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Abstract

The paper explores new classes of program-oriented logical formalisms of the modal type —pure first-order
modal logics of partial quasiary predicates with the monotonicity condition removed and enriched with
equality predicates. The apparatus of modal logics is used for the description and modeling of various
subject areas, artificial intelligence systems, and information and software systems. The limitations of
classical predicate logic, on which traditional modal logics are based, underscore the relevance of
developing new program-oriented logical formalisms. Such are transitional modal logics of quasiary
predicates (TML), which reflect the aspect of change and development in subject areas. They synthesize
the capabilities of traditional modal logics and the logics of partial quasiary predicates. Pure first-order
TML are called TMLQ. We propose two types of TMLQ with equality: with strong equality predicates =xy,
called TMLQ=, and with weak equality predicates =xy, called TMLQ=. The characteristic features of these
logics include the use of extended renomination compositions and special indicator predicates that denote
the presence of a component with the corresponding subject name in the input data, which are necessary
for the quantifier elimination in non-monotonic predicate logics. The work describes the semantic models
and languages of TMLQ= and TMLQ-=. Attention is focused on properties related to equality predicates,
and the features of substitution of equals in these logics are described. A number of logical consequence
relations for sets of formulas specified with states is defined, and their main properties are described.
Based on this semantic foundation, calculi of sequent type are proposed for the investigated logics. Various
types of such calculi for different logical consequence relations are described, basic sequent forms for these
calculi are presented, and the closedness conditions for sequents are provided. The construction of
derivations in the proposed calculi is described, and the soundness and completeness theorems for them

are proven.
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1. Introduction

Modal logics are used with great success to describe a dynamic world that changes and evolves. The
exceptional flexibility of modal logics allows them to be applied to analyze and model a wide variety
of human activities. The apparatus of modal logics is utilized for the description and modeling of
artificial intelligence systems, information and software systems (see, for example [1, 2, 3, 4]).
Temporal and epistemic logics have found the most application in practical fields. Temporal logics
are successfully used for software specification and verification [2, 5, 6,7], and for modeling
complex dynamic systems. Epistemic logics are used to describe artificial intelligence systems,
information, and expert systems. Traditional modal logics are based on classical predicate logic. At
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the same time, classical logic has several limitations (see [8]), which complicates its application.
This makes the task of developing new, program-oriented modal logics highly relevant. Such are
composition nominative modal logics (CNML), which combine the capabilities of traditional modal
logics [9, 3] and composition nominative logics of partial quasiary predicates [8, 10]. CNML are
built on the basis of the composition nominative approach, common to both logic and
programming. The most important class of CNML is the transitional modal logics (TML); they
reflect the aspect of change and development in subject areas. These logics have been studied, in
particular, in [11, 12]. It should be noted that traditional modal logics can be naturally considered
within the framework of TML.

The aim of this work is to study new classes of program-oriented modal logics — pure first-order
TML of partial quasiary predicates with the monotonicity condition (equitonicity) removed and
enriched with equality predicates. Two types of such predicates have been distinguished [10]: weak
equality =xy and strong equality =xy. Pure first-order TML without the monotonicity restriction
will be called TMLQ; TMLQ with strong equality predicates will be called TMLQ=, while TMLQ
with weak equality predicates will be called TMLQ=. TMLQ without equality predicates have been
studied in [11, 12]. TMLQ= and TMLQ= are considered in this paper. The semantic models and
languages of these logics are described, along with the features of the substitution of equals in
TMLQ= and TMLQ=. We define a number of logical consequence relations for sets of formulas
specified with states of the language, and properties of these relations are provided.

One of the most important applications of mathematical logic is the automation of proof search.
Efficient proof search is essential for successfully solving a number of problems that arise in
computer science and programming. A powerful tool for constructing proofs is Gentzen-type
calculi, also known as sequent calculi. These calculi formalize the fundamental notion of logical
consequence. In this work, we propose such calculi for TMLQ with equality predicates. The
semantic basis for constructing sequent calculi for TML is the properties of logical consequence
relations for sets of formulas specified with states. Varieties of these calculi for different logical
consequence relations are described, and basic sequent forms and conditions for the closedness of
sequents are provided for them. The soundness and completeness theorems for the proposed calculi
are proved.

Concepts not defined here are interpreted in the sense of works [8, 10, 11, 13].

2. Transitional Modal Systems

At the core of the CNML concept lies the notion of a compositional nominative modal system
(CNMS). Such systems serve as models for the possible worlds in modal logics.

CNMS is the object M = (Cms, Ds, Im), where:

— Cms is a composition modal system which defines semantic aspects of the world;

— Ds is a descriptive system which defines standard descriptions: usually a set Fm of formulas of
the CNML language;

- Dns is a denotation system which determines values of standard descriptions on semantic
models: usually an interpretation mapping /m of formulas on states of the world.

Composition modal system is the object Cms = (St, R, Pr, C), where:

— St is a set of states of the world;

— R is a set of relations on St of the form R C St x St";

— Pris a set of predicates on St;

— Cis a set of compositions on Pr.

Thus, CMS are relational-type semantic models.

In expanded form, we will further define CNMS as follows: M = ((St, R, Pr, C), Fm, Im).



For the first-order CNMS, the set St is specified as a set of algebraic systems (structures)
a=(A., Pr.), where A, is a set of basic data of the state o, Pr, is a set of quasiary predicates
"4,— {T,F}.

The predicates Pro. are called predicates of the state .

The predicates "4 —{T, F}, where A= U A_, will be called global.
p o
O

Transitional modal logics (TML), an important class of CNML, reflect the aspect of change and
development in subject areas, describing transitions from one state of the world to another. Central
to TML is the concept of a transitional modal system (TMS), which can be considered the most
important class of CNMS.

We specify TMS as CNMS in which the set R consists of relations of the form R C S¢x St. These
relations are treated as state transition relations, hence the name.

Traditional varieties of TMS include general transitional, temporal, and multimodal systems (see
[11, 12]).

TMS, in which R consists of a single binary relation >, and the basic modal composition is [
("necessary"), are called general (GMS).

TMS, in which R consists of a single binary relation > and the basic modal compositions are [1,
("it will always be the case") i LI, ("it has always been the case"), are called temporal (TmMS).

TMS with the set of relations R= { >, [i€/}, and basic modal compositions M;, i€/, in which each
>, ER is matched with the corresponding modal composition M;, are called multimodal (MMS). In
MMS, each Mi acts as [1, but only with respect to its own relation >, i€/ In this sense, GMS is a
special case of MMS.

For GMS, the derivative composition ¢ ("possibly") is traditionally defined as: ¢ P means
-d-Pr.

For TmMS, we specify the derivative compositions ¢, ("it will sometimes be the case") and ¢,
("it was sometime the case"): ¢ ,P means - [1,-~P, while ¢ ,P means = [1,- P.

Pure first-order TMS will be called TMSQ. The corresponding notation GMS?, TmMS?, MMS?
will be used for pure first-order GMS, TmMS, MMS respectively.

Basic logical compositions of for TMSQ are logical connectives = and v, renomination R and

existential quantification Ix. For TMS? with equality we add special 0-ary compositions — equality
predicates. TMS? with strong equality predicates =,, will be called TMS?, and TMS? with weak
equality predicates =xy will be called TMS?".

V-A-quasiary predicate [8] is a partial function Q: VA — {T, F}, where VA is a set of all V-A-
nominative sets, {T, F} is the set of truth values; V" and 4 are interpreted as sets of subject names
(variables) and subject values respectively.

V-A-nominative set (V-A-NS) is defined [5] as a single-valued function of the form V' — 4. We
represent V-A-NS as [v, a q,],,, where vi€EV, a, €4, vi=v; when i=j.

For V-A-NS, we introduce the operations of projection ||Z and ||z, where ZC V, overlay V, and

(extended) renomination rgi (see [8, 13, 14]).
u

Note that in this work, we use extended renomination operations r? ', and the corresponding

extended renomination compositions RI* . Traditional renomination operations r; and

renomination compositions RY are their particular cases which were used, for example, in
[8,11,12].

Each V-A-quasiary predicate Q is determined by two sets: its truth domain 7(Q) = {d| Q(d)=T}
and its falsity domain F(Q) = {d| O(d)=F}.

Predicate Q is single-valued, or P-predicate, it T(Q)NF(Q)={.

In this work, only single-valued V-A-quasiary predicates will be considered.

Predicate Q is irrefutable, if F(Q) = J;

Predicate Q is satisfiable, if T(Q) = &.



In the class of P-predicates, we have 3 constant predicates:

— Qs identically #rue (denoted by T), if F(Q)=@ and T(Q)="4;

— Q is identically false (denoted by F), if T(Q)=@ and F(Q)="4;

— Qs totally undefined (denoted by L), if T(Q) = F(Q)=D.

P-predicate Q is equitone, if (Q(d)d and dCd") = Q(d")! = O(d).

Subject name xEV is unessential for the predicate Q, if d, ||..= d:2 ||« = 0O(d)) = O(d>).

The basic logical compositions =, v, 3x, Rgi for quasiary predicates are specified in [13].

Equality predicates are treated as special 0-ary compositions, considering their general logical
status. Two varieties of these predicates are distinguished [10]: weak (up to definability) equality
predicates =, ,; and strong (strict) equality predicates =, ;. They are defined as follows:

T(=4e) = {d | ()Y, d()} and d(x) = d(v)},

F(=yp) = {d | d(x)L, dy)! and d(x) = d(y)};

T(=xyy) = {d | d)1, d(y)} and d(x)=d(y)}U U{d | d(x)T and d(y)T},
F(=pyy) ={d|dx){,dp)i, dx)=d(y)}UU{d |d(x)L,d(y)T ord(x)T,d(y)!}.

Specific cases of =,y and =, ,;, when x and y coincide, are =, and =,,.

The predicates ={;,;, = and =), = will be more conventionally denoted as =,,, =, and =,,,
Thus, =,, and =), represent the same predicate, as do =,, and =,,, respectively.

The predicates =,, and =,, are total and non-monotonic; the predicates =,, and =,, are partial and
equitone.

For quantifier elimination in the logics of non-monotonic predicates, special 0-ary compositions
—predicates-indicators which detect whether a component with a corresponding name has a value
in the input data - are needed. The use of such indicator predicates is a characteristic feature of
TMLQ. Total predicates-indicators determine the presence or absence of a component with a given
name, while partial predicates-indicators only detect the presence of such a component.

Total predicates-indicators Ez are non-monotonic; they are defined as follows (see [8]):

T(Ez) = {d|d(z)!};
F(Ez)={d|d(z)1}.

Total indicator predicates Ez were used, in particular, in [8, 10, 11, 13].

Partial predicates-indicators are already present in TMS? as the equitone predicates =...

Indeed, we have T(=.,) = {d|d(z)d} = T(Ez) and F(=.,) = {d | d(z){ and d(z) = d(z)} = O.

Note that the predicates Ez can be expressed as dy=,,, but it is more appropriate to explicitly
define them as special 0-ary compositions, which is done in TMLQ=. At the same time, partial
indicator predicates, such as the predicates =,,, are explicitly present in TML?".

Therefore, we have the following varieties of TMS® with equality: GMSQ=, TmMS Q=, MMS  for
TMS?, and GMSY, TmMS &, MMS @ for TMS?",

3. Languages of Transitional Modal Systems

Let us describe a language of GMS®. The alphabet: a set V of subject names (variables); a set Ps
of predicate symbols; the set {—-,v,R;’f,Elx, EW,EX} of basic logical compositions’ symbols; the set
Ms = {L1} of basic modal compositions’ symbols.

The set Fr of formulas of the language is determined as follows:

Fa) Ps C Fr;
F=) {Ex | x€V} CFrand {=,, | x,yEV} CFr;
Fp) ®,YEFr = -~ ®EFr and vOWEFT;
FR) ®EFr = RV OEFr;
F3) ®&Fr = IxOEFT,
FO) ocFr = LIdEFr.
Formulas of the form pEPs, Ex, =,, will be called atomic.



Atomic formulas and formulas of the form R;’f (p), where pEPs, will be called primitive.

To write formulas, we will traditionally use the prefix notation and the symbols for derived
compositions —, &, Vx, O. Thus, the formulas v-=-®W, =v-®-¥, -Ix-®, and ~- will be
abbreviated ®—W¥, ®&WY, Vx®, and OP, respectively.

Sets of guaranteed to be unessential names for formulas are specified by a function v: Fr— 2"
(see [8]). At the same time, we define v(LI®) = v(D).

The type of GMS® is determined by the extended signature o=(Ps,v) and properties of the
relation >.

Let us define an interpretation mapping /m of formulas on states of the world. First, we specify
Im: PsxSt— Pr, with condition Im(p,a)E Pr, (basic predicates are predicates of states).
Compositions’ symbols are interpreted as corresponding compositions (in particular, the symbols
Ex and =xy are interpreted as the corresponding predicates-indicators and equality predicates). The
mapping /m is continued to Fm x St — Pr in the following fashion:

Ip) Im(=, ) = =(Im(P, ));
Im(voW¥, a) = v(Im(P, o), Im(¥, a));
IR) Im(RY{ (®),0) = RL'] (Im(®, a));

T, ifexistsa€ A, : Im(P,a)(dVxa a)=T,
13) Im(3x®, a)(d) = {F, if Im(®,0)(dVxa a)=F foralla€4,,

else undefined.
T, if Im(®,0)(d) =T foralldES: a >,
I0O) Im(O®, a)(d) = {F, if exists &S : o> 8 and Im(D,0)(d) = F,
else undefined.
Given for &St there is no B such that a > 3, then we define It(L1®, a)(d) 1 for all de’A.

For abbreviations of formulas of the form Yx® and ¢ ®, the mapping Im is specified as follows:

T, if Im(®,0)(dVxa a)=T foralla€ 4,
13) Im(Vx®,a)(d) =1 F, ifexists aE 4, : Im(P,0)(dVxa a)=F,
else undefined.

T, if exists 0E St such that o > 6 and Im(®P,0)(d) =T,
[0) Im(O®, a)(d) =1 F, if Im(®,8)(d) = F for all SE St such that o > 6,
else undefined.

Given for aESt there is no f such that o > 3, then we define Im(O®, a)(d)? for all de’A.

Predicates that are values of modalized formulas, belong to global predicates.

We specify TMS as M = (St,R, A, Im).

The following definitions are given identically for all the described variants of TMS?.

Predicate /m(®, o), which is a value of the formula ® on state o, is denoted by ®..

Formula ® is irrefutable on state o. (denoted by o |= @), if ®, is a irrefutable predicate.

Formula @ is irrefutable in TMS M (denoted by M |= @), if for all aE€St, ®a. is irrufutable.

Let [7 be a TMS class of a given type.

Formula @ is (J-irrefutable (denoted by ~ |=®), if M |=® for all TMS ME[.

Depending on conditions imposed on the relation >, different classes of GMS® can be specified.
Traditionally, we can consider cases of reflexive, symmetric or transitive >, or their combinations:
then we add the corresponding symbol R/T/S to the GMS® name. Thus, the following classes are
obtained: R-GMS?, -GMS?, S-GMS?, RT-GMS?, RS-GMS %, TS-GMS?, RTS-GMS .

The language of GMS? is defined similarly to the language of GMS% with the following

differences. The set of symbols of basic logical compositions is {-, V,R;’f,flx, =, }. In the definition

of the set of formulas, instead of the item F= we have {=xy |x, yEV}C Fr; the interpretation
mapping is defined accordingly.

Let us describe the TmMS% language. The alphabet is identical to the alphabet of GMS® with
the set of basic modal compositions’ symbols specified as Ms = {[1, [1,}. The set Fm of formulas of



the language is determined according to the items Fa, F=, Fp, FR, F3 for the language of GMSQ=,
but instead of F[ we have:
FO1|) ®EFr = [11 ®EFr and L1 PEFT.
When we define the mapping I, instead of IL] we have the following item I, (see [11, 12]):
T, if Im(®,0)(d) =T for all 3E St such that o > 0,

I00,) Im(0,@, a)(d) = ] F, if there exists 0E St such that o > d and Im(D,d)(d) = F,
else undefined;

T, if Im(®,0)(d) =T for all €St such that 6> a,
Im(L.®, a)(d) =1 F, if there exists & St such that 6> o and Im(P,d)(d) = F,
else undefined.

Given for oSt there is no f§ such that o> 3, then we define /m(L1,®, a)(d)? for all de’A.
Given for oSt there is no f§ such that 3 > o, then we define /m(L1,®, a)(d)? for all de’A.

For the abbreviated formulas ¢,® and ¢ ®, we have the following interpretation mapping Im:

T, if there exists dE.S, such that o > & and Im(P,d)(d) =T,
10.) Im(O.®@,0)(d) =1 F, if Im(®,8)(d) = F for all €S, such that a. > §,
else undefined;

T, if there exists OE .S, such that d > o and Im(®,d)(d) =T,
Im(C.@,0)(d)=1F, if Im(®,8)(d) = F for all €S, such that § > a,
else undefined.

Given for aESt there is no f such that o > 3, then we define Im(O @, a)(d)? for all de’A.
Given for aESt there is no f such that > o, then we define Im(O @, a)(d)? for all de’A.

The language of TmMS® is defined similarly to the language of TmMS?, with the differences
corresponding to those between the languages of GMS?™ and GMS?.

Depending on the conditions imposed on >, we define different classes of GMSY", TmMS?, and
TmMS? as done for GMS.

Similarly, we define the languages of MMS®= and MMS?".

Depending on how the value ®,(d) is set in case d&'4,, two types of TMS are distinguished
([12]): with strong condition of undefinedness on states and with general condition of
undefinedness on states. The strong condition is specified as follows: under the condition d&"4, we
have ®@,(d)?. Hence: (O®),(d) = T = dE"4, for all § such that ar>d. This implies that basic objects
cannot disappear when transitioning to a successor state, which imposes too strong a restriction on
semantic models. The strong condition also does not preserve [12] equitonicity of predicates with
modalities.

The general condition of undefinedness on states does not have these drawbacks; it is defined as
follows:

for all d€"4 and SESt, we have @ (d)=D,(d.).

Here d, denotes the name set[va a&d |aEA,).

Given de¢’d, we have ®(d)=®(d), meaning that predicates on states & “perceive” only
components va a with basic data a€A4..

The interaction of modal compositions with renominations and quantifiers has been studied in
[12]. Let us briefly describe it for GMS?

Theorem 1. For all ®EFr, dE"A we have R;i (%*D), (d)= *(R;i (D)), (d).

Therefore, symbols of Ms can be carried through renomination symbols.

Theorem 2. Formulas Ix0O0® — O3x®, OVxP = VxOD, OVxD — VxOD, IxOP — OIxd are
irrefutable in GMSQ of equitone predicates.

Theorem 3. Formulas Ix[(d® — [13x®, IVxdP —Vx[d are refuted in GMSZ.

Corrolary 1. Formulas OVx® — VxO®, IxOd — OIxd are refuted in GMS?.

Theorem 4. Formulas (3x® — xO0d, Vx[Od — OVxd are refuted in GMS? of equitone
predicates.



Corollary 2. Formulas Vx0® — OVx®, OIx® — IxOD are refuted in GMSQ of equitone
predicates.

Examples of GMS, in which the formulas specified in Theorems 3 and 4 are refuted, are given
in the work [12].

Let's consider the specific properties of GMSY, related to equality predicates. For TmMS? and
MMS®, these properties are formulated similarly.

Assertion 1. 1) for every GMS® M we have M|==,,and M|=U=,;

2) for every GMSQ™ M we have M |==,, and M |=[=,,.

Indeed, F(=,,) =D and F(=,,) = J.

Example 1. Let us consider GMS? with St={a,p} and R={o > B}. Since there is no state m
such that 3 > 1), then (L=.,)(d)T for each d.

Therefore, [1=,, is not always interpreted as the constant predicate T.

Theorem 5. Formulas =, — [J=,, and [J=,, — =,, are irrefutable in GMSY".

In particular, =, — [=,, and [J=,, — =, are irrefutable in GMSY". At the same time, we have

Example 2. Formulas =,,— [l=,, and Ll=,, — =,, are refuted in the following GMSQ-.

Let St={o, B}, R={o.> B}, A.= {a}, 4,= {b}.

Letd=[xa b,za a] = d.=[za a],d,=[xa b]. Hence d.(x)T, d.(y)T, d(x)=b, d(y)T. We have
(Exy)u(d) = (Exy)u(du) =T

At the same time, (=,).(d) = (=y)(d) = F = (U=y).(d) = (U=y).(d) = F.

Therefore, (=,, — U=,)).(d) = F = a|==,,— U=,

Let us take A=[xa a,za b] = h.=[xa a], h,=[za b]. Hence h.(x)=a, h.()T, h(x)T, h,()T.
We have (=,,).(h) = (=4).(h) = F.

At the same time, (=)),(h) = (=,)(h) = T = (U=,,).(h) = (U=,).(h)=T.

Thus, (U= —=,).(h) = F=o|=U=,—=,.

Example 3. Formulas Ex — [JEx and [JEx — Ex are refuted in GMS?.,

Let us consider the GMS® from Example 2.

Let us take h=[xa a,za b]= h.=[xa a], h,=[za b]. From this, Ex.(h) =T, Ex,(h) = F, which
gives L1Ex,(h) = F. Therefore, (Ex — LEx).(h) = F, whence o |= Ex — L1Ex.

Letustake d=[xa b,za a]l=d.=[za a],d,=[xa b]. From this, Ex.(d) = F, Ex,(d) = T, which
gives LEx(d) = T. Therefore, (Ex — Ex).(h) = F, whence o |= L1Ex — Ex.

Theorem 5 and Example 2 demonstrate significant differences between GMSQ= and GMS?.

Another confirmation of this is provided below by Theorem 6 and Example 4.

Theorem 6. Formula =,, & [J=,,— [1=, is irrefutable in GMSY,

Example 4. Formula =, & O=,.— (=, is refuted in the following GMS%.

Let St={a, B}, R={a>P}, 4.={a}, 4,={b,c}.

Letustaked=[xa c,ya b,za c,sa a] = d.=[sa a], d=[xa c,ya b,za c].

Hence d.(x)1,d.(»)1; d(x)=c, d(y)=b, d(z)=c.

From this, (=.,).(d) = (=4).(d.) =T; (=)(d) = (=)(d) =T, (=,)(d) = (=,.)(d) =F.

We obtain (=,.)(d) = T and o> = (U=,.).(d) = T; (=,.)(d) = F and o> = (Us=,.).(d) = F.

Therefore, (=, & U=,. — [U=,.).(d) = F.

4. Logical consequence relations for sets of formulas specified with states

We will define logical consequence relations in TMS on a set of formulas specified with names of
states, or simply, specified with states.

Formula specified with a name of the state has the form ®-, where ® is a formula of the language,
aES — its specification, S — a set of names of states of the world.

Let us call a set of formulas specified with states X with a specifications’ set S consistent with
TMS M = (St, R, A, Im), provided that an injection of S into S? is defined.



On sets of formulas specified with states, we introduce the relations of irrefutability (/R-
consequence), truth (7-consequence), falsity (F-consequence), and strong (7F-consequence) logical
consequence. These relations correspond to the similarly named relations in logics of quasiary
predicates (see [8, 10, 13]).

Let A and I" be sets of formulas specified with states. Further on, the notation I' ;/=+ A by default
assumes that I" and A are consistent with TMS M.

A is a IR-consequence of I in a consistent with them TMS M (denoted T =5z A), if for all dE"A we
have: ® (d)=T for all D-€I" = ¥ (d) = F for some V:€A.

A is a logical IR-consequence of T' with respect to a TMS of a type [] (denoted I' |=xA), if
FM|:[RA for all ME[].

A is a T-consequence of I in a consistent with them TMS M (denoted I y|=rA), if for all dE"4 we
have: ® (d)="T for all D-I" = ¥ ,(d)=T for some V:cA.

A is a logical T-consequence of T with respect to a TMS of a type [ (denoted I' |=7A), if T yJ=rA
for all ME.

A is an F-consequence of I in a consistent with them TMS M (denoted I ,/=¢A), if for all dE"A we
have: Y (d)=F for all "€EA = P (d)=F for some O-CI.

A is a logical F-consequence of T with respect to a TMS of a type (] (denoted I' '|=¢A), if T y|=rA
for all ME.

A is a TF-consequence of I' in a consistent with them TMS M (denoted T )|=7rA), if T'y|=rA and
FM|:FA.

A is a logical TF-consequence of T with respect to a TMS of a type (| (denoted I' |=7#A), if
FM|=TFA for all ME[].

Therefore, we have: T’ |=7zA < T' |=;Aand T |=7A.

In logics with weak equality predicates, the relations of types 7, ' and TF are incorrect (see [10]),
so in GMS? we consider only relations of the IR type. In GMS?, all the above-defined relations can
be considered.

The non-modal properties of the relations for sets of formulas specified with states repeat the
corresponding properties of the same-named relations for sets of formulas of the traditional logic of
quasiary predicates described in [8, 10, 13, 14]. These are such properties.

1) Properties of formulas decomposition ==, = =g, V1, Vg, = VL, = Vg, and also properties —,and
- for |= (see [8]).

2) Properties of simplification and equivalent transformations related to renominations, induced by
the predicates properties R, RI, RU, RR, R.=, R.v, RT (see [13, 14]).

3) Properties of simplification related to renomination of the Ez predicates, induced by the
predicates properties R and R, and the property Elgz of elimination of the p-formula
Ry} (Ez)(see [13]).

4) Auxiliary properties in GMS®: elimination of = when carrying a formula from the left side of
the consequence relation to the right and vice versa for the symbols Ez, =,,, and their renominations.

5) Properties related to the quantifier elimination; in GMS®, they repeat the properties 3R,
=3Rg, AR Vg, =3IR.v( (see [8]), in GMSY, we have the analogous properties AR, -, =3IR z-, AR Vg,
—=3R.v; -, where instead of £z, we use =..; moreover, we add the properties of E-distribution Ed and of
primary definition Ev in GMS® (see [14]), and similarly, the properties {-d and !.v with =.. instead
of Ezin GMS?".

6) Properties in GMS® related to the =,, predicates; these are simplification properties induced by
the predicates properties R.=,,, R=p, R=;, R=3, Ri=15, R.=35; properties of elimination of the r-

formulas =, and R """ (Exy ), elimination of the pair of equals in a renomination =elR, transitivity

Tr= (see [13]). For example, let us consider the transitivity property (here and further on the symbol *
denotes one of the IR, T, F, TF):

TI’E) S Sy r M|:~ A= Sy Sz Sxz’ r M|:~ A.
We add to them the properties of substitution of equals in GMS® described below.



7) Properties in GMSY related to the =,, and =, predicates; these are simplification properties
induced by the predicates properties R,=,,, R=.,0 R.=¢p, R=;, R=; the properties Elg-; and Elzg of
elimination of the .-formulas and the property EL; of elimination of the ,r-formulas =.,; the properties
of elimination of the pair of equals in a renomination =elR, transitivity Tr= and substitution of equals
=R.rr, =R,y (see [13]).

Let us describe the properties that guarantee the considered consequence relations in GMS®.

For all such relations we have the basic property C and property CF:

C) P, I'yl=A
CF) RY'7% (E2).T'|=, A

Additionally, the corresponding consequence relation is guaranteed by one of the following

properties:
CL) @<, =D, T y=rA;
CR)T )=k A, D, =D
CLR) ®«, = O, T p|=rr A, P+, ~W-,

Based on the properties of equality, we have the properties of the presence of each of the relations:

Cre) T m= A, =
Cer) =y, Ex, T |=. Ey, A;
Cer) I |=. =, Ex, Ey, A;
CT) Tul= A, RV (=)™

x,L,1, 1
Based on the properties of guaranteed presence of one of the relations I y|=r A, T y=rA, T y|=ir A,
T y=rr A, we have the corresponding conditions that guarantee this relation.
C) there exists a formula ®: ®-€I" and P-€A — for all relations;

CF) there exists a formula R;fj (Ez)* €T — for all relations;

CL) there exists a formula ®-: ®-€I" and —~P-€I" — for the relation »J=r;

CR) there exists a formula ®-: ®-€A and = P-€A — for the relation y|=F; ;

CLR) there exist formulas ® and W: &, ~P-€I" and W+, ~W-€A — for the relation |=75;
Crr.) there exists a formula =,,-€A — for all relations;

Cg..) there exist formulas =, Ex and Ey: =+, Ex-€I" and Ey€A — for all relations;

Cg.r) there exist formulas =,,, Ex and Ey: =, Ex-, E€A — for all relations;

CT.) there exists a formula R?’ ‘i’izl (=.): RV ’iizl (=.)" €A —for all relations.

This provides the complete conditions that guarantee each of the corresponding relations I yJ= A
in GMS%.,
The relation y|=p: Cv CF v Cgre. Vv CgpV Cer Vv CT..
The relation y|=7: Cv CL Vv CF v Cgg.Vv Cgp Vv CgrvVv CT..
The relation y|=r: Cv CRvVCFv Cgs v CgpV Cgrv CT..
The relation y|=7r: Cv CLR v CF v Cg. v Cg.p v Cer Vv CT..
Let us describe the properties of guaranteed presence of the relation I' /= A in GMS?". These are
the basic property C and the following ones:
Crer) U= A, =5
Cly) Rwll = )a I ul=rA;

CJ_R) FM|:1RA RV s i(— ) .

Hence, the same-named conditions that guarantee the relation I' y=/z A in GMSY".
Cre) there exists a formula = €A,;

C.1y) there exists a formula R (=) €T
CLy) there exists a formula R’ (=) EA

Thus, we obtain the complete condition of guaranteed presence of the relation I y|=;z A in GMS<:
Cv C]{f: \% CJ_L \% CJ_R



To conclude the description of the non-modal properties of consequence relations for sets of
formulas specified with states in GMS%, we will examine properties related to the substitution of
equals.

Example S. The property =, L= y/=z L=, is refuted in the following GMS?.,

In the GMS M from Example4 for d=[xa c,ya b,za c,sa a] we have (=,)(d)=T,
(O=.)(d) =T, (O=,,)(d) = F; hence =7, O= . y=r = .

Thus, =+, U=« y|=+U=,.-, where the symbol * denotes one of the IR, T, F, TF.

At the same time, we have =,, U=,.-, L=, |=:«[]=,. by the property C of guaranteed presence of
each of the logical consequence relations.

Assertion 2. The following statements are not equivalent:
=y S REL(®)NT = A and = RET(D), R (D) T 1=, A

xy
We have R/([J=,)*=0=_" and R)(J=,_)" = O=.%, by Example5 =y O=c yl=:Os=,e,

hence =, R (T, )" b RO, )", However, = R(O=,)", R)(C=,)" |=. RO, )",
therefore the statements = “ R/(®)*,T" = Aand = * R/(®)*,R(P)T ,|=. A are not
= A and

pvA

equivalent;  in  thegeneral  case, the  statements =% fﬁ’,; (P)*,T ,,
=" f’i’;(d))a,R;’i’; (P)*,T ,,|=, A are not equivalent.

Thus, the condition validity for =,,- is insufficient for the substitution of equals.

Assertion 3. We have =,,+, Ex-, Ey-, U=, [=«l= .

Let us prove this by contradiction for the case of |=j, similarly, it is proven for |=7, |=F, and |=7r.

Let us assume the opposite: suppose for some GMS M = (St, R, A, Im) and aESt, dE"A we have
(=w)(d) =T, Ex(d)=T, Ey(d) =T, (U=..).(d) = T and (Us=,.).(d) = F; from this d.(x)1 = d.(y)! = a€A.
for some a€EA4 = d(x) = d(y) = a. According to (U=,.).(d) = F we have (=,.),(d) = F for some (3 such
that o> 3. According to (L=,.).(d) = T we have (=..).(d) = T, which gives us two possible cases:

1) d(x)T and d,(z)T; hence d(x)&d,, and since d(x)=d(y) = a we have d,()1, so (=,.),(d) = T, which
contradicts (=,.),(d) = F.

2) d(x)1 = d(z)!; since d(x) = d(y) = a then d(z) = d,(x) = d,(y) = a, which contradicts (=,.),(d) = F.

In both cases, we obtained a contradiction.

Assertion 4. We have =,,+, Ex-, E)-|=:L1=,,7, where the symbol « denotes either /R or F.

It is sufficient to prove for the case |=r. Let us assume the opposite: suppose for some GMS
M= (St, R, A, Im) and a.€St, dE"4 we have (O=,,).(d) = F, (s,,).(d) = F, Ex(d) = F, Ey(d) = F. Since
the predicates Ex and =,, are total, we have (=,)).(d) =T, Ex.(d) =T, Ey(d)=T. Hence d.(x)!, d.(y){,
and since (=,).(d) =17, therefore d.(x)=d.(y)=a for some a€4.CA4, so d(x)=d(y)=a. Given
(H=y).(d) = F, we have (=,,).(d) = F for some 3 such that o> 3. We obtain three possible cases:

1) dx)!, d(»! and d,(x) = d(y); since 4,C 4 then d(x)!, d(y)4 and d(x) = d (y); at the same time
we have d(x) = d(y) = a, which gives us a contradiction;

2) d(x)! and d,(»)T; since 4,C A4 then d,(x)=d(x)=d(y)=a, so a€A4,, hence d,(y) =a, which
contradicts d,()T;

3) the case d,(x)T and d,(y){ is treated similarly to 2).

Assertion 5. In the general case we have =, Ex,Ey|=r[]=,- Indeed, for GMS

M = (St, R, 4, Im), where no f exists such that o> 3, we have (Us=,,).(d)1 for all d="4. However, for
d=[xa a,ya a]with a€4. we have (=,).(d) =T, Ex(d)= T, Ey(d)=T.

At the same time, by adding [=,, to the left side, |=r and |=j are preserved, and |=r is guaranteed
even in the absence of f such that o> 3. Indeed, then (L=,,).(d)T and (U=.,).(d)T for all de’A.

Hence, we get:
Assertion 6. We have =,,+, Ex, Ey-, =, |=+«[]=,,-, where « denotes one of the IR, F, T, TF.
Note that the reflexivity of the relation > guarantees |[=r and |=7r in Assertion 6.



Adding the validity conditions Ex- Ta E)» to the validity condition =,,+ allows for the substitution of
equals. Finally, we have the following properties of substitution of equals in GMS%:
=) =, % Ex" By RUL(@)NT = A < = % Ex B RITU(®) R (D) 1=, A

=IPr) ExyaaExa’Eyaﬂr M|=* ]{;ii(q))aaA had ExyaaExarEyaﬂr M|=* Eii((l))a,R;’i;((D)a,A,
=-rpu) =, “ B BV SR (@NT = A e = 0 B By S RYTU(@) Y ~RUT(@) T yl=, A
=-1pr) =, 4 Ex® By T =, ~RETH(DSA < = O B By T =, RO, RS (D) A

Let us describe the properties related to modal compositions. In TMS of non-monotonic predicates
with equality, these properties are generally analogous to the corresponding properties of TMS
without equality predicates (see, for example, [12]). These are properties of carrying modalities over

renominations, which belong to the properties of equivalent transformations, and properties of
modality elimination. We will present the properties of carrying L1 over renomination in GMS.

RO T,RYT (O®)* = A < T, OR(®)* [=. A;
=R T-RYL(EP) = A < T, ORV(®) 1=, A
ROR) T yyl= AR (@O®)* < T 1=, A, OR (D)
=R0p) T = A, =RV (O@)" < T =, A, OR (D).
For the relation ,]=, it is sufficient to have the properties ROy and Rg.
The properties of elimination of the modal composition L1 in TMS are as follows:
Op) O, T yf=+A < {P|a>p UL y=+A;
=) T yf=+A, =0 = T y=-AU{=D'|a>p};
Ug) I' y=+A, L®- <= T jJ=+A, @ for all states BES such that o> [3;
-Up) -0, T yj=+A < -P, T y|=+A for all states BES such that o> f3.

For the relation ,|=p, it is sufficient to have the properties [1; and L.

Similar properties related to modal compositions are formulated for TmMS Ta MMS.

For the properties of the relation ,,|=+, the corresponding dual properties of the relation =« can be
specified (see [11]), using which the sequent forms of the calculus that formalizes =+ can be directly
formulated. In particular, the properties of modality elimination for /=« in GMS have the form:

n[dp) OO, T =A< {D|a>PIUT y=+A;

n-=CR) T =+ A, ~OD < T = AU{-D|a>B};

nllg) I' yj=+ A, L®- < T =« A, O for some BES such that a > f3;
n-0Up) =0®, I =« A < =P, T =+ A for some BES such that o> 3.

With additional conditions imposed on the relation >, the properties of modality elimination are
correspondingly modified. For the cases where the relation can be either transitive, reflexive, symmetric,
or their combinations, these properties are described, in particular, in [11].

5. Sequent Calculi for Transitional Modal Logics

Properties of logical consequence relations on sets of formulas specified with states are the
semantic foundation for construction of the sequent type calculi for TML. Specifications take the
form of a|- or a-|, where a is the name of the state. Sequents are treated as sets of such formulas.
By singling out |--formulas and —|-formulas, we denote sequents by |-I'-|A.

Sequents are enriched with sets of relations on states obtained at the time of derivation. Let M be
such a reachability relation constructed for the names of states i.e. world model schema. The
enriched sequents are denoted by X // M.

The sets of defined, undefined, and undistributed names of a state o of the sequent X are defined
as:

valZ) = {u | JEuEX}; unv() = {u | JEuEZ}; ud(Z) = nm(Z)\(val(Z.) U unv(X.)).



We propose sequent calculi that formalize the relation M-|=5 in GMS? and the relations ul=1r,
M= uFF M=TF In GMS?-. The calculus for the relation v==r in GMS? will be called C°¢* and
the calculi for y=m, =1, u/=r, u{=rr in GMS® will be called C“* T COF LT,

In this paper, we will restrict ourselves to describing the calculi CGQ=IR, CGQ=T, CGQ=F, C%.TF The
calculus CGQ=IR is generally similar to CGQ=IR, but with =xx serving as predicates-indicators.

Sequent calculus is defined by basic sequent forms and closedness conditions for sequents.

The derivation in sequent calculi has the form of a tree, the vertices of which are sequents; such
trees are called sequent trees. Inference rules in sequent calculi are called sequent forms; they are
induced by properties of logical consequence relations for sets of formulas specified with states.
Closed sequents are axioms of the sequent calculus. The closedness of | I'_A must guarantee I" |= A.
The sequent tree is closed if every its leaf is a closed sequent. The sequent X is derivable if there
exists a closed sequent tree with the root Z, called a derivation of the sequent X.

The closedness conditions for | I A are defined by the specified above conditions that guarantee
the corresponding logical consequence relation I' y=+A.

Although the calculi C9%7, C9%F, C“%™ have the same basic sequent forms, their closedness
conditions for sequents are different.

We have the following closedness conditions for a sequent X:

C) there exists a formula ®: | ®EX and . | PEX;

CF) there exists a formula ol R; fi (Ez)EZ;

CL) there exists a formula ®: , ®€X and ,, —~PEZ;

CR) there exists a formula ®: . ®E€X and . |~ D-EZ;

CLR) there exist formulas ® and ¥: ,®EZ, | -PEX and | WEZ,  ~PES;
Cry.) there exists a formula .| =,-E2;

Cg.p) there exist formulas =, Ex and Ey: | =,EZ, . ExEZ, EYEX;

Ck.r) there exist formulas =, Ex and Ey: .| =,EZ2, |ExEZ, . E)EZ;

CT.) there exists a formula RV (=_): a_lR;’Z”ii (=.)EX.

Thus, we get the following closedness conditions for a sequent X in a certain calculus:
— for the calculus MC?%: the condition Cv CFv CL v Cge. Vv Cer VCir vCT,;
— for the calculus MC?": the condition C v CFv CR v Cge v Crr VCir vCT;
— for the calculus MC%™: the condition Cv CFv CLR v CgrgV Cp vCrr VCT..
The closedness condition for the calculus MC%®: Cv CF v Cge. v Crp vCer VCT..
Let us present basic sequent forms for the calculi MCQ=T, MCQ=F, MCOT,
Simplification forms (types R, RI, RU, RT1, R12, and =elR):

N W OENM N w @M
L LR@.EIM L R@).EIM
- OEIM wm P2/ M
L R@E M L R@®),E M
W RE(@),E /M Rl w RI(@),E/M
L RT(@E /M U RT@),3 M
ORI w- ~RI(@LE M R I ~RE@).ZIM
o "RV (@),2 /I M o "RV (®),E /I M
o RN (®).Z /I M w R (@), /M
- X » YEV(P); RU ———== , YEV(P);
a- RN (P2 M a RN (@2 /M
o " RYT(®),Z /I M w " RET(®),Z /M
-—RU : ev(P); 4~RU : ev(P);

s ay T 7 ’y
R @),2 ) M e RTTH(®@),Z )/ M

sXs



j)-( )’u ‘EZZ//M
Y(p) gy Ez 2 M
v ' s EZ > //M
- ~R11 aj- VJM_J_(p) o o
R y(p)’alEZZ//M
al- ;M(P),u_ Ez,Z2 /I M
\*RTZ ‘ 17,;:2 | p
- B (P)s o E2, 2/ M
~R\(p), o E2,Z /I M
~=RT2 al- Vx;Z(P) a-| eps
al- ﬁR}a’J—jl (p)’ a-| EZ,Z /| M
_=elR ¢~ = REL(®LE/M

RV (@), /M’

RT1 & , PEPs;

><\ = ><\ =
|—:\ I—:\

Ot\

€ Ps;

b

al- xy’a\ w,L,y
eloR T RIT(®LE/M
= e " RITN(D),E /I M

RV (p)y oy E2 2 /I M

JRTp el . pEPs:
w REN(p), o E2 21 M
~RV(P) o B2 /I M
‘_'R“ = it;(p) = , PEPs;
Rxlz(p)aq_‘EZ,Z //M
RYU(P): o B2, 2 /I M
R12 at Re 1 (P), o B2 ers
LRV (P) o E2Z I M
RY(p) o E22 1/ M
+mR12 = ot "R (D), o B2 ers

LRE(p) o B2 M

IR = a  RII(@)LZ /M

RN (®),2 /M
RY(®),Z /| M
SRV, E /M

w,L,y

al-— xy’a |

_mel-R —Twradd”

(x\— Xy o

Forms of equivalemt transformations — renomination of predicates-indicators:

EZE//M

EZZ//M

R Z@ v, u}; R zEv,ul;
- R“‘(E)Z//M i) o R”‘(E)Z//M w.a)
u-EV.Z I M a EV.Z I M

-Rogy Ry .
al- R; i S(Ez),Z /) M R; " S(Ez2),Z /M
Forms of equlvalemt transformations — renomination of equahty predicates:
w2z M a_lsm,z M
\*RExx T —\RExx S 5
R l(_ ),Z //M a1 (=0)2 I M
al-— xy’2 //M a\=xy52 //M
-R=o +R=o

R (=,),2 %

R = )M

Condition for the forms | R=g and R=¢: x, y&{u,v}, x = y.

aZos 2 M
-R=
RS IM
E 2 /M
R=ig d

a\_Rﬂi(— VM

ay=u 2 /I M
7‘RE V,i,x
o |RwJ.z(_xy) pX //M
_Ey.Z /M
,‘RElE ol y

w R (= )20 M

Condition for the forms | R=;, R=y, | R=pand R=p: y&{u,v}, x=y.

v M
-R=>
BRI (=, )2//M

EZZ//M
R ez

R=p

al-

ay=s 2 /I M
,‘RE
R (= S IM
u-EZ,2 M
—\REZE

(R (= 2 M

Forms of equivalemt transformations — renomination of compositions:

al_R;j Z’l((l))Z//M
F vz
o RITREL(®),E /M
e Rv;zi & (@2 /M
R (RO (®),Z /M

- ;j(@),z M
SR (-®)2 M ’

alR;j ”)’C’l(fl))Z//M

LR REL(®)E /M
~RR - R}Zi (@)L /M
SRTREL(@),2 /M
SRYT(P)LE/IM
R (0L M




W R(@LENIM (REN@),E M
T ARG IM ST
Ry < ;,i{di)v RUT(W).E /M R w REY 7qi) VRIT(W),Z /M
L R(@VW),E M L RI(@VW),E /M
Ry o "(REL(®)VRYT (W), /M Ry q_|“(RM(CI>)VR TW)E/M

o RIN(@VW),E /I M
@RV (P),Z /M

wy~RIN(DVW)E )/ M
iR;’f(fl)),Z M

(RO 42—~ ; RO e :
R;;j (@D),2 // M R (D), )/ M
RO - &R (D), /M -RO -~ @RV (D),2 /| M
ﬂR”i(ﬁ) SIM’ L RIT(@D)S /M
Forms of elimmatlon for the constant r-formula:
Els _ 72 M : El= ZIM ElR= /M .
RV (E2),Z /I M =2 M’ ol Rfvijyl(_xy),z /I M
Forms of elimination of - in formulas related to T'S-predicates:
_ aqkEzE M w-EzZIIM
BT M T ERs M
LRVT(ED).Z/IM R (E2),2/IM
N SRU(EDE M T AR (B M
_ a_‘Exy,Z M . L ar xy,Z M .
o m S S M L m s M
o \m(-xy) /M R”‘(-w) /M
AR (= )2 M T R IM
Forms of formulas decomposition:
W @Z/IM w @S/ M
W @IIM L WEIM w1 @ WM
Y G OVWE M V OVWE M
wo P WM w~REIMmWE M
FY o (@VE)T M v @V IM
Forms of quantifier elimination:
o R(®), o Ez,Z/IM 3 “RI(®), y Ez,Z//M
T AosiM i SV
e q\_RMi(‘D), u-E2Z M -3R | R: ij(d)), o E2,Z //M;
RV (Ind), 2 /| M o] —-Rw’l (Fx®),Z // M
A ar| EIx(I), w B3 (@), o EV,Z /I M ; v o IR, ~RI(DP),  EV.E/IM
a @, o Ey,Z /M o IP@,  EV,Z /M
3Ry & |R‘; i(EIxCI)), a-| vavi’;(q)), ol Ey2/IM .

w RUL(AxD), o EV,Z /M

s al-




—-R;ﬁ AxP), .. ﬂR;ﬁf; (), o Ey.2 /I M
Ev,3 /I M '

oo "R (Fxd),
Condition for |-3 and ;-3: z&fiu(2, Ir®); condition for | IR and |~IR: zE fu(R)" (D).
The forms 3, =3, | 3R and -3R will be called 3r-forms; the forms v,  =3v, _IRv and | -3Rv
will be called 3g-forms.

Forms of E-distribution and primary definition:
Ex,Z//M  Ex,Z/IM

[ JRv o

Ed %= S , where , Ex,  Ex¢X.
o B ZIM )
A given zEfu(X).
/M &
Forms of transitivity and substitution of equals:

Tr= o-| EXY’ al- Eyz’“\— E)cz’2 "M .
a-=xp of- Eyz,z M

E¥, o B, o RUL (@), o RYDS(@)Z M

w,L1,x > al-"tw,L,y

Ex, o By, o RSIU(®).E /I M

w,L1,x

af-Zxy ol

-=rp

ol- Exy ’ ol-

Ex,  Ey,  \RyT(®), ( RY5(P)LE /M

w,L,x > o-| ", L,y

Ex, o Ey, o RUT(®).2 /I M

w,L1,x

af-Zxy ol

-=Ip

]

ol- Exy > ol-

EX, o Ey, o = RyTH®), o ~RyT(P)E/ M

w,L,x w,L,y

EX, o Ey, oy ~RyTU®)LE /I M

af-=xy af-

|—=tp

o|- Exy > ol w,L,x

EX, o Ey, o mRyTH(D), o =R (P2 M

w,L,x w,L,y

EX, o Ey, o =Ry TU®).E /I M

af-=xy af-

-~ =rIp —
ol- " xy2 ol w,L,x
The forms of modal operator elimination depend on the properties of the relation >. We will
describe these forms in the general case where no additional conditions are imposed on the relation.
The names of the calculi MC2", MC2F and MC?™ correspond to this case.
If at the moment of applying the form to ,L1® or ,—~[l® we have states f,..., f, such that

o> f,...,0>f,, then we apply the corresponding form to ,[1® or ,-[1®:
o0, D D F/M oy WD, D, =D, 2/ M

O 1 n : -0 1 n )

a‘_ﬁb,z /| M a_l-.j@,z /M

If there are no such y such that o>y, then we apply the form to ,[1® or .~ [1d:

€D, , .3/ MU {o>p}

o0, =/ M
@, -®,3/MU{o>p}
o WD, 2/ M

The elimination form applied to . [[J® or ,-~[1® is:
-®,2// M U{o>f}

5 @2/ M U{o> B} ) ' B ]
| , P is a new state; |—-[] , P is a new state.
a_liiI),Z//M a‘_—-iﬁI),Z//M

Let us describe basic sequent forms for the sequent calculus MC?®. There is no need to list the
sequent forms for external negation on renomination, which results in the following basic forms.

Simplification forms | R, |R,  RI, JRIL, | RU, ;RU, RT1, |RT1, RT2, RT2, =elR, j=elR.

Forms of equivalemt transformations: RR, RR, R-, R-, [Rv, Rv, RO, RL; [Rg,
JR.E, | Rigv, Ry | R=, [R=y, | R=g, R=g, | R=y, R=i, | R=), R=), | R=ig, R=jg, | R=3, R=g.

Forms of elimination for the constant -formula Elzg, El=, EIR=.

Forms of decomposition of the formulas ;v and v, to which the forms |- and |- are added:

Of ol , B is a new state;

~Or & , B is a new state.
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R M LRI IM

Forms of quantifier elimination | 3, | 3R, v, |dRv; E-distribution Ed, and primary definition Ev.

‘ =

Forms of transitivity and substitution of equals Tr=, |_=rp, j=rp.
Forms of modal operator elimination L1, |[[1f, [ (in the absence of additional conditions on >).

We have the following groups of basic forms for the calculi MC%", MC2F, MC2™" MC2'®:
— auxiliary simplification forms: types R, RI, RU, RT1, R12, and =¢lR;
— forms of E-distribution and primary definition: Ed Ta Ev;
— main forms: all other basic sequent forms.
The main property of the listed basic sequent forms of TML is described by
Th CAKIM ALK IM X ZIM

eorem 7. Let an

_T_ A/ M _T_A//M

DAFKe Tl=A AFKand X|=Z < T'l=eA;
)T |=A < A=K, Tl A < A= Kand X = Z.

Let us briefly describe the construction of derivations in sequent calculi for TML. The step-by-
step construction of a sequent tree for countable sequents in TML calculi is similar to that for
calculi of quasiary predicate logics (see [9, 13]). The process is carried out in parallel with the
formation of the world model schema. This schema is updated with each application of the
appropriate forms of modality elimination, which add new states.

The construction of the tree begins from its root - the initial sequent 2. Each application of a
sequent form is performed on a finite set of formulas available at the moment.

At the start of each stage, an access step is performed: one formula from each of the lists of |-

be sequent forms. Then:

formulas and -|-formulas is added to the list of available formulas. At the beginning of the
construction, a pair of the first formulas from these lists is available (either a single |--formula or —|-
formula, if one of the lists is empty).

After applying each sequent form, we check the resulting sequent €2 for closedness. If a closed
sequent is obtained, no further forms can be applied to it, and the construction of the tree on this
path terminates. If all leaves of the constructed tree are closed, then we have a closed sequent tree,
and the proof construction is completed successfully.

If the construction is not completed, for each non-closed leaf §, we proceed with the next access
step and then extend a finite subtree with root & as follows. We activate all available (except
primitive) formulas of &. Next, we apply the corresponding sequent forms to each active formula.
Whenever appropriate, we perform simplifications using the necessary auxiliary forms of the types
R, RI, RU, RT1, R12, and =elR; forms of the types RT1 and R12 are applied to primitive formulas
and their negations, yielding primitive Un-forms (see [13]) with the set Un = {x|.ExE0}, where ©
is the set of formulas on the path from the root X to the given sequent. After applying the main
form and performing simplifications, the formulas generated on this stage become passive; at this
stage, the main sequent forms cannot be applied to such formulas.

In the application of the main sequent forms, the process proceeds as follows. First, all non-
modalized forms are executed. The application of 3r-forms precedes the application of IF-forms.
When applying an 3T-form, we always select a new totally non-essential z that does not appear on
the path from the root to the sequent where the 3T-form is applied. Each Jp-form is applied
multiple times for each assigned component y from formulas on the path from X to the given
sequent 1. Let = be the set of available sequent formulas on the path from Z to 1. For each a, we
define Ud, = ud(E.). If, when transitioning to the application of an Ip-form, Ud, = J, then there are
undistributed names of the state a, so using Ed, we perform all possible distributions of names from
Ud, into assigned and unassigned ones. This results in constructing a subtree of height |Ud.| with

the subroot 1, which produces m = 2Udal

successors of 1 — sequents 1y,...,M, with sets Vn,C Ud, of
new assigned names. If val(Z,) = &, then for 1);, where Vn,; = &, we perform the initial assignment -

adding ., £z for a new totally unessential z, which results in Vn,; = {z}. In each of these 1, we apply



the Jg-form for each y&EVn,,.

The forms Tr= are applied every time a pair of formulas of the form ,_=,, and ., =,. appears, where
at least one of them is new to the sequent. The forms of the type =rp (substitution of equals) are
applied each time a pair of formulas appears, one of which is of the form ,_=,,, and the other is one

V.,u,z

of the forms a‘_R;ﬁj (p), a_lR;ﬁ:i (P)y o~ Yﬁ’; (P)s o~ Ry (p), where at least one of them is

new to the sequent.

Next, we apply _|Ll-forms, and finally, at the end of the stage, we apply — [1-forms.

If the construction of the sequent tree is completed successfully, then we obtain a closed tree.

If the construction does not complete, then we have an infinite, unclosed tree. In such a tree,
there is an unclosed path @ (by Konig's lemma, see [15]), all of whose vertices are unclosed
sequents. Each of the formulas from the initial sequent = will appear on @ and become accessible.

For the proposed sequent calculi for TML, the soundness and completeness theorems hold. For
these calculi, the theorems are formulated in a similar manner, with the relations |=x, |=7, |=F, |F7r
corresponding to the calculi MCQ=[R, MCQ=T, MCQ=F, MCe™,

Theorem 8 (soundness). Let the sequent |_I'JA be derivable in the calculus C; then I' |=+A.

Let | .I" A be derivable in the calculus C. Then, a closed sequent tree has been constructed for it.
All its leaves are closed sequents, so for each such leaf | X Z, we have X |=+Z. The movement from
the leaves of the tree to its root is accomplished using sequent forms. By Theorem 7, the relation |=*
is preserved when moving from the premises of the forms to the conclusions. Therefore, A|="K for
each vertex _LA_K of the sequent tree. In particular, for the root . I"_A we also have I'' |=«A.

The proof of completeness for the sequent calculi of TML relies on the theorem about
constructing a counter-model using an unclosed path in the sequent tree built in the corresponding
calculus. The proof of the counter-model theorems is based on the method of model (Hintikka) sets
(see [11]).

Theorem 9 (on counter-models for the calculus MCQ-™"). Let & be an unclosed path in a sequent
tree constructed for the sequent | T_A in the calculus MC%™, and let S be the set of names of states
of the world in the specified formulas along the path . Then there exist GMS M' = (St, R, A, Imy),
M = (St, R, 4, Imp), and 8E"4 such that for all aES:

JPEH = ®' (8)=T;, . PEH. = &' (8)=T.
JPEH, = O (O)=F; DEH. = O (d)=F.

Here, ®', and @, denote Imy(®, o) and Im D, o), respectively.

Such GMS M" and M" are called T-conter-model and F-counter-model for | ' |A.

Let M be the union of all world model schemes of the sequents on the path &, then S is the set
of state names from M. Let H, be the set of all specified formulas of the state a on the path &
W.=nm(H)\unv(H,), W= U W, ,Hy= ({H.|aES}, M).

aEss
Such Hy, is called a model system (i.e. a set of model sets).
Equality predicates induce equivalence relations on the sets W.:
X~y & = Ex,  EyEH.

Let us denote (v).= {u | v~.u}. Now, we define (v)= {u | v~ u for some a€S}.

This definition is correct. It is based on the interpretation of the equality of basic data as an
identity: for the same data d, it is impossible for d(x)| =d(y)| on one state and d(x)| =d(y)| on
another state.

We denote 4, = {(v) | vVEW.]. Then A= U A4, ={(v) | vEW}.
acss

Let us specify & = [v—(v) | vEW] and 8. = [v>(v) | vEW.].

For predicates-indicators and equality predicates in GMS M"' and M", we have:
— . ExE€ H, implies xEW, so Ex'.(8) =T and Ex"(8) = T, therefore Ex" (8) = F;
— 4Ex € H, implies x¢W, so Ex' () = F, therefore Ex'(8) = T, and Ex".(8) = F;
— 1=y EH. = (=,).(8) =T and (=,,)".(8) = T, therefore (=,,)" .(8) = F;
— =y EH. = (=,,)".(8) = F, therefore (=,,)".(8) = T, and (=,,)".(8) =F.



Let us specify the values of the predicates represented by predicate symbols and their negations

and by primitive Un-formulas and their negations on 8 in GMS M" and M':
— pEH. = p'(d)=Tand p" ()= F
— pEH, = p' ()= Tand p'(8)=F;

4-pEH. = -p'(8)=Tand -p" (8) = F

— ~pEH. = -p' (8)= Tand -p'(d)=F;

- a‘_sz(p)EH g P (rx l(ﬁ)) T and P (rx l(é)) = F,

VK(P)EH g p (rf l(é)) =T and p (rx J_(a)) F;

_‘Rv 1 "(PEH, = _'p (rz l(é)) T and _‘p (r? J_(é)) = F,

VZ(p)EH = _'p (r?c l(é)) =T and _‘p (rx J_(a)) F.

Next, we prove by induction on the formula structure.

Similarly, the theorems on counter-models for the calculi MCQ=T and MCQ=F can be
formulated.

Theorem 10 (on a counter-model for the calculus MC%). Let ¢ be an unclosed path in a sequent
tree constructed for the sequent |-I'-|A in the calculus MCQ=T, and let S be the set of names of
states of the world in the specified formulas along the path . Then there exist GMS
M = (81, R, 4, Im) and 8€"4 such that for all aES:

LPEH, = D,0)=T, . PEH. = ©(0)=T.
Such GMS M will be called a 7-counter-model for | I"|A

Theorem 11 (on a counter-model for the calculus MC%"). Let ¢ be an unclosed path in a sequent
tree constructed for the sequent | T A in the calculus MC9", and let S be the set of names of states of
the world in the specified formulas along the path @. Then there exist GMS M = (St, R, A, It) and
OEVA such that for all a€S:

LPEH, = D,0)=F;, PEH, = D (8)=F.
Such GMS M will be called an F-counter-model for | I'_A
Let us examine in detail the theorem on the counter-model for the calculus MC%/%,

Theorem 12 (on a counter-model for the calculus MC%™). Let » be an unclosed path in a
sequent tree constructed for the sequent | A in the calculus MC?, and let S be the set of names of
states of the world in the specified formulas along the path @. Then there exist GMS

= (St, R, A, It) and 0&€VA such that for all aES:

LPEH, = ©,0)=T;, PEH, = D (O)=F.

Such GMS M will be called an /R-conter-model for | I'|A

We specify & = [vi—>(v) | vEW] and 6. = [w—>(v) | vEW.] as described in Theorem 9.

For predicates-indicators and equality predicates in GMS M, we have:

—..Ex € H, implies xEW, therefore Ex.(0) = T;
— —Ex € H, implies x&W, therefore Ex.(d) = F;
= =y €H, = (Evy)(a) =T,
— —Fxy €H, = (Evy)(a) =F.
Let us specify the values of the predicates represented by predicate symbols and primitive Un-
formulas on d in GMS M:
—PEH. = p.(O)=T;
- pEH. = p(d)=F;
- - RI(PEH, = p (71 (8)=T;
- RI(PEH, = p (7 (D) =F.
Next, we prove by induction on the formula structure.
From the theorems on constructing counter-models, we obtain the completeness theorems.

Theorem 13 (completeness of MC%™). Let T'|=zA; then the sequent | T A is derivable in the



calculus MC2.

Let us assume the opposite: suppose I'|=r A, i.e. I' /= A holds for every consistent GMS M, but
the sequent 2= T"_A is not derivable. Then there exists an unclosed path in the tree for =. By
Theorem 12, there exist GMS M = (S, R, 4,Jm) and d8€'4: ,®EH, = ®(8)=T and . PEH,
= @ ,(0)=F. In particular, this holds for the formulas of the sequent I JA. Therefore, ®,(8)=1T for
all @I and ¥,(8)=F for all ¥'€A. This contradicts T yj=z A, hence T'|#zA. We have reached a
contradiction. Thus, the assumption that [ I'A is not derivable is incorrect, which proves the
theorem.

Theorem 14 (completeness of MC?™"). Let I'|=zzA; then the sequent I A is derivable in the
calculus MC2™.

Let us assume the opposite: suppose I'|=7r A, i.e. I" y/=rr A holds for every consistent GMS M, but
the sequent 2= T"_A is not derivable. Then there exists an unclosed path in the tree for X. By
Theorem 9, there exist M' = (St, R, A, Im7), M" = (St, R, 4, Im), and 8E"4 such that:

JPEH, = &' (8)=T; . PEH. = ' (8)=T;
JPEH, = O (O)=F; DEH. = O (d)=F.

For a T-counter-model, according to | T ;A C H, for all ®€T we have @' (8)="T, and for all ¥/€A
we have lI’Tﬁ(E)) = T. This contradicts I y/=7 A, therefore, I |[=7r A.

For an F-counter-model, according to | _I' /A € H, for all ®-€I" we have <I>T(,(6) = F, and for all ¥'€A
we have W' (8)=F. This contradicts ' y=r A, therefore, T |=7A.

Thus, the assumption that |-I'—|A is not derivable is incorrect, which proves the theorem.

The completeness theorem for the calculi MC?%" and MC?" can be proved in the similar manner.

6. Conclusion

The work investigates program-oriented logical formalisms of the modal type — pure first-order
modal logics of partial non-monotonic quasiary predicates. Variants of such logics with strong
equality predicates and weak equality predicates are proposed. The semantic models and languages
of these logics are described, with a focus on properties related to equality predicates, specifically
the characteristics of the substitution of equals. A number of logical consequence relations for sets
of formulas specified with states are defined, and their main properties are outlined. Based on this
semantic foundation, the corresponding sequent type calculi for the studied logics are proposed.
The varieties of these calculi for different logical consequence relations are described, along with
the basic sequent forms and the conditions for the closedness of sequents. The construction of
derivations (sequent trees) in the proposed calculi is explained, and the soundness and completeness
theorems for the calculi are proved.
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