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Abstract 
This paper discusses the development of an intelligent control system for an using machine learning. To
achieve this goal, the NeuroEvolution of Augmenting Topologies (NEAT) algorithm, implemented in the
Python programming language, is used. NEAT allows for the evolutionary improvement of artificial neural
networks, as well as the structure of these networks, with the goal of teaching a self-driving car to control
itself in different conditions. The study's findings highlight the potential of NEAT to automate the operation
of  self-driving  cars,  ensuring  their  ability  to  adapt  to  and  respond  effectively  to  different  driving
situations.unmanned vehicle 
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1. Introduction

The rapid development of information technology is quickly changing our lives and affecting all
areas  of  human  activity  [1,2].  Information  technologies  allow  automating  various  processes,
increasing productivity, and reducing costs. 

Such  areas  as  networking,  cloud  technologies,  Internet  of  Things  technologies,  and  artificial
intelligence are actively developing [3, 4].

The rapid development of technology has led to significant advances in the field of unmanned
vehicles,  both ground and airborne [5,  6].   One  of  the  most  promising areas  in  this  field is  the
development of intelligent control systems for ground-based unmanned vehicles, also known as self-
driving cars. 

The  development  of  an  intelligent  control  system  for  self-driving  cars  is  an  endeavor  that
encompasses a variety of advanced software development technologies. It involves the combination of
artificial intelligence, machine learning, computer vision, and advanced algorithms to create a system
that allows the vehicle to perceive information from the outside and make decisions in real time [7].
By using a multitude of sensors, these systems collect and process huge amounts of data.

In this paper, we propose to create a simple system for intelligent control of an unmanned vehicle
in the Python programming language using the NEAT (NeuroEvolution of Augmenting Topologies)
algorithm. In the context of self-driving vehicles, a simple model system developed using NEAT in
Python has great prospects. Such a system makes it possible to understand the fundamental concepts
of intelligent driving. 
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2. Main part

Intelligent  driverless  vehicle  control  systems  use  advanced  Machine  Learning  algorithms  [8].
Through a process known as Deep Learning, these algorithms analyze large data sets to discover
patterns, allowing the vehicle to improve its decision-making capabilities over time. This iterative
learning  process  enables  the  system  to  adapt  to  new  scenarios,  optimize  its  performance,  and
ultimately improve the safety and reliability of automated vehicles. 

The NEAT (NeuroEvolution of Augmenting Topologies) technology was used in this work. NEAT
is an evolutionary algorithm that creates artificial neural networks. It combines neural networks and
genetic algorithms to create intelligent control systems.

2.1. Algorithm description 

It is necessary to describe the genetic coding algorithm used in NEAT. NEAT's genetic coding
strategy is designed to facilitate gene alignment during mating when two genomes overlap. Genomes
serve as linear representations of network connections, and each genome contains a list of connecting
genes that refer to pairs of genes of connected nodes [9].

In NEAT, mutations can affect both the weights of connections and the structure of the network.
The weights of connections change, as in other neuroevolutionary systems. At the same time, each
connection is potentially broken or remains constant in each generation [10].

Each mutation leads to the expansion of the genome by introducing new genes. In the "linkage
addition"  mutation,  a  new linkage  gene  with  a  random weight  is  added.  In  the  "node  addition"
mutation, the existing linkage is split and a new node is placed. The linkage leading to the new node is
assigned a weight of 1. This approach to adding nodes was chosen to minimize the direct impact of
mutation [11]. Although the new nonlinearity in the connection slightly changes the function, new
nodes can be quickly integrated.

As a result of mutations, genomes in NEAT gradually increase in size, resulting in genomes of
different lengths. Allowing genomes to grow unlimitedly inevitably leads to a more complex form of
the "controlling convention problem" with different topologies and combinations of weights [12].

In the course of evolution, there is information that accurately reveals the correspondence of genes
between individuals.  This information is  the historical  origin of each gene.  Genes with the same
historical  origin  necessarily  represent  the  same  structural  component,  although  potentially  with
different  weights.  Therefore,  all  that  the  system needs to  establish genetic  alignments  is  to  store
records of the historical origin of each gene in the system.

Keeping track of these historical journals requires minimal computing resources. Each time a new
gene  appears,  the  innovation  global  number  is  incremented  and  assigned  to  that  gene.  These
innovation numbers essentially reflect the appearance of each gene in the system [13].

These historical markers provide NEAT with powerful capabilities [14]. Now the system has an
accurate knowledge of which genes correspond to each other. During the crossing process, genes from
both genomes with matching innovation numbers are paired and called matching genes. Genes that do
not match are classified as redundant. These redundant genes represent structural components that are
not present in the rest of the genome [15]. In the generation of offspring, genes are randomly selected
from either parent, while all redundant genes are included sequentially from the parent with the best
fit. Therefore, historical markers allow NEAT to perform crosses using linear genomes.

By introducing new genes into the population and combining genomes with different structures,
the system can create a population with a diverse topology. However, it is obvious that this population
alone is not enough to preserve topological innovation. Smaller structures tend to be optimized faster
than  larger  ones,  and  adding  nodes  and  connections  usually  initially  reduces  the  fitness  of  the
network.  The  newly  added  structures  have  a  limited  probability  of  surviving  longer  than  one
generation, even though the innovations they represent may be vital to solving problems [16].



The degree of compatibility between a pair of genomes is naturally determined by the number of
redundant genes. The greater the divergence between two genomes, the less evolutionary history they

share. Therefore, in NEAT, we can quantify the compatibility distance, denoted as , for different

structures through a direct linear combination of several factors, including the number of redundant
genes (E), the number of non-overlapping genes (D), and the average weight differences between the
corresponding genes (W), which includes even non-functional genes. The formula for calculating the
compatibility distance is as follows:

The coefficients  provide a means of adjusting the relative importance of the three

factors in calculating the compatibility distance. The Factor N, which represents the number of genes
in  the  largest  genome,  is  used  to  normalize  the  genome  size.  The  threshold  of  compatibility,  

called , is used in conjunction with the distance measure , to determine how genomes should

be classified into species. An ordered list of species is maintained to organize the population into
species.

Each existing species  is  characterized by a randomly selected genome of the next  generation,

which serves as a representative genome. To assign a given gene, called  ,  from the current

generation to a species, it is placed in the first species, for which  is considered compatible with

the representative genome of that species. This method ensures that the species do not overlap and do

not share any common members [17]. If the genome  is incompatible with any of the existing

species, a new species is created, where  is a representative genome.

The NEAT reproduction mechanism uses explicit  fitness sharing, which means that organisms
belonging to the same species must collectively share the fitness of their niche. This arrangement
ensures that a species cannot grow excessively, even if a significant number of its members are doing
very well. Therefore, it is unlikely that one species will dominate the entire population. To calculate

the adjusted suitability, denoted as ,  for a given organism  its distance  from all

other organisms    in the population is taken into account:



Sharing function  is set to 0 when the distance  above the threshold value 

,  under  the  other  condition   will  be  equal  to 1.  Thus,   

reduced to the number of organisms of the same species as organism . This decrease is natural, as

species are already clustered by compatibility with the threshold .  Each species is assigned a

potentially different number of offspring. Then the species are multiplied, first excluding the members
with the lowest efficiency from the population [18]. Then the entire population is replaced by the
offspring of the remaining organisms in each species.

2.2. Comparison of Tesla's AI Algorithms and the NEAT AI Algorithm

Tesla’s autonomous driving technology leverages deep learning, particularly convolutional neural
networks (CNNs), to process sensory data from a suite of cameras, radar, and ultrasonic sensors. The
Full Self-Driving (FSD) computer, a custom-built hardware platform, manages these complex neural
networks, enabling real-time decision-making essential for safe and efficient driving.

The architecture of Tesla’s CNNs includes several  key components.  The input  layer processes
high-definition images from the vehicle's cameras, capturing a 360-degree view of the environment.
Convolutional layers apply filters to these images to extract features such as edges, textures, and
patterns, which are essential for identifying objects, lane markings, and other critical elements of the
driving environment. Pooling layers follow, reducing the spatial dimensions of the feature maps to
streamline computation and enhance the network’s efficiency [19].

Fully  connected  layers  aggregate  these  features,  transforming them into  predictions  about  the
driving environment, such as object classifications, lane positions, and traffic sign identifications. The
final output layer provides these predictions, guiding the vehicle's decisions.

Tesla  trains  its  CNNs  using  supervised  learning  techniques.  The  training  process  involves
adjusting  the  network’s  weights  through  backpropagation  and  gradient  descent  algorithms  to
minimize the error between predicted outputs and true labels.  This process relies on vast datasets
collected from Tesla’s fleet, which continuously gather data from real-world driving scenarios. The
ability to deploy over-the-air updates allows Tesla to improve its models continually, ensuring that the
system benefits from the latest advancements in neural network research and real-world data.

Applications of Tesla’s CNNs in autonomous driving include object detection, where the system
identifies  vehicles,  pedestrians,  cyclists,  and  road  obstacles;  lane  detection,  which  involves
recognizing and tracking lane markers; and traffic sign recognition, crucial for obeying traffic rules
and making informed driving decisions. The strengths of Tesla’s approach lie in its high accuracy and
scalability,  made  possible  by  robust  feature  extraction  capabilities  and  continuous  data-driven
improvements. However, these systems require large labeled datasets and significant computational
resources, which can be a limitation.

The  NEAT  (Neuro  Evolution  of  Augmenting  Topologies)  algorithm,  developed  by  Kenneth
Stanley, represents a fundamentally different approach to neural network design and training. Unlike
traditional methods that rely on fixed architectures, NEAT evolves both the structure and weights of
neural networks using genetic algorithms. This evolutionary process starts with simple networks and
progressively complexifies them by adding nodes and connections.

NEAT’s training methodology revolves around reinforcement learning, where the performance of
neural networks is evaluated based on a fitness function. The algorithm maintains a population of
neural networks and evolves them over generations. The best-performing networks are selected to
create offspring,  incorporating mutations and crossovers to introduce new structures and improve
performance. This iterative process continues until an optimal solution is found.



The architecture  of  NEAT begins with an initial  population of simple  networks with minimal
nodes and connections. Through the processes of mutation (adding new nodes and connections) and
crossover (combining parts of different networks), NEAT evolves the networks’ topologies. A key
feature of NEAT is speciation, which groups networks into species to protect innovation and ensure
diverse solutions.  This approach allows NEAT to adapt  the network structure dynamically to the
complexity of the task at hand.

NEAT has been applied successfully in various domains, such as game playing and robotics. For
example, it has been used to evolve strategies for playing games like Pac-Man and to develop control
strategies for robotic systems. The strengths of NEAT lie in its ability to adapt topologies and explore
novel architectures, making it particularly useful for tasks where the optimal network structure is not
known in advance. However, NEAT’s evolutionary process can be computationally intensive, and its
stochastic nature can lead to variable performance.

Tesla’s  CNNs  and  the  NEAT  algorithm  represent  two  distinct  paradigms  in  neural  network
training and architecture design. Tesla’s approach utilizes supervised learning with labeled datasets,
employing fixed architectures defined by convolutional,  pooling,  and fully connected layers. This
method is highly effective for tasks with clear hierarchical structures, such as image recognition in
autonomous driving.  The training process,  while  requiring significant  computational  resources,  is
robust and scalable, benefiting from continuous data collection and over-the-air updates.

In contrast, NEAT employs an evolutionary algorithm to dynamically evolve both the structure
and weights of neural networks. This method is particularly advantageous in reinforcement learning
scenarios where the optimal network topology is not predefined. NEAT’s ability to adapt and explore
diverse network architectures allows it  to find novel solutions that might be missed by traditional
fixed-architecture approaches. However, the computational demands of evolving large populations
and the inherent variability of the evolutionary process can be challenging.

2.3. Description and development of the system

For  the  development,  we  used  the  Python  programming  language  together  with  the  PyGame
visualization package. The Python programming language is best suited for the development of neural
networks, and the PyGame package is suitable for visualizing the system's operation [20].

For  the  successful  implementation  of  the  project,  it  is  necessary  to  choose  the  optimal
configuration of the NEAT algorithm (Figure 1).

Figure 1: NEAT algorithm configuration.

The NEAT section defines parameters specific to the system: 



 fitness_criterion: used to calculate the completion criterion based on the genome fitness
set. 

 fitness_threshold: when the value of the fitness function calculated with fitness_criterion,
reaches the threshold specified in the code, the evolution process is completed. 

 pop_size: number of individuals in each generation. 
 reset_on_extinction: this parameter is set to True. When all species die out simultaneously

due to stagnation, a new random population will be created.
The DefaultGenome section defines the parameters for the built-in DefaultGenome class. This
section is necessary for the implementation of the genome when creating an instance of the
Config:
 activation_default: attribute of the default activation function assigned to new nodes. 
 activation_mutate_rate: the probability that a mutation will replace the node's activation

function with a randomly determined activation_options parameter.
 activation_options: activation functions that can be used by nodes. 
 aggregation_default: attribute of the default aggregation function assigned to new nodes. 
 aggregation_mutate_rate:  the  probability  that  a  mutation  will  replace  the  node's

aggregation function with a randomly determined aggregation_options parameter.
 aggregation_options: aggregation functions that can be used by nodes. New aggregation

functions can be defined in the same way as new activation functions.
A description of the car driving on the race track is shown in Figure 2. The program code
describes:
 Uploading a car image, setting car dimensions.
 Determining the starting position and speed of the car.
 Create a list where data from the car sensors will be recorded.
 Setting the initial parameter to check if the car has not crashed.
 Setting the initial parameters of the distance and time traveled.

 
Figure 2: Description of the race car.

After  that,  the  system  aims  to  autonomously  navigate  race  tracks  of  varying  complexity  by
evolving the neural network architecture through an iterative evolutionary process [21]. Our model is
a neural network with five input neurons - sensors - and four output neurons - actions it can perform
between them (Figure 3).



Figure 3: Input and output neurons.

Next, we added some hidden layers with additional neurons. These layers increase the complexity
and sophistication of our model, but they also increase the training time and the likelihood of neurons
"overfitting" (Figure 4).

Figure 4: Hidden layers.

All neurons are interconnected, the connections between neurons have a certain weight depending
on all those values to which the model will react in a certain way based on the input data (Figure 5).

             
Figure 5: Connections between neurons.

Initially, sensor values and actions are completely random, but over time, cars learn to perform
actions more rationally and efficiently. However, for each action that cars perform, they will receive a
reward or a penalty, and this is realized by using a so-called fitness function. In our simple model, the
fitness function of a car increases depending on the distance it travels without accidents. After each
generation, the cars improve - the cars with the highest fitness function are likely to survive and
reproduce,  while  cars  that  do  not  perform  as  well  will  disappear  after  a  while.  When  a  car  is
reproduced, it won't simply copy its parent's properties. It'll be similar but not identical, potentially



improving performance on the track and avoiding accidents. Thus, cars that are very similar to each
other form their own species. If a species does not improve within a fixed number of generations, it
becomes extinct. Taking all these principles into account, an environment was created in which the
best cars survive and reproduce, while the worst disappear. The basic principle is that what works is
likely to survive and be reproduced.

2.4. Testing the system

First,  the system was tested for a simple oval track. The simulation start  function is shown in
Figure 6:

Figure 6: The function of starting a simulation.

The self-driving car successfully overcomes the track during the first few generations. With each
new generation, the car increases its speed and completes the track faster. After the fourth generation,
there are several cars that successfully pass the track. Further, with the following generations, the
number of cars and their speeds are constantly increasing.

The implementation of creating populations and running a simulation with 1000 generations is
shown in Figure 7.

Figure 7: Code snippet for creating populations and starting a simulation.



 We can also see how the cars were divided into two groups, forming two types (Figures 8 – 10).

Figure 8: Third generation on a simple oval track.

Figure 9: Fourth generation on a simple oval track

Figure 10: The fifth generation on a simple oval track.

Then the system was tested on a more complex track with many turns. Until the fourth generation,
the cars could not drive through the first turn. But the model gradually develops, trains, and therefore,
after the fourth generation, it can easily overcome this turn. Then there are problems with other turns.
With each subsequent generation, the model improves and covers a greater distance of the track. More
and  more  cars  successfully  complete  the  track  before  crashing.  And  finally,  after  twenty-four
generations, one car successfully completes the track without an accident. With each new generation,
there are more cars and they gradually increase their speed to drive faster around the track. In this
example, we can clearly see how the NEAT neural network learns and develops (Figures 11-13).



Figure 11: Fourth generation on a challenging track.

Figure 12: Twenty-first generation on a challenging track.

Figure 13: The twenty-fourth generation on a difficult track.

Testing the system on different tracks confirmed the system's functionality.

3. Conclusions

Thanks to  the  integration of  NEAT,  Python,  and Pygame,  a  system capable  of  autonomously
navigating race tracks of varying complexity was successfully created.

Throughout the development process, the capabilities of NEAT, a neuro-evolutionary algorithm,
were used to develop a neural network architecture that  demonstrates intelligent behavior. NEAT



facilitated  the  automatic  generation  and  modification  of  neural  network  structures,  allowing  the
system to adapt and learn based on interaction with the environment.

Python, with its simplicity and large library ecosystem, was the ideal programming language for
developing an intelligent control system. Pygame, in particular, provided us with the necessary tools
for graphics rendering, collision detection, and time control, which allowed us to create a visually
interactive environment for the system.

Iterative cycles of training and evaluation, as well as system refinement and optimization, have
played a  crucial  role  in  improving  the  system's  performance  and adaptability.  Thanks  to  several
generations of evolution and continuous improvement, neural networks have learned to navigate race
tracks, maintain a high average speed, avoid collisions, and adapt to various racing challenges.

This project demonstrated the potential of NEAT and its integration with Python and Pygame in
the development of intelligent control systems for self-driving cars. The developed system serves as a
basis for further development of self-driving cars,  as it  can be extended to handle more complex
scenarios and integrate with real-world hardware.

In general, the successful development of an intelligent control system for an unmanned vehicle
based on NEAT demonstrates the effectiveness of evolutionary algorithms in solving complex control
problems. It opens the door for future research and development in the field of unmanned driving,
paving the way for safer and more efficient transportation systems.
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