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Abstract		
Performance is one of the main non-functional requirements for software. As a result of the increase in the 
number of cores in central processing units in recent decades [1], the use of multithreading technology has 
become a primary means of improving software performance. This study analyzes the problems that arise 
from developing multithreaded programs and ways to address them. A method for managing the execution 
of tasks in a multithreaded program based on a given dependency graph is proposed and its 
implementation in the C++ language is demonstrated. Its aim is to reduce the resource intensity of 
software development and increase its reliability by addressing problems typical of developing 
multithreaded programs. The results of experimental research on a test set of tasks are provided, 
demonstrating increased performance through the use of the proposed method.  
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1. Introduction	

The primary goal of using a multithreaded approach during software development is to improve the 
per formance indicators of the program code. However, another equally important aspect of 
multithreaded development is maintaining software reliability.  

Using multithreading and synchronization tools can lead to a number of errors: Data race, Race 
Condition, Deadlock, Livelock, and Starvation [2]. The presence of these problems in the code 
during program execution can lead to various consequences, from crashes to unpredictable or 
incorrect pro gram behavior. Approaches to solving multithreaded issues can vary significantly 
depending on the programming language, framework, development tools, etc. However, all of them 
have certain draw backs in their application, as they can negatively impact both the resource 
intensity of the development process and the performance of the developed program code. These 
approaches can be fundamentally divided into two types: those that prevent the occurrence of 
errors and those that allow the engineer to detect errors when they occur.  

2. Overview of existing solutions 

2.1. Data race 

A Data race occurs when two threads simultaneously access the same memory area, with at least 
one of them performing a write operation [2]. A classical mechanism to prevent Data race in 
multithreaded code is the use of synchronization. By synchronizing data access, it is possible to 
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ensure that a specific memory area can only be modified by one thread at a time or that it will not 
be modified during its reading by a thread. Synchronization tools are an integral part of modern 
programming languages and continue to evolve, expanding developers’ capabilities in managing 
multithreaded programs and their resources, such as the C++ Concurrency Library [3].  

However, the use of synchronization primitives has its drawbacks, the main one being a 
reduction in program code performance. Besides the fact that the application of a primitive, such as 
acquiring a mutex by a thread, takes additional time to execute, a significant amount of time can be 
lost by threads waiting for a resource protected by a synchronization primitive to be released. 

To improve the performance of program code, developers increasingly use approaches to 
software development without blocking synchronization primitives [4]. However, this significantly 
increases the risk of Data race problems. Various tools are used to detect this problem directly 
during code execution, such as the Data Race Detector in the Go programming language [5] or by 
statically analyzing the written program code [6]. Recently, there have been developments related 
to using artificial intelligence to detect Data races in program code [7]. 

However, using such tools to detect Data races also has drawbacks, as it requires the 
introduction of additional tools in the software development and testing process, increasing the 
overall resource intensity of development. Furthermore, after detecting an error, it must be 
processed and corrected by the developer, and the program tool must be rechecked for new errors. 

2.2. Race condition 

Unlike Data race, Race condition is a much more challenging problem to detect because its nature is 
not technical but semantic. The definition of the term Race condition has long been a subject of 
discussion, but currently, it can be formalized as a problem arising from the order of operations 
execution in threads affecting the program’s result [8]. 

Similar to the Data race error, there are certain tools to detect Race condition that warn the 
developer of the potential occurrence of this problem through static code analysis [9] or by 
identifying dangerous patterns during code execution [10]. However, the accuracy of such detection 
is often unsatisfactory. These methods are also prone to false positives, requiring the developer to 
spend additional time and resources verifying the tool’s data. 

There are no formalized methods and tools to avoid Race condition in the general case. Reducing 
the number of such errors or avoiding them can only be achieved by using certain methods and 
architectural approaches to multithreaded software development [11]. 

2.3. Deadlock 

Deadlock is a state in a multithreaded program where two or more threads cannot continue their 
execution due to mutual blocking. The classic strategy to avoid Deadlock is a method where a 
thread acquires all the resources it needs exclusively at the beginning of its execution [12]. This 
prevents the formation of cyclical dependencies between two threads. The thread either executes or 
waits until all the resources it needs are released. However, this approach negatively impacts 
performance, as, in the general case, the thread does not need all the resources at each moment of 
execution, and thus, they could be used by other threads.  

There are many different methods and algorithms for detecting Deadlock. For example, by using 
timers, it is possible to control the execution time of certain critical sections of code in threads and, 
if this execution time exceeds a certain threshold, notify the developer of a potential Deadlock [12]. 
It is also worth noting that there are Deadlock recovery strategies [13], which are extremely 
important for systems with increased reliability requirements. However, it is evident that recovery 
strategies negatively affect software performance. 

 



2.4. Starvation 

Starvation is a state in a multithreaded program where one of the threads cannot perform a task due 
to the inability to access the necessary resources. This state can arise due to design errors in 
multithreaded programs when resources protected by synchronization primitives are used by 
threads for a long time. As a result, other threads spend significant time waiting for the necessary 
resource to be released. To avoid Starvation, prioritization algorithms [14] or task scheduling [15] 
are usually used, guaran teeing that the task will be performed at a certain moment and allowing 
tasks to be distributed in such a way as to minimize time spent waiting for resources to be freed. 

Various software tools can be used to detect Starvation, examining metrics about the execution 
time of individual functions in threads and allowing the developer to identify and fix problematic 
sections of the program code [16]. Such tools are often integrated into software testing automation 
processes to constantly monitor the program code state and notify developers of anomalies or 
performance issues.  

In the result of the analysis of existing problems of multithreading and possible solutions, it can 
be stated that solving these problems significantly increases the resource intensity of multithreaded 
software development. Additionally, some of the existing solutions negatively affect the 
performance of the software, which puts the developer in a difficult position of choosing between 
performance and reliability of the software product. 

Therefore, the problem of reducing the resource intensity of multithreaded software 
development without compromising its reliability and performance requires further research. 

 
 

3. Method for managing the execution of tasks in a multithreaded 
program based on a given dependency graph 

3.1. General description of the method 

The main idea of the method for managing the execution of tasks in a multithreaded program 
based on a dependency graph is to define the process of executing tasks, which the computations 
are divided into, as a dependency graph where each vertex corresponds to a specific task, and the 
graph edges denote dependencies between these tasks. Tasks can be executed in parallel in threads, 
considering the constraints imposed by the dependencies between them.  

The method for managing the execution of tasks in a multithreaded program based on a 
dependency graph allows describing the execution process of multithreaded program code in a clear 
and well structured form and avoids or detects problems arising from the use of task execution 
synchronization. 

3.2. Formalized description of the method 

Suppose that for successful program execution, it must complete K tasks that can be described by 
the set A = {A0, …, AK-1}. If the program’s result depends on the order of execution of tasks Ai and 
Aj, and only one of the possible results is correct, it means the tasks are in a semantic dependency. 
Let Y be a directed acyclic graph with vertices G = {G0, …, GK-1} and arcs U.  Each task Aj from 
the set A corresponds to the vertex Gj of the graph Y. If there is a semantic dependency between 
tasks Ai and Aj, or if tasks Ai and Aj use a shared resource during their execution, then there is a 
connection between the corresponding vertices Gi and Gj in the graph, and the arc (Gi, Gj) is 
assigned to it in the graph. In this way, the set of arcs is created: 

	 (1)	
Tasks can be dynamically loaded during program execution, creating new vertices and arcs in 

the graph, and deleted upon successful completion. Thus, each task has a representation in the 
dependency graph from creation to completion. Since the start of the task, the correspondent vertex 



is not available for creating a new arc. When a new task is created, the added arcs should not form a 
cycle in a graph. If all the added arcs are directed to the new vertex (Gi, Gx) then the new graph will 
be acyclic. Indeed, if no path can be built through the new vertex then a new cycle cannot be built 
in the graph.  Similarly, if all added arcs are directed from the new vertex (Gx, Gj) then the new 
graph will be acyclic. However, if among added arcs are both cases, to and from the new vertex, 
then the following condition should be checked. For each pair of added arcs (Gi, Gx) and (Gx, Gj), a 
path from Gj to Gi should not be found in graph U: 

	 (2)	
where P is a path in graph Y,  is an existing directed connection between vertices in graph. 

Indeed, if the path exists, then the following cycle would be found in a new graph: 

	 (3)	
Task Ax can be executed in the program if and only if there is no arc (Gi, Gx) in the dependency 

graph. If task Ax is executed, it is deleted from the graph along with the arcs (Gx, Gj): 

	 (4)	
Program execution is considered successful when the set of vertices in the dependency graph Y 

is empty at the end of the program, meaning that all tasks loaded for execution have been 
completed: . 

 
3.3. Method based software 

The basis for implementing the method of task execution management in a multithreaded 
program based on a dependency graph is the implementation of the GraphManager class (Figure 1), 
which will be responsible for the order of task execution. Accordingly, this class must control the 
list of available tasks, select tasks that can be executed, and update the existing dependencies after 
their execution. To represent a task as a vertex in the dependency graph, it is necessary to create a 
GraphNode class, which will contain information about the task to be executed and a list of tasks it 
depends on and tasks that depend on it. Dependencies between tasks are established by the 
developer after the corresponding GraphNode class objects have been added to the GraphManager. 
During the implementation of the method, the developer must represent the types of tasks available 
in the program as separate SomeConcreteJob classes, which are descendants of the abstract 
AbstractJob class. 



 
Figure 1:	UML diagram of method implementation.	

 
 
3.4. Resolving concurrency issues using a method 

To avoid the Race condition problem, developers need only specify dependencies between tasks, 
ensuring the correct sequencing necessary for program output integrity. This method guarantees 
that tasks with established dependencies will execute in the specified order relative to each other. 

To address Data race issues and improve performance by reducing the need for synchronization 
primitives to protect specific objects, developers can establish dependencies among tasks requiring 
exclusive access to certain resources while allowing parallel execution of tasks that do not modify 
shared resources.  

While the proposed method does not eliminate Deadlock and Livelock issues entirely, it 
simplifies implementing mechanisms to detect these issues prior to executing the dependency 
graph. Dependency graph edges can denote not only semantic dependencies between tasks but also 
dependencies between tasks requiring exclusive access to shared resources. Deadlock problems 
arise when synchronized resources are mutually dependent between two threads. With this method, 
detecting potential Deadlocks reduces to finding cycles in the graph, a problem for which many 
algorithms exist [17]. Since cycle detection need not occur before every program execution but only 
after changes to the dependency graph, applying a depth-first search-based cycle detection 
algorithm suffices for this method. 

Similarly, this approach applies to Livelock issues. Absence of cycles in the graph and 
construction of dependencies among tasks needing exclusive access to shared resources prevent 
such issues during program execution. The proposed method does not entirely prevent Starvation 
problems. However, it minimizes them and facilitates implementing runtime monitoring 
mechanisms without relying on external control mechanisms. Task execution management based 
on the dependency graph allows developers to configure the graph so that no task waits for the 
release of a specific shared resource after starting its execution. Instead, such a task simply will not 



start until the resource becomes available, adhering to task dependencies. Consequently, system 
resources can be directed toward executing tasks currently without dependencies or those whose 
dependencies have already been fulfilled. 

Nevertheless, this method does not prevent scenarios where a task depends on many other tasks, 
thereby preventing them from executing until it completes successfully. Detecting such issues 
involves implementing mechanisms to monitor the graph’s state, recording execution times, waiting 
times, and other relevant data for each task. With this information, developers can modify the code 
to address problematic areas and improve the performance of the software tool. 

4. Experimental investigation of the efficiency of task execution 
management method in a multithreaded program based on a specified 
dependency graph 

4.1. Description of the test software 

To evaluate the effectiveness of the proposed method, a program was developed in C++ that, 
using the Strategy design pattern, allows executing the same set of tasks either through a 
conventional implementation of a multithreaded program or based on a dependency graph. Thread 
management utilizes the Thread Pool design pattern (Figure 2). 

To enable configuration of which approach to use for task execution, the IJobManager interface 
(Figure 3) was created. This interface encapsulates the mechanism through which the Thread Pool 
selects the next task for execution. 

 
Figure 2:	ThreadPool template implementation.	

 



 
Figure 3: Class IjobManager. 

 
The IJobManager interface is implemented in the DefaultJobManager class (Figure 4) and the 

GraphJob Manager class (Figure 5). The DefaultJobManager class is implemented using a traditional 
queue based on the "first in, first out" (FIFO) principle. Accordingly, it reflects the classic scenario of 
writing a multithreaded program where synchronization responsibility lies entirely on 
synchronization primitives. 

 
Figure 4:	Class DefaultJobManager.	

 



 
Figure 5:	Class GraphJobManager. 

 
The GraphJobManager, in turn, is implemented using the proposed method. Within the class, 

there is a data structure called m_graphMap, which associates each task with a corresponding node 
in the graph, described using the GraphNode class (Figure 6). 



 
Figure 6:	Class GraphNode.	

 
Each instance of the GraphNode class internally stores the number of unresolved dependencies 

for its corresponding task, or in other words, the number of edges entering this vertex in the graph. 
Additionally, each instance holds pointers to other instances of the GraphNode class, effectively 
describing edges leaving this vertex in the graph. When all dependencies for a graph vertex are 
satisfied, it is moved to the execution queue in the GraphJobManager class. The GraphJobManager 
class also includes the AddJobDependency function, which allows specifying dependencies between 
tasks, effectively creating a new edge in the dependency graph. 

 

4.2. Description of the test data and testing scenarios 

To test the Thread Pool, a pool of 4 threads was configured. The test set of tasks consists of 4 
groups of 100 tasks each, which can be represented as sets А ={A0, …, A99}, B = {B0, …, B99}, C 
= {C0, …,C99}, D = {D0, …, D99}. Within each group, simulating real-world conditions for a 
multithreaded task, it is assumed that there is a specific resource for which each task obtains 
exclusive access using a mutex during its execution. After obtaining access, the task waits for 10 ms, 
simulating computation using the Busy wait approach [18], and successfully completes its 
execution. The use of Busy wait specifically avoids the impact of thread optimization mechanisms 
implemented in the operating system on the obtained result.  

To obtain more accurate results for comparison, the test set of tasks is executed 100 times for 
each implementation. The following metrics are collected: fastest execution time, slowest execution 
time, and average execution time.  

To measure the execution time of the program for computing the specified set of tasks using the 
dependency graph constructed based on the proposed method, the GraphJobManager will be used 
instead of the DefaultJobManager. When tasks are added in GraphJobManager, a graph node 



described by the GraphNode class is created for each task. Then, using the AddJobDependency 
function, dependencies between tasks are established, effectively adding edges in the dependency 
graph. In this case, the dependency object is the resource allocated for each group of tasks. Thus, 
using the AddJobDependency function, dependencies between tasks will be created as follows: each 
task Ai depends on the execution of task Ai-1, Bi depends on Bi-1, Ci depends on Ci-1, and Di 
depends on Di-1 where i ∈ [1, 99].  

It is worth noting that since the classical approach to executing multithreaded tasks is 
implemented using a queue, the total task execution time depends on their order in this queue. 
Accordingly, three testing scenarios were developed for the classical approach: best case, worst 
case, and realistic. 

The best-case scenario considers tasks in the queue arranged such that the time spent waiting 
for access to resources by tasks is minimized. This scenario corresponds to arranging tasks in the 
queue where each belongs to a different group and requires a different resource for execution. Thus, 
the sequence of tasks in the queue will look like: {A0, B0, C0, D0, ..., A99, B99, C99, D99}. 

The worst-case scenario considers tasks in the queue arranged such that the time spent waiting 
for access to resources by tasks is maximized. This scenario corresponds to arranging tasks in the 
queue where groups of tasks are sequentially placed in the queue. Thus, the sequence of tasks in the 
queue will look like: {A0, ..., A99, B0, ..., B99, C0, ..., C99, D0, ..., D99}. The realistic scenario considers 
tasks randomly placed in the queue, simulating conditions closer to those that may occur during 
real program execution. 

Testing results 

The experimental results represented in Table 1 demonstrate that compared to the realistic and 
worst case execution scenarios, the proposed method showed significantly higher performance. 
This result was achieved because a proposed method allows developers to specify the task execution 
order by introducing dependencies between them, thereby reducing the impact of synchronization 
mechanisms on the overall program execution time. 

Table 1 
Results of experimental performance evaluation of task execution under various processing 
scenarios 

Task execution 
scenario 

Execution time, ms 
Fastest Slowest Average 

Best case 1003.42  1008.47  1004.67 
Worst case 3915.63 3919.09  3917.58 
Realistic 1453.54  1643.43 1542.71 

Dependency graph 1009.00 1013.64 1010.74 
 
The experimental results of the best-case, realistic-case, and the case of dependency graph 

scenarios are represented in detail in Figure 7. The performance evaluation was done on 100 
executions of the program. 

In the best-case execution scenario, the results show minimal performance difference in favor of 
the classical approach. This can be easily explained by the fact that in this case, the task execution 
order is identical in both approaches, but the proposed method incurs additional time for graph 
construction and update. However, considering that such a scenario may rarely occur in real-world 
conditions.  

Therefore, according to the results of the experimental study, it has been proven that the 
proposed method allows to increase the performance of the test program on average by 
approximately 35%, compared to the classical approach:  (1542.71 − 1010.74) / 1542.71 ·100% = 
34.48%. 



 
Figure 7:	Experimental performance evaluation of task execution. 

 
 

5. Conclusion 

An analysis of the challenges arising during the development of multithreaded programs was 
con ducted. For each issue, current methods of resolution were discussed, outlining their advantages 
and disadvantages.  

A method for managing task execution in a multithreaded program based on a specified 
dependency graph was proposed. The general idea, formal description, and programmatic details of 
the method were provided, along with how this method addresses the identified issues and the 
advantages it provides to developers compared to existing methods.  

A C++ program and a suite of tasks were developed to measure the performance of the proposed 
method against the classical approach of executing tasks in threads. After analyzing the obtained 
results, it was concluded that the proposed method improves the performance of the test program 
on average by 35% compared to the classical approach.  

Future plans include further development of the method’s use for developing multithreaded 
programs based on dependency graphs, aiming to create a comprehensive development 
environment for such programs. 
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