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Abstract		
The paper explores new classes of program-oriented logical formalisms of the modal type –pure first-order 
modal logics of partial quasiary predicates with the monotonicity condition removed and enriched with 
equality predicates. The apparatus of modal logics is used for the description and modeling of various 
subject areas, artificial intelligence systems, and information and software systems. The limitations of 
classical predicate logic, on which traditional modal logics are based, underscore the relevance of 
developing new program-oriented logical formalisms. Such are transitional modal logics of quasiary 
predicates (TML), which reflect the aspect of change and development in subject areas. They synthesize 
the capabilities of traditional modal logics and the logics of partial quasiary predicates. Pure first-order 
TML are called TMLQ. We propose two types of TMLQ with equality: with strong equality predicates ≡xy, 
called TMLQ≡, and with weak equality predicates =xy, called TMLQ=. The characteristic features of these 
logics include the use of extended renomination compositions and special indicator predicates that denote 
the presence of a component with the corresponding subject name in the input data, which are necessary 
for the quantifier elimination in non-monotonic predicate logics. The work describes the semantic models 
and languages of TMLQ≡ and TMLQ=. Attention is focused on properties related to equality predicates, 
and the features of substitution of equals in these logics are described. A number of logical consequence 
relations for sets of formulas specified with states is defined, and their main properties are described. 
Based on this semantic foundation, calculi of sequent type are proposed for the investigated logics. Various 
types of such calculi for different logical consequence relations are described, basic sequent forms for these 
calculi are presented, and the closedness conditions for sequents are provided. The construction of 
derivations in the proposed calculi is described, and the soundness and completeness theorems for them 
are proven.  
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1. Introduction	

Modal logics are used with great success to describe a dynamic world that changes and evolves. The 
exceptional flexibility of modal logics allows them to be applied to analyze and model a wide variety 
of human activities. The apparatus of modal logics is utilized for the description and modeling of 
artificial intelligence systems, information and software systems (see, for example [1, 2, 3, 4]). 
Temporal and epistemic logics have found the most application in practical fields. Temporal logics 
are successfully used for software specification and verification [2, 5, 6, 7], and for modeling 
complex dynamic systems. Epistemic logics are used to describe artificial intelligence systems, 
information, and expert systems. Traditional modal logics are based on classical predicate logic. At 
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the same time, classical logic has several limitations (see [8]), which complicates its application. 
This makes the task of developing new, program-oriented modal logics highly relevant. Such are 
composition nominative modal logics (CNML), which combine the capabilities of traditional modal 
logics [9, 3] and composition nominative logics of partial quasiary predicates [8, 10]. CNML are 
built on the basis of the composition nominative approach, common to both logic and 
programming. The most important class of CNML is the transitional modal logics (TML); they 
reflect the aspect of change and development in subject areas. These logics have been studied, in 
particular, in [11, 12]. It should be noted that traditional modal logics can be naturally considered 
within the framework of TML.  

The aim of this work is to study new classes of program-oriented modal logics – pure first-order 
TML of partial quasiary predicates with the monotonicity condition (equitonicity) removed and 
enriched with equality predicates. Two types of such predicates have been distinguished [10]: weak 
equality =ху and strong equality ≡ху. Pure first-order TML without the monotonicity restriction 
will be called TMLQ; TMLQ with strong equality predicates will be called TMLQ≡, while TMLQ 
with weak equality predicates will be called TMLQ=. TMLQ without equality predicates have been 
studied in [11, 12]. TMLQ≡ and TMLQ= are considered in this paper. The semantic models and 
languages of these logics are described, along with the features of the substitution of equals in 
TMLQ≡ and TMLQ=. We define a number of logical consequence relations for sets of formulas 
specified with states of the language, and properties of these relations are provided. 

One of the most important applications of mathematical logic is the automation of proof search. 
Efficient proof search is essential for successfully solving a number of problems that arise in 
computer science and programming. A powerful tool for constructing proofs is Gentzen-type 
calculi, also known as sequent calculi. These calculi formalize the fundamental notion of logical 
consequence. In this work, we propose such calculi for TMLQ with equality predicates. The 
semantic basis for constructing sequent calculi for TML is the properties of logical consequence 
relations for sets of formulas specified with states. Varieties of these calculi for different logical 
consequence relations are described, and basic sequent forms and conditions for the closedness of 
sequents are provided for them. The soundness and completeness theorems for the proposed calculi 
are proved.  

Concepts not defined here are interpreted in the sense of works [8, 10, 11, 13]. 

2. Transitional Modal Systems  

At the core of the CNML concept lies the notion of a compositional nominative modal system 
(CNMS). Such systems serve as models for the possible worlds in modal logics.  

CNMS is the object M = (Cms, Ds, Iт), where: 
– Cms is a composition modal system which defines semantic aspects of the world; 
– Ds is a descriptive system which defines standard descriptions: usually a set Fт of formulas of 

the CNML language;  
– Dns is a denotation system which determines values of standard descriptions on semantic 

models: usually an interpretation mapping Iт of formulas on states of the world. 
Composition modal system is the object Cms = (St, R, Pr, C), where: 
– St is a set of states of the world;  
– R is a set of relations on St of the form R ⊆ St × Stn;  
– Pr is a set of predicates on St;  
– C is a set of compositions on Pr.  
Thus, CMS are relational-type semantic models. 
In expanded form, we will further define CNMS as follows: M = ((St, R, Pr, C), Fт, Iт).  



For the first-order CNMS, the set St is specified as a set of algebraic systems (structures) 
α = (Aα, Prα), where Aα is a set of basic data of the state α, Prα is a set of quasiary predicates 
VAα → {T, F}.  

The predicates Prα are called predicates of the state α.  
The predicates VA →{T, F}, where α

α
,

S
A A

∈
= U  will be called global.  

Transitional modal logics (TML), an important class of CNML, reflect the aspect of change and 
development in subject areas, describing transitions from one state of the world to another. Central 
to TML is the concept of a transitional modal system (TMS), which can be considered the most 
important class of CNMS.  

We specify TMS as CNMS in which the set R consists of relations of the form R ⊆ St × St. These 
relations are treated as state transition relations, hence the name.  

Traditional varieties of TMS include general transitional, temporal, and multimodal systems (see 
[11, 12]).  

TMS, in which R consists of a single binary relation ,>  and the basic modal composition is £  
("necessary"), are called general (GMS).  

TMS, in which R consists of a single binary relation ,>  and the basic modal compositions are £ ↑ 
("it will always be the case") і £ ↓ ("it has always been the case"), are called temporal (TmMS).  

TMS with the set of relations R = { i> | i∈I}, and basic modal compositions Mi, i∈I, in which each 

i> ∈R is matched with the corresponding modal composition Mi, are called multimodal (MМS). In 

MМS, each Mi acts as £ , but only with respect to its own relation ,i>  i∈I. In this sense, GMS is a 
special case of MMS. 

For GMS, the derivative composition ¸  ("possibly") is traditionally defined as: ¸Р means 
¬£¬Р.  

For TmMS, we specify the derivative compositions ¸ ↑ ("it will sometimes be the case") and ¸ ↓ 
("it was sometime the case"): ¸ ↑Р means ¬£ ↑¬Р, while ¸ ↓Р means ¬£ ↓¬Р.  

Pure first-order TMS will be called TMSQ. The corresponding notation GMSQ, TmMSQ, MMSQ 
will be used for pure first-order GMS, TmMS, MMS respectively.  

Basic logical compositions of for TMSQ are logical connectives ¬  and ∨ , renomination ,
,Rv ux ⊥  and 

existential quantification ∃x. For TMSQ with equality we add special 0-ary compositions – equality 
predicates. TMSQ with strong equality predicates ≡xy will be called TMSQ

≡, and TMSQ with weak 
equality predicates =xy will be called TMSQ=.  

V-A-quasiary predicate [8] is a partial function Q: VA → {T, F}, where VA is a set of all V-A-
nominative sets, {T, F} is the set of truth values; V and A are interpreted as sets of subject names 
(variables) and subject values respectively. 

V-A-nominative set (V-A-NS) is defined [5] as a single-valued function of the form V " A. We 
represent V-A-NS as [ ] ,i i i Iv a ∈a  where vі∈V, aі∈A, vі ≠ vj when і ≠ j.  

For V-A-NS, we introduce the operations of projection ||Z and ||–Z, where Z ⊆ V, overlay ∇, and 
(extended) renomination ,

 ,rv ux ⊥  (see [8, 13, 14]).  

Note that in this work, we use extended renomination operations ,
 ,rv ux ⊥  and the corresponding 

extended renomination compositions ,
,Rv ux ⊥ . Traditional renomination operations  r

v
x  and 

renomination compositions Rvx  are their particular cases which were used, for example, in 
[8, 11, 12]. 

Each V-A-quasiary predicate Q is determined by two sets: its truth domain T(Q) = {d | Q(d) = T} 
and its falsity domain F(Q) = {d | Q(d) = F}. 

Predicate Q is single-valued, or P-predicate, if T(Q)∩F(Q) = ∅. 
In this work, only single-valued V-A-quasiary predicates will be considered.  
Predicate Q is irrefutable, if F(Q) = ∅;  
Predicate Q is satisfiable, if T(Q) ≠ ∅.  



In the class of P-predicates, we have 3 constant predicates: 
– Q is identically true (denoted by T), if  F(Q) = ∅  and  T(Q) = VА;  
– Q is identically false (denoted by F), if  T(Q) = ∅  and  F(Q) = VА; 
– Q is totally undefined (denoted by ⊥), if  T(Q) = F(Q) = ∅. 
P-predicate Q is equitone, if (Q(d)$ and d ⊆ d') ⇒ Q(d')$ = Q(d).   
Subject name х∈V is unessential for the predicate Q, if  d1 ||–х = d2 ||–х ⇒ Q(d1) = Q(d2). 
The basic logical compositions ¬ , ∨ , ∃x, ,

,Rv ux ⊥  for quasiary predicates are specified in [13].  
Equality predicates are treated as special 0-ary compositions, considering their general logical 

status. Two varieties of these predicates are distinguished [10]: weak (up to definability) equality 
predicates ={x,y} and strong (strict) equality predicates ≡ {x,y}. They are defined as follows: 

T(={x,y}) = {d | d(x)$, d(y)$ and d(x) = d(y)}, 
F(={x,y}) = {d | d(x)$, d(y)$ and d(x) ≠ d(y)}; 
T(≡ {x,y}) = {d | d(x)$, d(y)$ and d(x) = d(y)}∪ ∪{d | d(x)# and d(y)#}, 
F(≡ {x,y}) = {d | d(x)$, d(y)$, d(x) ≠ d(y)}∪ ∪{d | d(x)$, d(y)# or d(x)#, d(y)$}. 

Specific cases of ={x,y} and ≡ {x,y}, when x and y coincide, are ={x} and ≡ {x}.  
The predicates ={x,y}, ={x} and ≡ {x,y}, ≡ {x} will be more conventionally denoted as =xy, =xx and ≡ xy, 

≡ xx.  
Thus, =xy and =yx represent the same predicate, as do ≡ xy and ≡ yx, respectively. 
The predicates ≡ xy and ≡ xx are total and non-monotonic; the predicates =xy and =xx are partial and 

equitone.  
For quantifier elimination in the logics of non-monotonic predicates, special 0-ary compositions 

–predicates-indicators which detect whether a component with a corresponding name has a value 
in the input data – are needed. The use of such indicator predicates is a characteristic feature of 
TMLQ. Total predicates-indicators determine the presence or absence of a component with a given 
name, while partial predicates-indicators only detect the presence of such a component.  

Total predicates-indicators Ez are non-monotonic; they are defined as follows (see [8]): 
T(Ez) = {d | d(z)$}; 
F(Ez) = {d | d(z)#}. 

Total indicator predicates Ez were used, in particular, in [8, 10, 11, 13]. 
Partial predicates-indicators are already present in TMSQ= as the equitone predicates =zz.  
Indeed, we have T(=zz) = {d | d(z)$} = T(Ez) and F(=zz) = {d | d(z)$ and d(z) ≠ d(z)} = ∅. 
Note that the predicates Ez can be expressed as ∃y ≡ xy, but it is more appropriate to explicitly 

define them as special 0-ary compositions, which is done in TMLQ≡. At the same time, partial 
indicator predicates, such as the predicates =xx, are explicitly present in TMLQ=.   

Therefore, we have the following varieties of TMSQ with equality: GMSQ
≡, TmMS Q

≡, MМS Q
≡ for 

TMSQ
≡, and GMSQ=, TmMS Q=, MМS Q= for TMSQ=.  

 
3. Languages of Transitional Modal Systems 

Let us describe a language of GMSQ
≡. The alphabet: a set V of subject names (variables); a set Ps 

of predicate symbols; the set ,
,{ , , , , , }v u
x xyR x Ex⊥¬ ∨ ∃ ≡  of basic logical compositions’ symbols; the set 

Ms = {£} of basic modal compositions’ symbols.  
The set Fr of formulas of the language is determined as follows:  

Fa) Ps ⊆ Fr;  
F≡) {Ex | x∈V} ⊆ Fr and {≡ху | x, у∈V} ⊆ Fr;  
Fp) Φ, Ψ∈Fr ⇒ ¬Φ∈Fr and ∨ΦΨ∈Fr;  
FR) Φ∈Fr ⇒ ,

, Φ ;v u
xR Fr⊥ ∈   

F∃) Φ∈Fr ⇒ ∃xΦ∈Fr;  
F¨) Φ∈Fr  ⇒  £Φ∈Fr. 

Formulas of the form р∈Ps, Ex, ≡ху will be called atomic. 



Atomic formulas and formulas of the form ,
, ( ),
v u
xR p⊥  where р∈Ps, will be called primitive.  

To write formulas, we will traditionally use the prefix notation and the symbols for derived 
compositions →, &, ∀x, ¸. Thus, the formulas ∨¬ΦΨ, ¬∨¬Φ¬Ψ, ¬∃x¬Φ, and ¬£¬Φ will be 
abbreviated Φ→Ψ, Φ&Ψ, ∀xΦ, and ¸Φ, respectively. 

Sets of guaranteed to be unessential names for formulas are specified by a function ν : Fr → 2V 
(see [8]). At the same time, we define ν(£Φ) = ν(Φ).  

The type of GMSQ
≡ is determined by the extended signature σ = (Ps, ν) and properties of the 

relation .>   
Let us define an interpretation mapping Im of formulas on states of the world. First, we specify 

Im : Рs × St → Pr, with condition Iт(p, α) ∈ Prα (basic predicates are predicates of states). 
Compositions’ symbols are interpreted as corresponding compositions  (in particular, the symbols 
Ex and ≡xy are interpreted as the corresponding predicates-indicators and equality predicates). The 
mapping Im is continued to Fт × St → Pr in the following fashion: 

Ip) Iт(¬, α) = ¬(Iт(Φ, α));   
Iт(∨ΦΨ, α) = ∨(Iт(Φ, α), Iт(Ψ, α)); 
IR) , ,

, ,( (Φ),α) R ( (Φ,α));v u v u
x xIm R Im⊥ ⊥=   

I∃) Iт(∃xΦ, α)(d) =
,  if exists :  ( , )( ) ,   
,  if ( , )( )  for all ,   

else undefined.           

T a A Im d x a T
F  Im d x a F a A

α

α

∈ Φ α ∇ =⎧⎪
Φ α ∇ = ∈⎨

⎪⎩

a
a   

I¨) Iт(£Φ, α)(d) =  
,  if ( , )( )  for all :  ,       
,  if exists :   and ( , )( ) ,

else undefined.      

T  Im d T  S  
F S  Im d F

Φ δ = δ∈ α δ⎧⎪
δ∈ α δ Φ δ =⎨

⎪⎩

>
>  

Given for α∈St there is no β such that α β> , then we define Iт(£Φ, α)(d)↑ for all d∈VA.  
For abbreviations of formulas of the form ∀xΦ and ¸Φ, the mapping Iт is specified as follows: 

I∃) Iт(∀xΦ, α)(d) =
,  if ( , )( )  for all ,     
,  if exists :  ( , )( ) ,  

else undefined.           

T Im d x a T a A
F a A Im d x a F

α

α

Φ α ∇ = ∈⎧⎪
∈ Φ α ∇ =⎨

⎪⎩

a
a   

I¸) Iт(¸Φ, α)(d) 
,  if exists  such that  and ( , )( ) ,
,  if ( , )( )  for all  such that ,     

else undefined.

T St   Im d T
F Im d F  St  

δ∈ α δ Φ δ =⎧⎪
= Φ δ = δ∈ α δ⎨
⎪⎩

>
>  

Given for α∈St there is no β such that α β> , then we define Iт(¸Φ, α)(d)↑ for all d∈VA.  
Predicates that are values of modalized formulas, belong to global predicates.  
We specify TMS as M = (St, R, A, Im).  
The following definitions are given identically for all the described variants of TMSQ.  
Predicate Iт(Φ, α), which is a value of the formula Φ on state α, is denoted by Φα.  
Formula Φ is irrefutable on state α (denoted by α |= Φ), if Φα is a irrefutable predicate.  
Formula Φ is irrefutable in TMS M (denoted by M |= Φ), if for all α∈St, Φα is irrufutable.  
Let � be a TMS class of a given type.  
Formula Φ is �-irrefutable (denoted by � |= Φ), if M |= Φ for all TMS M∈�.  
Depending on conditions imposed on the relation ,>  different classes of GMSQ

≡ can be specified.  
Traditionally, we can consider cases of reflexive, symmetric or transitive > , or their combinations: 
then we add the corresponding symbol R/T/S to the GMSQ

≡ name. Thus, the following classes are 
obtained: R-GMSQ

≡, T-GMSQ
≡, S-GMSQ

≡, RT-GMSQ
≡, RS-GMSQ

≡, TS-GMSQ
≡, RTS-GMSQ

≡.   
The language of GMSQ= is defined similarly to the language of GMSQ

≡ with the following 
differences. The set of symbols of basic logical compositions is ,

,{ , , , , }.v u
x xyR x⊥¬ ∨ ∃ =  In the definition 

of the set of formulas, instead of the item F≡ we have {=ху | x, у∈V} ⊆ Fr; the interpretation 
mapping is defined accordingly. 

Let us describe the TmMSQ
≡ language. The alphabet is identical to the alphabet of GMSQ

≡ with 
the set of basic modal compositions’ symbols specified as Ms = {£↑, £↓}. The set Fт of formulas of 



the language is determined according to the items Fa, F≡, Fp, FR, F∃ for the language of GMSQ
≡, 

but instead of F¨ we have:  
F¨↑↓) Φ∈Fr ⇒ £↑Φ∈Fr and £↓Φ∈Fr.  

When we define the mapping Iт, instead of I¨ we have the following item I¨↑↓ (see [11, 12]):  

I¨↑↓) Iт(£↑Φ, α)(d)
,  if ( , )( )  for all  such that ,                
,  if there exists  such that  and ( , )( ) ,

else undefined;

T Im d T St  
F St   Im d F

Φ δ = δ∈ α δ⎧⎪
= δ∈ α δ Φ δ =⎨
⎪⎩

>
>  

Iт(£↓Φ, α)(d)
,  if ( , )( )  for all  such that ,                
,  if there exists  such that  and ( , )( ) ,

else undefined.

T Im d T St  
F St   Im d F

Φ δ = δ∈ δ α⎧⎪
= δ∈ δ α Φ δ =⎨
⎪⎩

>
>  

Given for α∈St there is no β such that α β> , then we define Iт(£↑Φ, α)(d)↑ for all d∈VA.  
Given for α∈St there is no β such that β α> , then we define Iт(£↓Φ, α)(d)↑ for all d∈VA.  
For the abbreviated formulas ¸↑Φ and ¸↓Φ, we have the following interpretation mapping Iт: 

I¸ ↑↓) Iт(¸↑Φ, α)(d)
,  if there exists ,  such that  and ( , )( ) ,
,  if ( , )( )  for all ,  such that ,               

else undefined;

T S  Im d T
F Im d F  S  

δ∈ α δ Φ δ =⎧⎪
= Φ δ = δ∈ α δ⎨
⎪⎩

>
>   

Iт(¸↓Φ, α)(d)
,  if there exists ,  such that  and ( , )( ) ,
,  if ( , )( )  for all ,  such that ,               

else undefined.

T S   Im d T
F Im d F  S  

δ∈ δ α Φ δ =⎧⎪
= Φ δ = δ∈ δ α⎨
⎪⎩

>
>   

Given for α∈St there is no β such that α β> , then we define Iт(¸↑Φ, α)(d)↑ for all d∈VA.  
Given for α∈St there is no β such that β α> , then we define Iт(¸↓Φ, α)(d)↑ for all d∈VA.  
The language of TmMSQ= is defined similarly to the language of TmMSQ

≡, with the differences 
corresponding to those between the languages of GMSQ= and GMSQ

≡.  
Depending on the conditions imposed on ,>  we define different classes of GMSQ=, TmMSQ

≡, and 
TmMSQ= as done for GMSQ

≡. 
Similarly, we define the languages of MMSQ≡ and MMSQ=.  
Depending on how the value Φδ(d) is set in case d∉VAδ, two types of TMS are distinguished 

([12]): with strong condition of undefinedness on states and with general condition of 
undefinedness on states. The strong condition is specified as follows: under the condition d∉VAδ we 
have Φδ(d)↑. Hence: (£Φ)α(d) = T ⇒ d∈VAδ for all δ such that α▹δ. This implies that basic objects 
cannot disappear when transitioning to a successor state, which imposes too strong a restriction on 
semantic models. The strong condition also does not preserve [12] equitonicity of predicates with 
modalities.  

The general condition of undefinedness on states does not have these drawbacks; it is defined as 
follows: 

for all d∈VA and δ∈St, we have Φδ(d) = Φδ(dδ).  
Here dδ denotes the name set [ v a d∈a | a∈Aδ].  
Given d∉VAδ, we have Φδ(d) = Φδ(dδ), meaning that predicates on states δ “perceive” only 

components v aa  with basic data a∈Aδ.  
The interaction of modal compositions with renominations and quantifiers has been studied in 

[12]. Let us briefly describe it for GMSQ.  
Theorem 1. For all Φ∈Fr, d∈VA we have , ,

, α , α( Φ) ( )  ( (Φ)) ( )v u v u
x xR d R d⊥ ⊥=® ® . 

Therefore, symbols of Ms can be carried through renomination symbols.  
Theorem 2. Formulas ∃x£Φ → £∃xΦ, £∀xΦ →∀x£Φ, ¸∀xΦ → ∀x¸Φ, ∃x¸Φ → ¸∃xΦ are 

irrefutable in GMSQ of equitone predicates.   
Theorem 3. Formulas ∃x£Φ → £∃xΦ, £∀xΦ →∀x£Φ are refuted in GMSQ. 
Corrolary 1. Formulas ¸∀xΦ → ∀x¸Φ, ∃x¸Φ → ¸∃xΦ are refuted in GMSQ. 
Theorem 4. Formulas £∃xΦ → ∃x£Φ, ∀x£Φ → £∀xΦ are refuted in GMSQ of equitone 

predicates.  



Corollary 2. Formulas ∀x¸Φ → ¸∀xΦ, ¸∃xΦ → ∃x¸Φ are refuted in GMSQ of equitone 
predicates. 

Examples of GMSQ, in which the formulas specified in Theorems 3 and 4 are refuted, are given 
in the work [12].  

Let's consider the specific properties of GMSQ, related to equality predicates. For TmMSQ and 
MMSQ, these properties are formulated similarly. 

Assertion 1. 1) for every GMSQ
≡ M we have M |= ≡хх and M |= £≡хх;  

2) for every GMSQ= M we have M |= =хх and M |= £=хх. 
Indeed, F(≡ хх) = ∅ and F(=хх) = ∅.  
Example 1. Let us consider GMSQ

≡ with St = {α, β} and R = {α β> }. Since there is no state η 
such that β η> , then (£≡ хх)β(d)# for each d.  

Therefore, £≡ хх is not always interpreted as the constant predicate Т. 
Theorem 5. Formulas =ху → £=ху and £=ху → =ху are irrefutable in GMSQ=.  
In particular, =хх → £=хх and £=хх → =хх are irrefutable in GMSQ=. At the same time, we have  
Example 2. Formulas  ≡ ху → £≡ ху and £≡ ху → ≡ ху are refuted in the following GMSQ≡.  
Let St = {α, β}, R = {α β> }, Aα = {a}, Aβ = {b}.  
Let d = [x a b, z a a] ⇒ dα = [z a a], dβ = [x a b]. Hence dα(x)#, dα(y)#, dβ(x) = b, dβ(y)#. We have 

(≡ ху)α(d) = (≡ ху)α(dα) = Т.  
At the same time, (≡ ху)β(d) = (≡ ху)β(dβ) = F ⇒ (£≡ ху)α(d) = (£≡ ху)α(dα) = F.  
Therefore, (≡ ху → £≡ ху)α(d) = F ⇒ α |≠ ≡ ху → £≡ ху.  
Let us take h = [x a a, z a b] ⇒ hα = [x a a], hβ = [z a b]. Hence hα(x) = a, hα(y)#, hβ(x)#, hβ(y)#. 

We have (≡ ху)α(h) = (≡ ху)α(hα) = F.  
At the same time, (≡ ху)β(h) = (≡ ху)β(hβ) = T ⇒ (£≡ ху)α(h) = (£≡ ху)α(hα) = T.  
Thus, (£≡ ху → ≡ ху)α(h) = F ⇒ α |≠ £≡ ху → ≡ ху.  
Example 3. Formulas Ex → £Ex and £Ex → Ex are refuted in GMSQ

≡. 
Let us consider the GMSQ

≡ from Example 2. 
Let us take h = [x a a, z a b] ⇒ hα = [x a a], hβ = [z a b]. From this, Exα(h) = Т, Exβ(h) = F, which 

gives £Exα(h) = F. Therefore, (Ex → £Ex)α(h) = F, whence α |≠ Ex → £Ex.  
Let us take d = [x a b, z a a] ⇒ dα = [z a a], dβ = [x a b]. From this, Exα(d) = F, Exβ(d) = T, which 

gives £Exα(d) = T. Therefore, (£Ex → Ex)α(h) = F, whence α |≠ £Ex → Ex.  
Theorem 5 and Example 2 demonstrate significant differences between GMSQ≡ and GMSQ=.  
Another confirmation of this is provided below by Theorem 6 and Example 4. 
Theorem 6. Formula =ху & £=хz → £=уz  is irrefutable in GMSQ=.  
Example 4. Formula  ≡ ху & £≡ хz → £≡ уz  is refuted in the following GMSQ

≡. 
Let St = {α, β}, R = {α β> }, Aα = {a}, Aβ = {b, с}.  
Let us take d = [x a c, y a b, z a c, s a a]  ⇒  dα = [s a a],  dβ = [x a c, y a b, z a c].  
Hence dα(x)#, dα(y)#;  dβ(x) = c, dβ(y) = b, dβ(z) = c.   
From this, (≡ ху)α(d) = (≡ ху)α(dα) = Т;  (≡ хz)β(d) = (≡ хz)β(dβ) = T,  (≡ yz)β(d) = (≡ yz)β(dβ) = F.  
We obtain (≡ хz)β(d) = T and α▹β ⇒ (£≡ хz)α(d) = T; (≡ yz)β(d) = F and α▹β ⇒ (£≡ yz)α(d) = F.   
Therefore, (≡ ху & £≡ хz → £≡ уz)α(d) = F. 
 

4. Logical consequence relations for sets of formulas specified with states  

We will define logical consequence relations in TMS on a set of formulas specified with names of 
states, or simply, specified with states.  

Formula specified with a name of the state has the form Φα, where Φ is a formula of the language, 
α∈S – its specification, S – a set of names of states of the world.  

Let us call a set of formulas specified with states Σ with a specifications’ set S consistent with 
TMS M = (St, R, A, Im), provided that an injection of S into St is defined.  



On sets of formulas specified with states, we introduce the relations of irrefutability (IR-
consequence), truth (T-consequence), falsity (F-consequence), and strong (TF-consequence) logical 
consequence. These relations correspond to the similarly named relations in logics of quasiary 
predicates (see [8, 10, 13]). 

Let Δ and Γ be sets of formulas specified with states. Further on, the notation Γ M|=* Δ by default 
assumes that Γ and Δ are consistent with TMS M. 

Δ is a IR-consequence of Γ in a consistent with them TMS M (denoted Γ M|=IR Δ), if for all d∈VA we 
have: Φα(d) = T for all Φα∈Γ ⇒ Ψβ(d) ≠ F for some Ψβ∈Δ.   

Δ is a logical IR-consequence of Γ with respect to a TMS of a type � (denoted Γ 
�|=IR Δ), if 

Γ M|=IR Δ for all M∈�.  
Δ is a T-consequence of Γ in a consistent with them TMS M (denoted Γ M|=T Δ), if for all d∈VA we 

have: Φα(d) = T for all Φα∈Γ ⇒ Ψβ(d) = T for some Ψβ∈Δ.   
Δ is a logical T-consequence of Γ with respect to a TMS of a type � (denoted Γ 

�|=T Δ), if Γ M|=T Δ 
for all M∈�.  

Δ is an F-consequence of Γ in a consistent with them TMS M (denoted Γ M|=F Δ), if for all d∈VA we 
have:  Ψβ(d) = F for all Ψβ∈Δ  ⇒ Φα(d) = F for some Φα∈Γ.   

Δ is a logical F-consequence of Γ with respect to a TMS of a type � (denoted Γ 
�|=F Δ), if Γ M|=F Δ 

for all M∈�.  
Δ is a TF-consequence of Γ in a consistent with them TMS M (denoted Γ M|=TF Δ), if  Γ M|=T Δ  and  

Γ M|=F Δ. 
Δ is a logical TF-consequence of Γ with respect to a TMS of a type � (denoted Γ 

�|=TF Δ), if  
Γ M|=TF Δ for all M∈�.  

Therefore, we have: Γ 
�|=TF Δ ⇔ Γ 

�|=T Δ and Γ 
�|=F Δ.  

In logics with weak equality predicates, the relations of types T, F and TF are incorrect (see [10]), 
so in GMSQ= we consider only relations of the IR type. In GMSQ

≡, all the above-defined relations can 
be considered. 

The non-modal properties of the relations for sets of formulas specified with states repeat the 
corresponding properties of the same-named relations for sets of formulas of the traditional logic of 
quasiary predicates described in [8, 10, 13, 14]. These are such properties. 

1) Properties of formulas decomposition ¬¬L, ¬¬R, ∨L, ∨R, ¬∨L, ¬∨R, and also properties ¬L,and 
¬R for |=IR (see [8]). 

2) Properties of simplification and equivalent transformations related to renominations, induced by 
the predicates properties R, R⊥I, R⊥U, R⊥R, R⊥¬, R⊥∨, R# (see [13, 14]).  

3) Properties of simplification related to renomination of the Ez predicates, induced by the 
predicates properties R⊥E and R⊥Ev, and the property ElRE of elimination of the F-formula 

, ,
, , ( )v u z
xR Ez⊥ ⊥ (see [13]). 
4) Auxiliary properties in GMSQ

≡: elimination of ¬ when carrying a formula from the left side of 
the consequence relation to the right and vice versa for the symbols Ez, ≡ху, and their renominations. 

5) Properties related to the quantifier elimination; in GMSQ
≡, they repeat the properties ∃R⊥L, 

¬∃R⊥R, ∃R⊥vR, ¬∃R⊥vL (see [8]), in GMSQ=, we have the analogous properties ∃R⊥L=, ¬∃R⊥R=, ∃R⊥vR=, 
¬∃R⊥vL=, where instead of Ez, we use =zz; moreover, we add the properties of E-distribution Ed and of 
primary definition Ev in GMSQ

≡ (see [14]), and similarly, the properties $=d  and $=v with =zz instead 
of  Ez in GMSQ=.  

6) Properties in GMSQ
≡ related to the ≡ху predicates; these are simplification properties induced by 

the predicates properties R⊥≡xx, R⊥≡0, R⊥≡1, R⊥≡2, R⊥≡1E, R⊥≡2E; properties of elimination of the T-
formulas ≡xx and , , ,

, , , ( ),v u x y
w xyR ⊥ ⊥ ⊥ ≡  elimination of the pair of equals in a renomination ≡elR, transitivity 

Tr≡  (see [13]). For example, let us consider the transitivity property (here and further on the symbol * 
denotes one of the IR, T, F, TF): 

Tr≡) ≡xyα, ≡yzα, Γ M|=∗ Δ ⇔ ≡xyα, ≡yzα, ≡xzα, Γ M|=∗ Δ.  
We add to them the properties of substitution of equals in GMSQ

≡ described below. 



7) Properties in GMSQ= related to the =ху and =хх predicates; these are simplification properties 
induced by the predicates properties R⊥=zz, R⊥=zz0 R⊥=0, R⊥=1, R⊥=2; the properties ElR=L and ElR=R of 
elimination of the ⊥-formulas and the property El=L of elimination of the pT-formulas =zz; the properties 
of elimination of the pair of equals in a renomination =elR, transitivity Tr= and substitution of equals 
=R⊥rL, =R⊥rR (see [13]).  

Let us describe the properties that guarantee the considered consequence relations in GMSQ
≡.  

For all such relations we have the basic property С and property СF: 
С) Φα, Γ M|=∗ Δ, Φα;  

, ,
, ,) ( ), |v u z
xCF R Ez⊥ ⊥ ∗Γ = Δ . 

Additionally, the corresponding consequence relation is guaranteed by one of the following 
properties:  

СL) Φα, ¬Φα, Γ M|=T Δ; 
СR) Γ M|=F Δ, Φα, ¬Φα; 
СLR) Φα, ¬Φα, Γ M|=TF Δ, Ψα, ¬Ψα.  

Based on the properties of equality, we have the properties of the presence of each of the relations:  
СRf≡) Γ M|=∗ Δ, ≡xxα;   
CE≡L) ≡xyα, Exα, Γ |=∗ Eyα, Δ;  
CE≡R) Γ |=∗ ≡xyα, Exα, Eyα, Δ;   
CT≡) Γ M|=∗ Δ, , , ,

, , , ( )v u x z
x xzR α
⊥ ⊥ ⊥ ≡ .   

Based on the properties of guaranteed presence of one of the relations Γ M|=IR Δ, Γ M|=T Δ, Γ M|=IF Δ, 
Γ M|=TF Δ, we have the corresponding conditions that guarantee this relation.  

С) there exists a formula Φ:  Φα∈Γ and Φα∈Δ – for all relations;  
СF) there exists a formula , ,

, , ( )v u z
xR Ez α
⊥ ⊥ ∈Γ – for all relations;  

СL) there exists a formula Φα:  Φα∈Γ and ¬Φα∈Γ – for the relation M|=T;   
СR) there exists a formula Φα:  Φα∈Δ and ¬Φα∈Δ – for the relation M|=F;  ;  
СLR) there exist formulas Φ and Ψ:  Φα, ¬Φα∈Γ and Ψα, ¬Ψα∈Δ – for the relation M|=TF;  
СRf≡) there exists a formula ≡xxα∈Δ – for all relations; 
CE≡L) there exist formulas ≡xy, Ex and Ey:  ≡xyα, Exα∈Γ and Eyα∈Δ – for all relations;  
CE≡R) there exist formulas ≡xy, Ex and Ey:  ≡xyα, Exα, Eyα∈Δ – for all relations;  
CT≡) there exists a formula , , ,

, , ,R ( ) :v u x z
x xz⊥ ⊥ ⊥ ≡  , , ,

, , ,R ( )v u x z
x xz

α
⊥ ⊥ ⊥ ≡ ∈Δ  – for all relations. 

This provides the complete conditions that guarantee each of the corresponding relations Γ M|=∗ Δ 
in GMSQ

≡. 
The relation M|=IR :  С ∨ CF ∨ СRf≡ ∨ CE≡L ∨ CE≡R ∨ CT≡.   
The relation M|=T :  С ∨ СL ∨ CF ∨ СRf≡ ∨ CE≡L ∨ CE≡R ∨ CT≡.   
The relation M|=F :  С ∨ СR ∨ CF ∨ СRf≡ ∨ CE≡L ∨ CE≡R ∨ CT≡.  
The relation M|=TF :  С ∨ СLR ∨ CF ∨ СRf≡ ∨ CE≡L ∨ CE≡R ∨ CT≡.  

Let us describe the properties of guaranteed presence of the relation Γ M|=IR Δ in GMSQ=. These are 
the basic property С and the following ones: 

СRf=) Γ M|=IR Δ, =xxα;   
C⊥L) , , 

, , ( ) ,v u x
w xyR α
⊥ ⊥ = Γ  M|=IR Δ;  

C⊥R) Γ M|=IR Δ, , , 
, , ( )v u x
w xyR α
⊥ ⊥ = .  

Hence, the same-named conditions that guarantee the relation Γ M|=IR Δ in GMSQ=. 
СRf=) there exists a formula =xxα∈Δ;  
С⊥L) there exists a formula , , α

, , ( ) Γ;v u x
w xyR ⊥ ⊥ = ∈  

С⊥R) there exists a formula , , α
, , ( ) Δ.v u x
w xyR ⊥ ⊥ = ∈   

Thus, we obtain the complete condition of guaranteed presence of the relation Γ M|=IR Δ in GMSQ=:  
С ∨ СRf= ∨ C⊥L ∨ C⊥R. 



To conclude the description of the non-modal properties of consequence relations for sets of 
formulas specified with states in GMSQ

≡, we will examine properties related to the substitution of 
equals.  

Example 5. The property ≡ хуα, £≡ хzα M|=IR £≡ уzα is refuted in the following GMSQ
≡. 

In the GMS M from Example 4 for d = [x a c, y a b, z a c, s a a] we have (≡ ху)α(d) = Т, 
(£≡ хz)α(d) = T, (£≡ yz)α(d) = F; hence ≡ хуα, £≡ хzα M|≠IR £≡ уzα. 

Thus, ≡ хуα, £≡ хzα M|≠* £≡ уzα, where the symbol * denotes one of the IR, T, F, TF.  
At the same time, we have ≡ хуα, £≡ хzα, £≡ уzα |=*£≡ уzα by the property С of guaranteed presence of 

each of the logical consequence relations.  
Assertion 2. The following statements are not equivalent: 

, , , , , ,
, , , , , ,, ( ) , |   and  , ( ) , ( ) , |α α α α α
⊥ ∗ ⊥ ⊥ ∗≡ Φ Γ = Δ ≡ Φ Φ Γ = Δv u v v u v v u v

xy w x M xy w x w y MR R R . 

We have ( )  and  ( ) ,α α α α≡ = ≡ ≡ = ≡v v
x vz xz y vz yzR R£ £ £ £  by Example 5 ≡ хуα, £≡ хzα M|≠* £≡ уzα, 

hence *, ( ) | ( ) .v v
xy x vz M y vzR Rα α α≡ ≡ ≠ ≡£ £  However, *, ( ) , ( ) | ( ) ,v v v

xy x vz y vz y vzR R Rα α α α≡ ≡ ≡ = ≡£ £ £  

therefore the statements * *, ( ) , |  and , ( ) , ( ) |α α α α α≡ Φ Γ = Δ ≡ Φ Φ Γ = Δv v v
xy x M xy x y MR R R  are not 

equivalent; in thegeneral case, the statements , ,
, ,, ( ) , |v u v

xy w x MRα α
⊥ ∗≡ Φ Γ = Δ  and 

, , , ,
, , , ,, ( ) , ( ) , |v u v v u v

xy w x w y MR Rα α α
⊥ ⊥ ∗≡ Φ Φ Γ = Δ  are not equivalent. 

Thus, the condition validity for ≡ хуα is insufficient for the substitution of equals. 
Assertion 3. We have ≡ хуα, Exα, Eyα, £≡ хzα, |=*£≡ уzα.  
Let us prove this by contradiction for the case of |=IR, similarly, it is proven for |=T, |=F, and |=TF.  
Let us assume the opposite: suppose for some GMS M = (St, R, A, Im) and α∈St, d∈VA we have 

(≡ ху)α(d) = Т, Exα(d) = T, Eyα(d) = T, (£≡ хz)α(d) = T and (£≡ yz)α(d) = F; from this dα(x)$ = dα(y)$ = a∈Aα 
for some a∈A ⇒ d(x) = d(y) = a. According to (£≡ yz)α(d) = F we have (≡ yz)β(d) = F for some β such 
that α β> . According to (£≡ хz)α(d) = T we have (≡ хz)β(d) = T, which gives us two possible cases:  

1) dβ(x)# and dβ(z)#;  hence d(x)∉dβ, and since d(x) = d(y) = a we have dβ(y)#, so (≡ yz)β(d) = T, which 
contradicts (≡ yz)β(d) = F. 

2) dβ(x)$ = dβ(z)$; since d(x) = d(y) = a then dβ(z) = dβ(x) = dβ(y) = a, which contradicts (≡ yz)β(d) = F.  
In both cases, we obtained a contradiction. 
Assertion 4. We have ≡ хуα, Exα, Eyα |=*£≡ xyα, where the symbol * denotes either IR or F. 
It is sufficient to prove for the case |=F. Let us assume the opposite: suppose for some GMS 

M = (St, R, A, Im) and α∈St, d∈VA we have (£≡ xy)α(d) = F, (≡ ху)α(d) ≠ F, Exα(d) ≠ F, Eyα(d) ≠ F. Since 
the predicates Ex and ≡ xy are total, we have (≡ ху)α(d) = T, Exα(d) = T, Eyα(d) = T. Hence dα(x)$, dα(y)$, 
and since (≡ ху)α(d) = T, therefore dα(x) = dα(y) = a for some a∈Aα ⊆ A, so d(x) = d(y) = a. Given 
(£≡ xy)α(d) = F, we have (≡ xy)β(d) = F for some β such that α β> . We obtain three possible cases:  

1) dβ(x)$, dβ(y)$ and dβ(x) ≠ dβ(y); since Aβ ⊆ A then d(x)$, d(y)$ and d(x) ≠ d (y); at the same time 
we have d(x) = d(y) = a, which gives us a contradiction; 

2) dβ(x)$ and dβ(y)#; since Aβ ⊆ A then dβ(x) = d(x) = d(y) = a, so a∈Aβ, hence dβ(y) = a, which 
contradicts dβ(y)#; 

3) the case dβ(x)# and dβ(y)$ is treated similarly to 2). 
Assertion 5. In the general case we have ≡ хуα, Exα, Eyα |≠T £≡ xyα. Indeed, for GMS 

M = (St, R, A, Im), where no β exists such that α β> , we have (£≡ xy)α(d)# for all d∈VA. However, for 
d = [x a a, y a a] with a∈Aα we have (≡ ху)α(d) = T, Exα(d) = T, Eyα(d) = T.   

At the same time, by adding £≡ xx to the left side, |=F and |=IR are preserved, and |=T is guaranteed 
even in the absence of β such that α β> . Indeed, then (£≡ xy)α(d)# and (£≡ xx)α(d)# for all d∈VA. 
Hence, we get: 

Assertion 6. We have ≡ хуα, Exα, Eyα, £≡ xxα |=*£≡ xyα, where * denotes one of the IR, F, T, TF. 
Note that the reflexivity of the relation >  guarantees |=T and |=TF in Assertion 6.  



Adding the validity conditions Exα та Eyα to the validity condition ≡ хуα allows for the substitution of 
equals. Finally, we have the following properties of substitution of equals in GMSQ

≡:   
≡rpL) , , , , , ,

, , , , , ,, , , ( ) , |   , , , ( ) , ( ) , | ;v u z v u z v u z
xy w x M xy w x w y MEx Ey R Ex Ey R Rα α α α α α α α α

⊥ ∗ ⊥ ⊥ ∗≡ Φ Γ = Δ ⇔ ≡ Φ Φ Γ = Δ   

≡rpR) , , , , , ,
, , , , , ,, , , | ( ) ,   , , , | ( ) , ( ) , ;v u z v u z v u z

xy M w x xy M w x w yEx Ey R Ex Ey R Rα α α α α α α α α
∗ ⊥ ∗ ⊥ ⊥≡ Γ = Φ Δ ⇔ ≡ Γ = Φ Φ Δ   

≡¬rpL) , , , , , ,
, , , , , ,, , , ( ) , |   , , , ( ) , ( ) , | ;v u z v u z v u z

xy w x M xy w x w y MEx Ey R Ex Ey R Rα α α α α α α α α
⊥ ∗ ⊥ ⊥ ∗≡ ¬ Φ Γ = Δ ⇔ ≡ ¬ Φ ¬ Φ Γ = Δ   

≡¬rpR) , , , , , ,
, , , , , ,, , , | ( ) ,   , , , | ( ) , ( ) , .v u z v u z v u z

xy M w x xy M w x w yEx Ey R Ex Ey R Rα α α α α α α α α
∗ ⊥ ∗ ⊥ ⊥≡ Γ = ¬ Φ Δ ⇔ ≡ Γ = ¬ Φ ¬ Φ Δ   

Let us describe the properties related to modal compositions. In TMS of non-monotonic predicates 
with equality, these properties are generally analogous to the corresponding properties of TMS 
without equality predicates (see, for example, [12]). These are properties of carrying modalities over 
renominations, which belong to the properties of equivalent transformations, and properties of 
modality elimination. We will present the properties of carrying £  over renomination in GMS. 

R*L) , ,
, * ,, ( ) |   ,  ( ) |v u v u
x M x MR Rα α
⊥ ⊥ ∗Γ Φ = Δ ⇔ Γ Φ = Δ£ £ ;  

¬R*L) , ,
, * ,, ( ) |   ,  ( ) |v u v u
x M x MR Rα α
⊥ ⊥ ∗Γ ¬ Φ = Δ ⇔ Γ ¬ Φ = Δ£ £ ;  

R*R) , ,
* , ,| , ( )   | ,  ( )v u v u

M x M xR Rα α
⊥ ∗ ⊥Γ = Δ Φ ⇔ Γ = Δ Φ£ £ ; 

¬R*R) , ,
* , ,| , ( )   | ,  ( )v u v u

M x M xR Rα α
⊥ ∗ ⊥Γ = Δ ¬ Φ ⇔ Γ = Δ ¬ Φ£ £ . 

For the relation M|=IR, it is sufficient to have the properties R*L and R*R.  
The properties of elimination of the modal composition £  in TMS are as follows:  

£L) £Φα, Γ M|=* Δ  ⇔  {Φβ
 |α β> }∪Γ M|=* Δ;  

¬£R) Γ M|=* Δ, ¬£Φα  ⇔  Γ M|=* Δ∪{¬Φβ
 |α β> };  

£R) Γ M|=* Δ, £Φα  ⇔  Γ M|=* Δ, Φβ  for all states β∈S such that α β> ;  
¬£L) ¬£Φα, Γ M|=* Δ  ⇔  ¬Φβ, Γ M|=* Δ  for all states β∈S such that α β> .   

For the relation M|=IR, it is sufficient to have the properties £L and £R.  
Similar properties related to modal compositions are formulated for TmMS тa MMS. 
For the properties of the relation M|=*, the corresponding dual properties of the relation M|≠* can be 

specified (see [11]), using which the sequent forms of the calculus that formalizes M|=* can be directly 
formulated. In particular, the properties of modality elimination for M|≠* in GMS have the form: 

n£L) £Φα, Γ M|≠* Δ  ⇔  {Φβ
 |α β> }∪Γ M|≠* Δ;  

n¬£R) Γ M|≠* Δ, ¬£Φα  ⇔  Γ M|≠* Δ∪{¬Φβ
 |α β> };  

n£R) Γ M|≠* Δ, £Φα ⇔ Γ M|≠* Δ, Φβ for some β∈S such that α β> ; 
n¬£L) ¬£Φα, Γ M|≠* Δ  ⇔  ¬Φβ, Γ M|≠* Δ  for some β∈S such that α β> .   

With additional conditions imposed on the relation > , the properties of modality elimination are 
correspondingly modified. For the cases where the relation can be either transitive, reflexive, symmetric, 
or their combinations, these properties are described, in particular, in [11].   

 
5. Sequent Calculi for Transitional Modal Logics 

Properties of logical consequence relations on sets of formulas specified with states are the 
semantic foundation for construction of the sequent type calculi for TML. Specifications take the 
form of α|– or α–|, where α is the name of the state. Sequents are treated as sets of such formulas. 
By singling out |–-formulas and –|-formulas, we denote sequents by |–Γ–|Δ.  

Sequents are enriched with sets of relations on states obtained at the time of derivation. Let M be 
such a reachability relation constructed for the names of states i.e. world model schema. The 
enriched sequents are denoted by Σ // M.  

The sets of defined, undefined, and undistributed names of a state α of the sequent Σ are defined 
as: 

val(Σα) = {u | α|–Eu∈Σ};  unv(Σα) = {u | α–|Eu∈Σ}; ud(Σα) = nm(Σα) \ (val(Σα) ∪ unv(Σα)). 



We propose sequent calculi that formalize the relation M=|=IR in GMSQ= and the relations M|=IR, 
M|=T, M|=F, M|=TF in GMSQ

≡. The calculus for the relation M=|=IR in GMSQ= will be called СGQ=IR, and 
the calculi for M|=IR, M|=T, M|=F, M|=TF in GMSQ

≡ will be called СGQ
≡
IR, СGQ

≡
T, СGQ

≡
F, СGQ

≡
TF.  

In this paper, we will restrict ourselves to describing the calculi СGQ
≡
IR, СGQ

≡
T, СGQ

≡
F, СGQ

≡
TF. The 

calculus СGQ=IR is generally similar to СGQ≡IR, but with =xx serving as predicates-indicators.  
Sequent calculus is defined by basic sequent forms and closedness conditions for sequents.  
The derivation in sequent calculi has the form of a tree, the vertices of which are sequents; such 

trees are called sequent trees. Inference rules in sequent calculi are called sequent forms; they are 
induced by properties of logical consequence relations for sets of formulas specified with states. 
Closed sequents are axioms of the sequent calculus. The closedness of |–Γ–|Δ must guarantee Γ |= Δ. 
The sequent tree is closed if every its leaf is a closed sequent. The sequent Σ is derivable if there 
exists a closed sequent tree with the root Σ, called a derivation of the sequent Σ. 

The closedness conditions for |–Γ–|Δ are defined by the specified above conditions that guarantee 
the corresponding logical consequence relation Γ M|=* Δ.  

Although the calculi СGQ
≡
T, СGQ

≡
F, СGQ

≡
TF have the same basic sequent forms, their closedness 

conditions for sequents are different.  
We have the following closedness conditions for a sequent Σ:  
С) there exists a formula Φ: α|–Φ∈Σ and α–|Φ∈Σ;  
СF) there exists a formula , ,

| , , ( )v u z
xR Ezα − ⊥ ⊥ ∈Σ ;   

СL) there exists a formula Φ:  α|–Φ∈Σ and α|–¬Φ∈Σ; 
СR) there exists a formula Φ:  α–|Φ∈Σ and α–|¬Φα∈Σ;  
СLR) there exist formulas Φ and Ψ:  α|–Φ∈Σ, α|–¬Φ∈Σ  and  α–|Ψ∈Σ, α–|¬Ψ∈Σ; 
СRf≡) there exists a formula α–| ≡xxα∈Σ; 
CE≡L) there exist formulas ≡xy, Ex and Ey:  α|– ≡xy∈Σ, α|– Ex∈Σ, α–|Ey∈Σ;  
CE≡R) there exist formulas ≡xy, Ex and Ey:  α–| ≡xy∈Σ, α–|Ex∈Σ, α–|Ey∈Σ;  
CT≡) there exists a formula , , ,

, , ,R ( ) :v u x z
x xz⊥ ⊥ ⊥ ≡  , , ,

| , , ,R ( )v u x z
x xzα− ⊥ ⊥ ⊥ ≡ ∈Σ . 

Thus, we get the following closedness conditions for a sequent Σ in a certain calculus: 
– for the calculus MCQ

≡
T:  the condition  С ∨ CF ∨ CL  ∨ СRf≡ ∨ CE≡L ∨CE≡R ∨CT≡;   

– for the calculus MCQ
≡
F:  the condition  С ∨ CF ∨ CR  ∨ СRf≡ ∨ CE≡L ∨CE≡R ∨CT≡;   

– for the calculus MCQ
≡
TF:  the condition  С ∨ CF ∨ CLR ∨ СRf≡ ∨ CE≡L ∨CE≡R ∨CT≡ .  

The closedness condition for the calculus MСQ
≡
IR:  С ∨ CF ∨ СRf≡ ∨ CE≡L ∨CE≡R ∨CT≡.   

Let us present basic sequent forms for the calculi MCQ
≡
T, MCQ

≡
F, MCQ

≡
TF.  

Simplification forms (types R, RІ, RU, R#1, R#2, and ≡elR): 

|–R |

|

,  // 
( ),  // 

M
R M
α −

α −

Φ Σ

Φ Σ
;    –|R |

|

,  // 
( ),  // 

M
R M

α−

α−

Φ Σ

Φ Σ
;  

|–¬R |

|

,  // 
( ),  // 

M
R M

α −

α −

¬Φ Σ

¬ Φ Σ
;   –|¬R |

|

,  // 
( ),  // 

M
R M

α−

α−

¬Φ Σ

¬ Φ Σ
;  

|–RI 
,

| ,
, ,

| , ,

( ),  // 
( ),  // 

v u
x
z v u
z x

R M
R M

α − ⊥

α − ⊥

Φ Σ

Φ Σ
;   –|RI 

,
| ,

, ,
| , ,

( ),  // 
( ),  // 

v u
x
z v u
z x

R M
R M

α− ⊥

α− ⊥

Φ Σ

Φ Σ
; 

|–¬RI 
,

| ,
, ,

| , ,

( ),  // 
( ),  // 

v u
x
z v u
z x

R M
R M

α − ⊥

α − ⊥

¬ Φ Σ

¬ Φ Σ
;   –|¬RI 

,
| ,

, ,
| , ,

( ),  // 
( ),  // 

v u
x
z v u
z x

R M
R M

α− ⊥

α− ⊥

¬ Φ Σ

¬ Φ Σ
; 

|–RU 
,

| ,
, ,

| , ,

( ),  // 
( ),  // 

v u
x
y v u
z x

R M
R M

α − ⊥

α − ⊥

Φ Σ

Φ Σ
, у∈ν(Φ);  –|RU 

,
| ,

, ,
| , ,

( ),  // 
( ),  // 

v u
x
y v u
z x

R M
R M

α− ⊥

α− ⊥

Φ Σ

Φ Σ
, у∈ν(Φ);  

|–¬RU 
,

| ,
, ,

| , ,

( ),  // 
( ),  // 

v u
x
y v u
z x

R M
R M

α − ⊥

α − ⊥

¬ Φ Σ

¬ Φ Σ
, у∈ν(Φ);   –|¬RU 

,
| ,

, ,
| , ,

( ),  // 
( ),  // 

v u
x
y v u
z x

R M
R M

α− ⊥

α− ⊥

¬ Φ Σ

¬ Φ Σ
, у∈ν(Φ);  



|–R#1 
, ,

| , ,  |
, ,

| , ,  |

( ), ,  // 
,  ;

( ), ,  // 

v u y
x
v u y
x z

R p Ez M
p Ps

R p Ez M
α − ⊥ ⊥ α−

α − ⊥ α−

Σ
∈

Σ
  –|R#1 

, ,
| , ,  |

, ,
| , ,  |

( ), ,  // 
,  ;

( ), ,  // 

v u y
x
v u y
x z

R p Ez M
p Ps

R p Ez M
α− ⊥ ⊥ α−

α− ⊥ α−

Σ
∈

Σ
 

|–¬R#1 
, ,

| , ,  |
, ,

| , ,  |

( ), ,  // 
,  ;

( ), ,  // 

v u y
x
v u y
x z

R p Ez M
p Ps

R p Ez M
α − ⊥ ⊥ α−

α − ⊥ α−

¬ Σ
∈

¬ Σ
        –|¬R#1 

, ,
| , ,  |

, ,
| , ,  |

( ), ,  // 
,  ;

( ), ,  // 

v u y
x
v u y
x z

R p Ez M
p Ps

R p Ez M
α− ⊥ ⊥ α−

α− ⊥ α−

¬ Σ
∈

¬ Σ
 

|–R#2 
,

| ,  |
, ,

| , ,  |

( ), ,  // 
,  ;

( ), ,  // 

v u
x
v u z
x

R p Ez M
p Ps

R p Ez M
α − ⊥ α−

α − ⊥ ⊥ α−

Σ
∈

Σ
   –|R#2 

,
| ,  |

, ,
| , ,  |

( ), ,  // 
,  ;

( ), ,  // 

v u
x
v u z
x

R p Ez M
p Ps

R p Ez M
α− ⊥ α−

α− ⊥ ⊥ α−

Σ
∈

Σ
  

|–¬R#2 
,

| ,  |
, ,

| , ,  |

( ), ,  // 
,  ;

( ), ,  // 

v u
x
v u z
x

R p Ez M
p Ps

R p Ez M
α − ⊥ α−

α − ⊥ ⊥ α−

¬ Σ
∈

¬ Σ
           –|¬R#2 

,
| ,  |

, ,
| , ,  |

( ), ,  // 
,  ;

( ), ,  // 

v u
x
v u z
x

R p Ez M
p Ps

R p Ez M
α− ⊥ α−

α− ⊥ ⊥ α−

¬ Σ
∈

¬ Σ
  

|–≡elR 
,

| | ,
, ,

| | , ,

, ( ),  // 
;

, ( ),  // 

v u
xy w

v u x
xy w y

R M
R M

α − α − ⊥

α − α − ⊥

≡ Φ Σ

≡ Φ Σ
  –|≡elR 

,
| | ,

, ,
| | , ,

, ( ),  // 
;

, ( ),  // 

v u
xy w

v u x
xy w y

R M
R M

α − α− ⊥

α − α− ⊥

≡ Φ Σ

≡ Φ Σ
 

|–≡el¬R 
,

| | ,
, ,

| | , ,

, ( ),  // 
;

, ( ),  // 

v u
xy w

v u x
xy w y

R M
R M

α − α − ⊥

α − α − ⊥

≡ ¬ Φ Σ

≡ ¬ Φ Σ
  –|≡el¬R 

,
| | ,

, ,
| | , ,

, ( ),  // 
.

, ( ),  // 

v u
xy w

v u x
xy w y

R M
R M

α − α− ⊥

α − α− ⊥

≡ ¬ Φ Σ

≡ ¬ Φ Σ
 

Forms of equivalemt transformations – renomination of predicates-indicators: 

|–R⊥E |
,

| ,

,  // 
,  { , };

( ),  // v u
x

Ez M
z v u

R Ez M
α −

α − ⊥

Σ
∉

Σ
    –|R⊥E |

,
| ,

,  // 
,  { , };

( ),  // v u
x

Ez M
z v u

R Ez M
α−

α− ⊥

Σ
∉

Σ  
 

|–R⊥Ev |
, ,

| , ,

,  // 
;

( ),  // v u z
x y

Ey M
R Ez M
α −

α − ⊥

Σ

Σ
   –|R⊥Ev |

, ,
| , ,

,  // 
.

( ),  // v u z
x y

Ey M
R Ez M
α−

α− ⊥

Σ

Σ
   

Forms of equivalemt transformations – renomination of equality predicates:   

|–R≡xx |
,

| ,

,  // 
( ),  // 
xx

v u
w xx

M
R M
α −

α − ⊥

≡ Σ

≡ Σ
;   –|R≡xx |

,
| ,

,  // 
( ),  // 
xx

v u
w xx

M
R M
α−

α− ⊥

≡ Σ

≡ Σ
;  

|–R≡0 |
,

| ,

,  // 
;

( ),  // 
xy

v u
w xy

M
R M
α −

α − ⊥

≡ Σ

≡ Σ
   –|R≡0 |

,
| ,

,  // 
.

( ),  // 
xy

v u
w xy

M
R M
α−

α− ⊥

≡ Σ

≡ Σ
 

Condition for the forms |–R≡0 and –|R≡0: , { , },  .x y u v x y∉ ≠  

|–R≡1 |
, ,

| , ,

,  // 
;

( ),  // 
zy

v u x
w z xy

M
R M
α −

α − ⊥

≡ Σ

≡ Σ
   –|R≡1 |

, ,
| , ,

,  // 
;

( ),  // 
zy

v u x
w z xy

M
R M
α−

α− ⊥

≡ Σ

≡ Σ
  

|–R≡1E |
, ,

| , ,

,  // 
;

( ),  // v u x
w xy

Ey M
R M
α−

α − ⊥ ⊥

Σ

≡ Σ
   –|R≡1E |

, ,
| , ,

,  // 
.

( ),  // v u x
w xy

Ey M
R M
α −

α− ⊥ ⊥

Σ

≡ Σ
  

Condition for the forms |–R≡1, –|R≡1, |–R≡1E and –|R≡1E: { , },  .y u v x y∉ ≠  

|–R≡2 |
, , ,

| , , ,

,  // 
( ),  // 
zs

v u x y
w z s xy

M
R M
α −

α − ⊥

≡ Σ

≡ Σ
;   –|R≡2 |

, , ,
| , , ,

,  // 
( ),  // 
zs

v u x y
w z s xy

M
R M
α−

α− ⊥

≡ Σ

≡ Σ
;  

|–R≡2E |
, , ,

| , , ,

,  // 
( ),  // v u x y

w z xy

Ez M
R M

α−

α − ⊥ ⊥

Σ

≡ Σ
;  –|R≡2E |

, , ,
| , , ,

,  // 
( ),  // v u x y

w z xy

Ez M
R M

α −

α− ⊥ ⊥

Σ

≡ Σ
.  

Forms of equivalemt transformations – renomination of compositions: 

|−RR 
, ,

| , ,
, ,

| , ,

( ),  // 
( ( )),  // 

v z u t
y x
v z u t
y x

R M
R R M

α − ⊥ ⊥

α − ⊥ ⊥

Φ Σ

Φ Σ

o
;  −|RR 

, ,
| , ,

, ,
| , ,

( ),  // 
( ( )),  // 

v z u t
y x
v z u t
y x

R M
R R M

α− ⊥ ⊥

α− ⊥ ⊥

Φ Σ

Φ Σ

o
;  

|−¬RR 
, ,

| , ,
, ,

| , ,

( ),  // 
( ( )),  // 

v z u t
y x
v z u t
y x

R M
R R M

α − ⊥ ⊥

α − ⊥ ⊥

¬ Φ Σ

¬ Φ Σ

o
;  −|¬RR 

, ,
| , ,

, ,
| , ,

( ),  // 
( ( )),  // 

v z u t
y x
v z u t
y x

R M
R R M

α− ⊥ ⊥

α− ⊥ ⊥

¬ Φ Σ

¬ Φ Σ

o
;  

|−R¬ 
,

| ,
,

| ,

( ),  // 
( ),  // 

v u
x

v u
x

R M
R M

α − ⊥

α − ⊥

¬ Φ Σ

¬Φ Σ
;   −|R¬ 

,
| ,

,
| ,

( ),  // 
( ),  // 

v u
x

v u
x

R M
R M

α− ⊥

α− ⊥

¬ Φ Σ

¬Φ Σ
;  



|−¬R¬ 
,

| ,
,

| ,

( ),  // 
( ),  // 

v u
x
v u
x

R M
R M

α − ⊥

α − ⊥

Φ Σ

¬ ¬Φ Σ
;   −|¬R¬ 

,
| ,

,
| ,

( ),  // 
( ),  // 

v u
x
v u
x

R M
R M

α− ⊥

α− ⊥

Φ Σ

¬ ¬Φ Σ
;  

|−R∨ 
, ,

| , ,
,

| ,

( ) ( ),  // 
( ),  // 

v u v u
x x

v u
x

R R M
R M

α − ⊥ ⊥

α − ⊥

Φ ∨ Ψ Σ

Φ∨Ψ Σ
;  −|R∨ 

, ,
| , ,

,
| ,

( ) ( ),  // 
( ),  // 

v u v u
x x

v u
x

R R M
R M

α− ⊥ ⊥

α− ⊥

Φ ∨ Ψ Σ

Φ∨Ψ Σ
; 

|−¬R∨ 
, ,

| , ,
,

| ,

( ( ) ( )),  // 
( ),  // 

v u v u
x x

v u
x

R R M
R M

α − ⊥ ⊥

α − ⊥

¬ Φ ∨ Ψ Σ

¬ Φ∨Ψ Σ
; −|¬R∨ 

, ,
| , ,

,
| ,

( ( ) ( )),  // 
( ),  // 

v u v u
x x

v u
x

R R M
R M

α− ⊥ ⊥

α− ⊥

¬ Φ ∨ Ψ Σ

¬ Φ∨Ψ Σ
; 

|−R£ 
,

| ,
,

| ,

( ),  // 
( ),  // 

v u
x

v u
x

R M
R M

α − ⊥

α − ⊥

 Φ Σ

Φ Σ
;   −|R£ 

,
| ,

,
| ,

( ),  // 
( ),  // 

v u
x

v u
x

R M
R M

α− ⊥

α− ⊥

 Φ Σ

Φ Σ
; 

|−¬R£ 
,

| ,
,

| ,

( ),  // 
( ),  // 

v u
x

v u
x

R M
R M

α − ⊥

α − ⊥

¬ Φ Σ

¬ Φ Σ
;   −|¬R£ 

,
| ,

,
| ,

( ),  // 
( ),  // 

v u
x

v u
x

R M
R M

α− ⊥

α− ⊥

¬ Φ Σ

¬ Φ Σ
.  

Forms of elimination for the constant T-formula:  

ElRE , ,
| , ,

 // ;
( ),  // v u z

x

M
R Ez Mα − ⊥ ⊥

Σ

Σ
 El≡  

|

 // 
,  // xx

M
Mα −

Σ

≡ Σ
; ElR≡  , , ,

| , , ,

 // 
( ),  // v u x y

w xy

M
R Mα − ⊥ ⊥ ⊥

Σ

≡ Σ
.  

Forms of elimination of ¬ in formulas related to TS-predicates:   

|–¬E≡ |

|

,  // 
,  // 

Ez M
Ez M

α−

α −

Σ

¬ Σ
;    –|¬E |

|

,  // 
,  // 

Ez M
Ez M

α −

α−

Σ

¬ Σ
;  

|–¬RE 
,

| ,
,

| ,

( ),  // 
( ),  // 

v u
w
v u
w

R Ez M
R Ez M

α− ⊥

α − ⊥

Σ

¬ Σ
;   –|¬RE 

,
| ,

,
| ,

( ),  // 
( ),  // 

v u
w
v u
w

R Ez M
R Ez M

α − ⊥

α− ⊥

Σ

¬ Σ
;  

|–¬≡ |

|

,  // 
,  // 

xy

xy

M
M

α−

α −

≡ Σ

¬≡ Σ
;    –|¬≡ |

|

,  // 
,  // 

xy

xy

M
M

α −

α−

≡ Σ

¬≡ Σ
;  

|–¬R≡ 
,

| ,
,

| ,

( ),  // 
( ),  // 

v u
w xy
v u
w xy

R M
R M

α− ⊥

α − ⊥

≡ Σ

¬ ≡ Σ
;   –|¬R≡ 

,
| ,

,
| ,

( ),  // 
( ),  // 

v u
w xy
v u
w xy

R M
R M

α − ⊥

α− ⊥

≡ Σ

¬ ≡ Σ
.  

Forms of formulas’ decomposition: 

|–¬¬ |

|

,  // 
,  // 
M
M

α −

α −

Φ Σ

¬¬Φ Σ
;    −|¬¬ |

|

,  // 
,  // 
M
M

α−

α−

Φ Σ

¬¬Φ Σ
;  

|−∨ | |

|

,  //      ,  // 
,  // 

M M
M

α − α −

α −

Φ Σ Ψ Σ

Φ∨Ψ Σ
;   −|∨ |  |

|

, ,  // 
,  // 

M
M

α− α−

α−

Φ Ψ Σ

Φ∨Ψ Σ
;  

|−¬∨ |  |

|

, ,  // 
( ),  // 

M
M

α − α −

α −

¬Φ ¬Ψ Σ

¬ Φ∨Ψ Σ
;   −|¬∨ | |

|

,  //      ,  // 
( ),  // 
M M

M
α− α−

α−

¬Φ Σ ¬Ψ Σ

¬ Φ∨Ψ Σ
.  

Forms of quantifier elimination:  

|–∃ |  |

|

( ), ,  // 
,  // 

x
zR Ez M

x M
α − α −

α −

Φ Σ

∃ Φ Σ
;   –|¬∃ |  |

|

( ), ,  // 
,  // 

x
zR Ez M

x M
α− α −

α−

¬ Φ Σ

¬∃ Φ Σ
;  

|–∃R 
, ,

| , ,  |
,

| ,

( ), ,  // 
( ),  // 

v u x
w z

v u
w

R Ez M
R x M

α − ⊥ α −

α − ⊥

Φ Σ

∃ Φ Σ
;   –|¬∃R 

, ,
| , ,  |

,
| ,

( ), ,  // 
( ),  // 

v u x
w z

v u
w

R Ez M
R x M

α− ⊥ α −

α− ⊥

¬ Φ Σ

¬ ∃ Φ Σ
;  

–|∃v |  |  |

|  |

, ( ), ,  // 
, ,  // 

x
yx R Ey M

x Ey M
α− α− α −

α− α −

∃ Φ Φ Σ

∃ Φ Σ
;   |–¬∃v |  |  |

|  |

, ( ), ,  // 
, ,  // 

x
yx R Ey M

x Ey M
α − α − α −

α − α −

¬∃ Φ ¬ Φ Σ

¬∃ Φ Σ
;  

–|∃Rv 
, , ,

| ,  | , ,  |
,

| ,  |

( ), ( ), ,  // 
( ), ,  // 

v u v u x
w w y

v u
w

R x R Ey M
R x Ey M

α− ⊥ α− ⊥ α −

α− ⊥ α −

∃ Φ Φ Σ

∃ Φ Σ
;  



|–¬∃Rv 
, , ,

| , | , ,  |
,

| ,  |

( ), ( ), ,  // 
( ), ,  // 

v u v u x
w w y

v u
w

R x R Ey M
R x Ey M

α − ⊥ α − ⊥ α −

α − ⊥ α −

¬ ∃ Φ ¬ Φ Σ

¬ ∃ Φ Σ
.  

Condition for |–∃ and –|¬∃: z∈fu(Σ, ∃xΦ); condition for |–∃R and –|¬∃R: ,
,( ( ))v u
wz fu R x⊥∈ ∃ Φ . 

The forms |–∃, –|¬∃, |–∃R and –|¬∃R will be called ∃T-forms; the forms –|∃v, |–¬∃v, –|∃Rv and |–¬∃Rv 
will be called ∃F-forms.  

Forms of E-distribution and primary definition:  

Ed | |,   //     ,   // 
 

Ex M Ex Mα − α−Σ Σ

Σ
, where α|–Ex, α–|Ex ∉Σ. 

Ev | ,   // 
  // 
Ez M

M
α − Σ

Σ
  given z∈fu(Σ).  

Forms of transitivity and substitution of equals:  

Tr≡  |  |  |

|  |

, , ,  // 
, ,  // 

xy yz xz

xy yz

M
M

α− α − α −

α − α −

≡ ≡ ≡ Σ

≡ ≡ Σ
;  

|–≡rp 
, , , ,

| | | | , , | , ,
, ,

| | | | , ,

, , , ( ), ( ),  // 
, , , ( ),  // 

v u z v u z
xy w x w y

v u z
xy w x

Ex Ey R R M
Ex Ey R M

α − α − α − α − ⊥ α − ⊥

α − α − α − α − ⊥

≡ Φ Φ Σ

≡ Φ Σ
; 

–|≡rp 
, , , ,

| | | | , , | , ,
, ,

| | | | , ,

, , , ( ), ( ),  // 
, , , ( ),  // 

v u z v u z
xy w x w y

v u z
xy w x

Ex Ey R R M
Ex Ey R M

α − α − α − α− ⊥ α− ⊥

α − α − α − α− ⊥

≡ Φ Φ Σ

≡ Φ Σ
;  

|–¬≡rp 
, , , ,

| | | | , , | , ,
, ,

| | | | , ,

, , , ( ), ( ),  // 
, , , ( ),  // 

v u z v u z
xy w x w y

v u z
xy w x

Ex Ey R R M
Ex Ey R M

α − α − α − α − ⊥ α − ⊥

α − α − α − α − ⊥

≡ ¬ Φ ¬ Φ Σ

≡ ¬ Φ Σ
; 

–|¬≡rp 
, , , ,

| | | | , , | , ,
, ,

| | | | , ,

, , , ( ), ( ),  // 
, , , ( ),  // 

v u z v u z
xy w x w y

v u z
xy w x

Ex Ey R R M
Ex Ey R M

α − α − α − α− ⊥ α− ⊥

α − α − α − α− ⊥

≡ ¬ Φ ¬ Φ Σ

≡ ¬ Φ Σ
.  

The forms of modal operator elimination depend on the properties of the relation > . We will 
describe these forms in the general case where no additional conditions are imposed on the relation.  

The names of the calculi MCQ
≡
T, MCQ

≡
F and MCQ

≡
TF correspond to this case. 

If at the moment of applying the form to α|−£Φ or α−|¬£Φ we have states β1,…, βn such that 

1,..., nα β α β> > , then we apply the corresponding form to α|−£Φ or α|−¬£Φ: 

|−£ 1|  |  |

|

, ,..., ,   // 
,  // 

n
M

M
α − β − β −

α −

Φ Φ Φ Σ

Φ Σ
;   −|¬£ 1|  |  |

|

, ,..., ,   // 
,  // 

n
M

M
α− β − β −

α−

¬Φ ¬Φ ¬Φ Σ

¬Φ Σ
.  

If there are no such γ such that α γ> , then we apply the form to α|−£Φ or α−|¬£Φ:  

|−£f |  |

|

, ,  // { } 
,   // 
M
M

α − β −

α −

Φ Φ Σ ∪ α β

Φ Σ

>
, β is a new state; 

−|¬£f |  |

|

, ,  // { } 
,   // 
M
M

α− β−

α−

¬Φ ¬Φ Σ ∪ α β

¬Φ Σ

>
, β is a new state. 

The elimination form applied to α−|£Φ or α|−¬£Φ is: 

−|£ |

|

,  // { } 
,   // 
M

M
β−

α−

Φ Σ ∪ α β

Φ Σ

>
, β is a new state;   |−¬£ |

|

,  // { } 
,   // 
M

M
β −

α −

¬Φ Σ ∪ α β

¬Φ Σ

>
, β is a new state. 

Let us describe basic sequent forms for the sequent calculus MСQ
≡
IR. There is no need to list the 

sequent forms for external negation on renomination, which results in the following basic forms. 
Simplification forms |–R, –|R, |–RI, –|RI, |–RU, –|RU, –R#1, –|R#1, |–R#2, –|R#2, |–≡elR, –|≡elR.  
Forms of equivalemt transformations: |−RR, −|RR, |−R¬, −|R¬, |−R∨, −|R∨, |−R£, −|R£; |–R⊥E,  

–|R⊥E, |–R⊥Ev, –|R⊥Ev; |–R≡xx, –|R≡xx, |–R≡0, –|R≡0, |–R≡1, –|R≡1, |–R≡2,–|R≡2, |–R≡1E, –|R≡1E, |–R≡2E, –|R≡2E.  
Forms of elimination for the constant T-formula ElRE, El≡ , ElR≡ . 
Forms of decomposition of the formulas |−∨ and −|∨, to which the forms |–¬ and −|¬ are added: 



|– ¬ |

|

,  // 
,  // 

M
M

α−

α −

Φ Σ

¬Φ Σ
;    −| ¬ |

|

,  // 
,  // 

M
M

α −

α−

Φ Σ

¬Φ Σ
.  

Forms of quantifier elimination |–∃, |–∃R, –|∃v, –|∃Rv; E-distribution Ed, and primary definition Ev. 
Forms of transitivity and substitution of equals Tr≡, |–≡rp, –|≡rp.  
Forms of modal operator elimination |−£, |−£f, −|£ (in the absence of additional conditions on > ). 
We have the following groups of basic forms for the calculi MCQ

≡
T, MCQ

≡
F, MCQ

≡
TF, MСQ

≡
IR:  

– auxiliary simplification forms: types R, RІ, RU, R#1, R#2, and ≡elR; 
– forms of E-distribution and primary definition: Ed та Ev; 
– main forms: all other basic sequent forms.  
The main property of the listed basic sequent forms of TML is described by  

Theorem 7. Let | |

| |

 //  M
 //  M

− −

− −

Λ Κ

Γ Δ
 and | | | |

| |

 // M     // M 
 // M

− − − −

− −

Λ Κ Χ Ζ

Γ Δ
 be sequent forms. Then:  

1) Λ |=* Κ ⇔ Γ |=* Δ; Λ |=* Κ and Χ |=* Ζ ⇔ Γ |=*’ Δ;  
2) Γ |≠* Δ ⇔ Λ |≠* Κ; Γ |≠* Δ ⇔ Λ |≠* Κ and Χ |≠* Ζ.  
Let us briefly describe the construction of derivations in sequent calculi for TML. The step-by-

step construction of a sequent tree for countable sequents in TML calculi is similar to that for 
calculi of quasiary predicate logics (see [9, 13]). The process is carried out in parallel with the 
formation of the world model schema. This schema is updated with each application of the 
appropriate forms of modality elimination, which add new states. 

The construction of the tree begins from its root – the initial sequent Σ. Each application of a 
sequent form is performed on a finite set of formulas available at the moment.  

At the start of each stage, an access step is performed: one formula from each of the lists of |−-
formulas and −|-formulas is added to the list of available formulas. At the beginning of the 
construction, a pair of the first formulas from these lists is available (either a single |−-formula or −|-
formula, if one of the lists is empty). 

After applying each sequent form, we check the resulting sequent Ω for closedness. If a closed 
sequent is obtained, no further forms can be applied to it, and the construction of the tree on this 
path terminates. If all leaves of the constructed tree are closed, then we have a closed sequent tree, 
and the proof construction is completed successfully.  

If the construction is not completed, for each non-closed leaf ξ, we proceed with the next access 
step and then extend a finite subtree with root ξ as follows. We activate all available (except 
primitive) formulas of ξ. Next, we apply the corresponding sequent forms to each active formula. 
Whenever appropriate, we perform simplifications using the necessary auxiliary forms of the types 
R, RI, RU, R#1, R#2, and ≡elR; forms of the types R#1 and R#2 are applied to primitive formulas 
and their negations, yielding primitive Un-forms (see [13]) with the set Un = {x | α–|Ex∈Θ}, where Θ 
is the set of formulas on the path from the root Σ to the given sequent. After applying the main 
form and performing simplifications, the formulas generated on this stage become passive; at this 
stage, the main sequent forms cannot be applied to such formulas.  

In the application of the main sequent forms, the process proceeds as follows. First, all non-
modalized forms are executed. The application of ∃T-forms precedes the application of ∃F-forms. 
When applying an ∃T-form, we always select a new totally non-essential z that does not appear on 
the path from the root to the sequent where the ∃T-form is applied. Each ∃F-form is applied 
multiple times for each assigned component у from formulas on the path from Σ to the given 
sequent η. Let Ξ be the set of available sequent formulas on the path from Σ to η. For each α, we 
define Udα = ud(Ξα). If, when transitioning to the application of an ∃F-form, Udα ≠ ∅, then there are 
undistributed names of the state α, so using Еd, we perform all possible distributions of names from 
Udα into assigned and unassigned ones. This results in constructing a subtree of height |Udα| with 
the subroot η, which produces | |2Udm α=  successors of η – sequents η1,…,ηm with sets Vnαk ⊆ Udα of 
new assigned names. If val(Ξα) = ∅, then for ηj, where Vnαj = ∅, we perform the initial assignment – 
adding α|–Ez for a new totally unessential z, which results in Vnαj = {z}. In each of these ηk, we apply 



the ∃F-form for each у∈Vnαk. 
The forms Tr≡ are applied every time a pair of formulas of the form α|–≡xy and α|–≡yz appears, where 

at least one of them is new to the sequent. The forms of the type ≡rp (substitution of equals) are 
applied each time a pair of formulas appears, one of which is of the form α|– ≡xy, and the other is one 
of the forms , ,

| , , ( ),
v u z
w xR pα − ⊥  , ,

| , , ( ),
v u z
w xR pα− ⊥  , , , ,

| , , | , ,( ), ( ),v u z v u z
w x w xR p R pα − ⊥ α− ⊥¬ ¬  where at least one of them is 

new to the sequent.  
Next, we apply –|£-forms, and finally, at the end of the stage, we apply – |−£-forms.  
If the construction of the sequent tree is completed successfully, then we obtain a closed tree.  
If the construction does not complete, then we have an infinite, unclosed tree. In such a tree, 

there is an unclosed path ℘ (by König's lemma, see [15]), all of whose vertices are unclosed 
sequents. Each of the formulas from the initial sequent Σ will appear on ℘ and become accessible.  

For the proposed sequent calculi for TML, the soundness and completeness theorems hold. For 
these calculi, the theorems are formulated in a similar manner, with the relations |=IR, |=T, |=F, |=TF 
corresponding to the calculi MCQ

≡
IR, MCQ

≡
T, MCQ

≡
F, MCQ

≡
TF.   

Theorem 8 (soundness). Let the sequent |–Γ–|Δ be derivable in the calculus С; then Γ |=*Δ. 
Let |–Γ–|Δ be derivable in the calculus С. Then, a closed sequent tree has been constructed for it. 

All its leaves are closed sequents, so for each such leaf |–Χ–|Ζ, we have Χ |=* Ζ. The movement from 
the leaves of the tree to its root is accomplished using sequent forms. By Theorem 7, the relation |=* 
is preserved when moving from the premises of the forms to the conclusions. Therefore, Λ|=* Κ for 
each vertex |–Λ–|Κ of the sequent tree. In particular, for the root |–Γ–|Δ we also have Γ |=* Δ. 

The proof of completeness for the sequent calculi of TML relies on the theorem about 
constructing a counter-model using an unclosed path in the sequent tree built in the corresponding 
calculus. The proof of the counter-model theorems is based on the method of model (Hintikka) sets 
(see [11]). 

Theorem 9 (on counter-models for the calculus MСQ≡
TF). Let ℘ be an unclosed path in a sequent 

tree constructed for the sequent |–Γ–|Δ in the calculus MСQ
≡
TF, and let S be the set of names of states 

of the world in the specified formulas along the path ℘. Then there exist GMS MT = (St, R, А, IтT),  
MF = (St, R, A, IтF), and δ∈VA such that for all α∈S:  

α|–Φ∈Нα ⇒ ΦT
α(δ) = Т;  α–|Φ∈Нα ⇒ ΦT

α(δ) ≠ T.  
α|–Φ∈Нα ⇒ ΦF

α(δ) ≠ F;  α–|Φ∈Нα ⇒ ΦF
α(δ) = F.  

Here, ΦT
α and ΦF

α denote IтT(Φ, α) and IтF(Φ, α), respectively.  
Such GMS MT and MF are called T-conter-model and F-counter-model for |–Γ–|Δ.  
Let M be the union of all world model schemes of the sequents on the path ℘, then S is the set 

of state names from M. Let Нα be the set of all specified formulas of the state α on the path ℘ 
Wα = nm(Нα)\unv(Нα), 

S
W Wα

α∈
= U , НM = ({Нα | α∈S}, M).  

Such НM is called a model system (i.e. a set of model sets). 
Equality predicates induce equivalence relations on the sets Wα:  

x ∼α y  ⇔  α|– ≡xy, α|–Ex, α|–Ey ∈ Нα.  
Let us denote 〈v〉α = {u | v ∼α u}. Now, we define 〈v〉 = {u | v ∼α u for some α∈S}. 
This definition is correct. It is based on the interpretation of the equality of basic data as an 

identity: for the same data d, it is impossible for d(x)↓ = d(y)↓ on one state and d(x)↓ ≠ d(y)↓ on 
another state.   

We denote Aα = {〈v〉 | v∈Wα]. Then 
S

A Aα
α∈

= =U {〈v〉 | v∈W}.  

Let us specify δ = [v"〈v〉 | v∈W] and δα = [v"〈v〉 | v∈Wα].  
For predicates-indicators and equality predicates in GMS MT and MF, we have:  

– α|–Ex ∈ Нα implies x∈W, so  ExT
α(δ) = T  and  ExF

α(δ) = T, therefore ExF
α(δ) ≠ F;  

– α–|Ex ∈ Нα implies x∉W, so  ExT
α(δ) = F, therefore ExT

α(δ) ≠ T,  and  ExF
α(δ) = F; 

– α|–≡xy ∈Нα ⇒ (≡xy) α(δ) = T  and  (≡xy)F
α(δ) = T, therefore (≡xy)F

α(δ) ≠ F;  
– α–|≡xy ∈Нα ⇒ (≡xy)T

α(δ) = F, therefore (≡xy)T
α(δ) ≠ T,  and  (≡xy)F

α(δ) = F.  



Let us specify the values of the predicates represented by predicate symbols and their negations 
and by primitive Un-formulas and their negations on δ in GMS MT and MF: 

– α|–р∈Нα ⇒ рT
α(δ) = Т and рF

α(δ) ≠ F  
– α–|р∈Нα ⇒ рT

α(δ) ≠ T and рF
α(δ) = F;  

– α|–¬р∈Нα ⇒ ¬рT
α(δ) = Т and ¬рF

α(δ) ≠ F  
– α–|¬р∈Нα ⇒ ¬рT

α(δ) ≠ T and ¬рF
α(δ) = F;  

– , T , F ,
| ,  ,  ,( )  (r ( ))  and  (r ( )) ;α − ⊥ α α ⊥ α ⊥∈ ⇒ δ = δ ≠v u v u v u

x x xR p H p T p F  

– , T , F ,
| ,  ,  ,( )   (r ( ))  and  (r ( )) ;α− ⊥ α α ⊥ α ⊥∈ ⇒ δ ≠ δ =v u v u v u
x x xR p H p T p F  

– , T , F ,
| ,  ,  ,( )  (r ( ))  and (r ( )) ;α − ⊥ α α ⊥ α ⊥¬ ∈ ⇒ ¬ δ = ¬ δ ≠v u v u v u

x x xR p H p T p F  

– , T , F ,
| ,  ,  ,( )  (r ( ))  and (r ( )) .α− ⊥ α α ⊥ α ⊥¬ ∈ ⇒ ¬ δ ≠ ¬ δ =v u v u v u

x x xR p H p T p F  
Next, we prove by induction on the formula structure.  
Similarly, the theorems on counter-models for the calculi MСQ≡T and MСQ≡F can be 

formulated.  
Theorem 10 (on a counter-model for the calculus MСQ

≡
T). Let ℘ be an unclosed path in a sequent 

tree constructed for the sequent |–Γ–|Δ in the calculus MСQ≡T, and let S be the set of names of 
states of the world in the specified formulas along the path ℘. Then there exist GMS 
M = (St, R, А, Iт) and δ∈VA such that for all α∈S: 

α|–Φ∈Нα ⇒ Φα(δ) = Т;  α–|Φ∈Нα ⇒ Φα(δ) ≠ T.  
Such GMS M will be called a T-counter-model for |–Γ–|Δ.  
Theorem 11 (on a counter-model for the calculus MСQ

≡
F). Let ℘ be an unclosed path in a sequent 

tree constructed for the sequent |–Γ–|Δ in the calculus MСQ
≡
F, and let S be the set of names of states of 

the world in the specified formulas along the path ℘. Then there exist GMS M = (St, R, А, Iт) and 
δ∈VA such that for all α∈S:  

α|–Φ∈Нα ⇒ Φα(δ) ≠ F;  α–|Φ∈Нα ⇒ Φα(δ) = F.  
Such GMS M will be called an F-counter-model for |–Γ–|Δ.  
Let us examine in detail the theorem on the counter-model for the calculus MСQ

≡
IR.  

Theorem 12 (on a counter-model for the calculus MСQ
≡
IR). Let ℘ be an unclosed path in a 

sequent tree constructed for the sequent |–Γ–|Δ in the calculus MCQ
≡
IR, and let S be the set of names of 

states of the world in the specified formulas along the path ℘. Then there exist GMS 
M = (St, R, А, Iт) and δ∈VA such that for all α∈S: 

α|–Φ∈Нα ⇒ Φα(δ) = Т;  α–|Φ∈Нα ⇒ Φα(δ) = F.  
Such GMS M will be called an IR-conter-model for |–Γ–|Δ.  
We specify δ = [v"〈v〉 | v∈W] and δα = [v"〈v〉 | v∈Wα] as described in Theorem 9. 
For predicates-indicators and equality predicates in GMS M, we have:  

– α|–Ex ∈ Нα implies x∈W, therefore Exα(δ) = T; 
– α–|Ex ∈ Нα implies x∉W, therefore Exα(δ) = F; 
– α|–≡xy ∈Нα ⇒ (≡xy)α(δ) = T;  
– α–|≡xy ∈Нα ⇒ (≡xy)α(δ) = F.  

Let us specify the values of the predicates represented by predicate symbols and primitive Un-
formulas on δ in GMS M:  

– α|–р∈Нα ⇒ рα(δ) = Т;  
– α–|р∈Нα ⇒ рα(δ) = F; 
– , ,

| ,  ,( )  (r ( )) ;v u v u
x xR p H p Tα − ⊥ α α ⊥∈ ⇒ δ =  

– , ,
| ,  ,( )  (r ( )) .v u v u
x xR p H p Fα− ⊥ α α ⊥∈ ⇒ δ =  

Next, we prove by induction on the formula structure. 
From the theorems on constructing counter-models, we obtain the completeness theorems.   
Theorem 13 (completeness of MСQ

≡
IR). Let Γ |=IR Δ; then the sequent  |–Γ–|Δ is derivable in the 



calculus MСQ
≡
IR.  

Let us assume the opposite: suppose Γ |=IR Δ, i.e. Γ M|=IR Δ holds for every consistent GMS M, but 
the sequent Σ = |–Γ–|Δ is not derivable. Then there exists an unclosed path in the tree for Σ. By 
Theorem 12, there exist GMS M = (S, R, А, Jт) and δ∈VA: α|–Φ∈Нα ⇒ Φα(δ) = Т and α–|Φ∈Нα 
⇒ Φα(δ) = F. In particular, this holds for the formulas of the sequent |–Γ–|Δ. Therefore, Φα(δ) = Т for 
all Φα∈Γ and Ψβ(δ) = F for all Ψβ∈Δ. This contradicts Γ M|=IR Δ, hence Γ |≠IR Δ. We have reached a 
contradiction. Thus, the assumption that |–Γ–|Δ is not derivable is incorrect, which proves the 
theorem. 

Theorem 14 (completeness of MСQ
≡
TF). Let Γ |=TF Δ; then the sequent  |–Γ–|Δ is derivable in the 

calculus MСQ
≡
TF.  

Let us assume the opposite: suppose Γ |=TF Δ, i.e. Γ M|=TF Δ holds for every consistent GMS M, but 
the sequent Σ = |–Γ–|Δ is not derivable. Then there exists an unclosed path in the tree for Σ. By 
Theorem 9, there exist MT = (St, R, А, IтT), MF = (St, R, A, IтF), and δ∈VA such that:  

α|–Φ∈Нα ⇒ ΦT
α(δ) = Т;  α–|Φ∈Нα ⇒ ΦT

α(δ) ≠ T;  
α|–Φ∈Нα ⇒ ΦF

α(δ) ≠ F;  α–|Φ∈Нα ⇒ ΦF
α(δ) = F.  

For a T-counter-model, according to |–Γ–|Δ ⊆ Н, for all Φα∈Γ we have ΦT
α(δ) = Т, and for all Ψβ∈Δ 

we have ΨT
β(δ) ≠ T. This contradicts Γ M|=T Δ, therefore, Γ |≠TF Δ.  

For an F-counter-model, according to |–Γ–|Δ ⊆ Н, for all Φα∈Γ we have ΦT
α(δ) ≠ F, and for all Ψβ∈Δ 

we have ΨT
β(δ) = F. This contradicts Γ M|=F Δ, therefore, Γ |≠TF Δ.  

Thus, the assumption that |–Γ–|Δ is not derivable is incorrect, which proves the theorem.  
The completeness theorem for the calculi MСQ

≡
T and MСQ

≡
F can be proved in the similar manner. 

 
6. Conclusion  

The work investigates program-oriented logical formalisms of the modal type – pure first-order 
modal logics of partial non-monotonic quasiary predicates. Variants of such logics with strong 
equality predicates and weak equality predicates are proposed. The semantic models and languages 
of these logics are described, with a focus on properties related to equality predicates, specifically 
the characteristics of the substitution of equals. A number of logical consequence relations for sets 
of formulas specified with states are defined, and their main properties are outlined. Based on this 
semantic foundation, the corresponding sequent type calculi for the studied logics are proposed. 
The varieties of these calculi for different logical consequence relations are described, along with 
the basic sequent forms and the conditions for the closedness of sequents. The construction of 
derivations (sequent trees) in the proposed calculi is explained, and the soundness and completeness 
theorems for the calculi are proved. 
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