is a function that depends on the controls and coordinates of the subsystem, as 

well as on the controls and coordinates of interacting subsystems (at the sections with crossed arrows). 
According to the rule for trajectory optimality (Figure 3), it is necessary to solve 15 coupled vector 
equations of type (3) satisfying 39 conditions of type (4)-(9). Vector equations are compiled according 
to the data in the table.1, and optimality conditions (constraints) are given by tables 2 and 3. 

Sequences of numbers corresponding to the beginning and end of the branch or its section are used 
as indices of the branch or its section (Figure 3). 

 
Table 1 
Minimization condition (3) 

L  M  q 

1, 2′  0  — 
2′, 3  1  2, 3′ 
2′, 3’  1  2′, 3 
3, 4  0  — 
3, 6  0  — 



3′, 5′  1  3, 5 
3, 5  1  3′, 5′ 
5′, 7  0  — 
6, 7  0  — 
6, 7′  0  — 
7′, 8  1  7, 8′ 
7, 8’  1  7′, 8 
8′, 9  0  — 
9, 10  0  — 
9, 11  0  — 

Table 2 
Minimization condition (9) 

Interval     q  
[t1, t2]  1  1, 2′ 
[t2, t3]  2  2′, 3; 2, 3′ 
[t3, t4]  1  3, 4 
[t3, t5]  2  3, 5; 3′, 5′ 
[t3, t6]  1  3, 6 
[t5, t7]  1  5′, 7 
[t6, t7]  1  6, 7 
[t6, t7]  1  6, 7′ 
[t7, t8]  2  7′, 8; 7, 8′ 
[t8, t9]  1  8′, 9 
[t9, t10]  1  9, 10 
[t9, t11]  1  9, 11 

 

To complete the solution of the problem of modeling the optimal branched trajectory, it is necessary 
to supplement the listed differential equations of motion of the subsystems along the branches of the 
trajectory with algebraic equations of constraints. The data in Tables 1-3 are the initial information that 
allows you to proceed to the application of standard subroutines for solving ordinary differential 
equations under algebraic constraints and thereby practically complete the solution of the problem of 
modeling the optimal trajectory of the SDS. 

Note that the sequence of time moments 1 2 11...t t t    in the problem with free time is given 

based on physical considerations and is approximate. If, as a result of solving the problem, it is violated 
(a change in the sequence of trajectory branches is allowed by the physical content of the task), then it 
is necessary to repeat the calculations for a new, refined sequence of time moments.  

 
Table 3 
The condition of the transversality of the jump at the moment of time ti 

Equation  t1  t2  t3 t4 t5
(4)  L=1, 2′; i=1  L=2, 3′; i=1  —  L=3, 4; i=2  L=3, 5; i=2 
(5)  L=1, 2′; i=1; P=0  L=2, 3′; i=1; 

P=1; v=1, 3 
—  L=3, 4; i=2; 

P=0 
L=3, 5; i=2; 
P=1; v=3′, 7 

(6)  —  —  L=2, 3′; i=1; 
r=3; q′=3,6; 
3,4; 3, 5 

—  — 

(7)  —  —  L=2′, 3; i=1; 
r=3; q′=3, 6; 
3, 5; 3, 4; 

P′=1; v′=2, 5′ 

—  — 



(8)  —  =1, 3  =2, 5′  —  =3′, 7 
 

t6  t7  t8  t9 t10 t11
—  —  L=7′, 8; i=2  —  L=9, 10; i=2  L=9, 11; i=2 
—  —  L=7′, 8; P=1 

v=7, 9 
—  L=9, 10; i=2  L=9, 11; i=2 

L=3, 6; i=1; r=2; 
q′=6, 7′; 6, 7 

L=7, 8′; i=2; r=2; 
q′=6, 7; 5′, 7 

—  L=8′, 9; i=1; 
r=2; q`=9, 10; 

9, 11 

—  — 

L=3, 6; i=1; r=2; 
q′=6, 7′; 6, 7 

L=7, 8′; i=2; r=2; 
q′=6, 7; 5′, 7; 
P′=1; v=6, 8 

—  L=8′, 9; i=1; 
r=2; q′=9, 10; 
9, 11; P′=0 

—  — 

—  =6, 8  =7, 9  —     

 
It should be noted that the task of optimizing a branched trajectory with various forms of constraints 
using known methods [3] can be reduced to the type proposed in this article. 

4. Conclusion 

1. The structure of the algorithm for modeling the optimal movement of the SDS along branched 
trajectories is developed. The algorithm allows in real time to optimize the branched trajectories 
of movement for the realization of the target assignment of the SDS and to perform operative 
correction of the movement trajectories of sub-systems in the event of occurrence of critical 
factors of influence unforeseen at the previous stage. 

2. The developed sufficient conditions of optimality are universal for planning trajectories with any 
limited number of trajectory branches and various mathematical models of SDS. This makes it 
possible to significantly reduce computational costs when calculating optimal control in 
conditions of uncertainty of the initial conditions for structural transformations of the SDS and 
stitching of trajectories. 

3. The necessary optimality conditions have a clear physical meaning and are technological and 
convenient for practical use. 

4. The results of the research can be considered as a methodological basis for the construction of the 
laws of trajectory control of existing and prospective SDS. 
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