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Abstract		
Architectural design is pivotal in software development, shaping system functionality and behaviour. This 
study consolidates experiences with architectural design metrics to enhance software development 
processes and products. Metrics, while not definitive of quality, highlight potential issues and areas for 
improvement. Essential properties of effective metrics include simplicity, empirical credibility, consistency, 
uniform dimensionality, language independence, and actionable feedback. A systematic mapping study 
analysed publications on software architectural design metrics, focusing on quality models and 
metamodels. The study identified vital metrics such as coupling, cohesion, complexity, and modularity and 
explored their applications in various contexts, including microservices and security. Results indicate a 
lack of substantial experience in applying these metrics. The metrics taxonomy includes structural 
integrity, adaptability, complexity, maintainability, and traceability, providing a comprehensive framework 
for evaluating software architecture. The study emphasises the need for further research to develop 
predictive models using architectural metrics, which could improve software quality by proactively 
addressing architectural issues. Future efforts should delve into data accumulation and investigate models 
for using these metrics for predictive purposes, ultimately enhancing software quality and development 
processes.  
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1. Introduction	

Architectural design is a cornerstone of software development, as it shapes the entire system and 
influences its functionality and behaviour. It involves creating a high-level abstraction of system 
topology, functionality, and behaviour, which serves as the basis for detailed design and 
implementation. While various interpretations of software architecture exist, they all centre on 
components, modules, and their interconnections. 

Guided by established design patterns, best practices, and stakeholder considerations, 
architectural design should prioritise adherence to proven methodologies. This process often entails 
navigating trade-offs to reconcile conflicting objectives. A meticulously planned design is 
indispensable throughout the system's creation and evolution, especially when accommodating 
changes and adaptations. 

Quality architecture serves as the foundation for ongoing software development endeavours. It's 
reasonable to infer that the attributes of an architectural design shape the qualities of individual 
development artefacts and the software as a whole. If we could quantitatively describe these 
dependencies and influences, we could anticipate the characteristics of these artefacts and the entire 
software system. 

Datasets commonly employed in empirical software engineering research, such as NASA's 
repositories, predominantly encompass code characteristics and defects metrics. Hence, it's 
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pertinent to investigate the utilisation and purposes of metrics describing architectural design in 
published studies. 

The metrics themselves do not determine the quality of architecture as good or bad. However, 
they serve as valuable aids for architects, highlighting potential problematic elements and areas for 
improvement in their designs. A software architecture analysis tool computes various metrics, 
adhering to specific guidelines for software metrics. These metrics must possess the following 
properties: 

• Simplicity and computability: metrics should be straightforward to understand and apply. 
• Empirical credibility: metrics should align with engineers' expectations and practical 

experiences. 
• Consistency and objectivity: metrics should yield unambiguous results. 
• Uniform dimensionality: metrics should maintain mathematical coherence. 
• Language independence: metrics should be applicable across different programming 

languages. 
• Facilitation of feedback: metrics should offer actionable insights to enhance software quality 

and performance. 

The primary objective of this paper is to consolidate the existing experiences in employing 
architectural design metrics. Additionally, we aim to identify promising areas for their application, 
aiming to enhance both the software development process and the resultant product. 

The rest of the paper is structured as follows. First, in section 2, we explain our study design and 
methodology. Next, section 3 presents architectural metrics and their properties identified during 
our review. In section 4, we propose the taxonomy of architectural metrics. Section 5 discusses two 
ways to use metrics to enhance software development. Finally, we close the study by summarising 
the conclusions in section 6. 

2. Research Method 

We undertook a systematic mapping study to analyse existing publications about using software 
architectural design metrics. This study is a valuable tool for examining the evolution of research in 
this domain over time. Below, we outline the methodology employed in conducting this research. 

The primary objective of this research is to systemise metrics that characterise the architecture 
design and methods of its application in software engineering processes, with a focus on quality 
models and metamodels. Towards that goal, we explored the space of software design metrics and 
their support for software engineering processes. This study aims to provide an overview of the 
state-of-the-art research on software architecture evaluation, focusing on metrics defined for 
architectural diagrams. The research questions are: 

RQ1. What are the metrics that are applied to architectural design? This question is crucial as it 
forms the basis of our understanding of how architecture design is measured and evaluated. 

RQ2. What are the purposes for which they are applied? 
A search process has been developed to answer these questions. The overall selection process is 

depicted in Figure 1. 
We searched four reference databases for architecture design metrics papers: IEEE Xplore, ACM 

Digital Library, ScienceDirect, and Elsevier. The primary keywords were "software architecture 
design" and "metrics."  

The search encompassed the title, abstract, and keywords fields, and the formulated search string 
was:  

("software architecture design") AND (("metrics" OR "measuring")). 
This string was encoded according to the syntax format of each respective database.  



The search was initially confined to papers published until 2018. However, this time limit was 
subsequently removed due to the limited number of results obtained. 

 
 

  
Figure 1:	Selection process.		

 
We used inclusion and exclusion criteria to review and select the papers. 
The inclusion criteria are: 

• Articles written in English language. 
• Published in Journals or Conference Proceedings. 
• The paper's topic is related to software architecture design and measurements. 
• Content: the complete text must be available. 

The exclusion criteria are: 
• Duplicates. 
• Articles written as systematic mapping studies. 
• Metrics are for a specific quality characteristic such as security. 

The domain of the paper is non-software, such as hardware infrastructure architecture. 
As illustrated in Figure 1, the search on the databases utilising the specified search string yielded 

97 papers. These papers underwent filtration in two phases based on predefined selection criteria: 
Phase 1: Elimination of duplicates and review papers. 
Phase 2: Comprehensive reading of the full-text papers. 
Phase 2 has filtered out, for example, the works on the similarity metrics, detailed design and 

program code metrics, dependencies between code properties and architecture smell, and 
architecture knowledge base. 

Following the selection procedure, only 19 primary papers were retrieved for the systematic 
mapping study, representing merely 19.6% of the initial dataset. This limited number underscores 
the apparent lack of substantial experience in successfully applying such metrics. Figure 2 illustrates 
the trend in publication over the designated period. 

  



  
Figure 2:	Paper Distribution per Year.		

 
 

3. Mapping Results 

In this section, we describe the results of our review.  
The first metric of interest is the cost associated with the evolution of architectural projects [1]. 

In software architectures, evolution involves a series of changes to components and connectors. To 
quantify the evolution of software architectures, authors proposed metrics based on rewriting 
operations applied to components and connectors: addition, removal, and modification. The authors 
defined the cost of a set of changes as the weighted sum of the costs of each operation. The metric is 
quite complicated; its application is very specific. 

In the same year, the work [2] described a bunch of architectural metrics in particular: 
Coupling counts the number of distinct components that a service interacts with.  
Cohesion assesses internal consistency by counting the use cases involving a service being called 

by or calling another service within a specific component.  
Complexity of Services calculates each component service's mean number of state transitions. 
Number of Services per Component enumerates a particular component's services. 
Fanin measures how often a component's services are invoked across all scenarios. 
Fanout counts the external service calls a specific component makes in all scenarios. 
Depth of Scenario assesses the nesting level of service calls within a scenario.  
This study is interesting because most of the metrics listed have been used in many later studies. 

We also see an attempt to link to the previous development phase—requirements analysis. It's 
crucial to understand that the Depth of Scenario metric primarily sheds light on the complexity of 
the use case scenarios depicting the architecture rather than the inherent complexity of the 
architecture itself. 

Let's focus on Cohesion metrics, which have remained in demand over the years. For instance, a 
study [3] proposed defining cohesion based on factors such as the number of requirements 
associated with a software component, the number of functions per software component, and the 
average interaction among functions within components. Another study [4] introduced the Lack of 
Cohesion Metric, which gauges the coherence or, in simpler terms, the resemblance among 
operations within specific services and their interrelatedness. Furthermore, the paper [5] 
empirically investigated the practical viability of service level cohesion metrics within an open-
source Microservices Architecture application context. 

Sethi et al. [6] introduced a collection of metrics focused on design stability and modularity, 
which uniquely incorporates considerations of environmental factors and the evaluation of 
alternatives. Specifically, they developed the Decision Volatility metric to evaluate the stability of 
decisions based on the number of environmental conditions affecting them and the breadth of their 
impact. For modularity, they presented the Independence Level metric, aimed at measuring a 



design's capacity to facilitate independent searching and replacement at the module level, 
essentially assessing its capability to produce option values. 

A study [7] introduced a comprehensive metric named Component Balance (CB). CB is a 
composite metric derived from two distinct measures: System Breakdown, which evaluates the 
degree to which a system is decomposed into a sensible number of components, and Component 
Size Uniformity, which assesses the consistency of component sizes within the system. In a 
subsequent study by the authors [8], they examined two architecture-level metrics: Component 
Balance and Dependency Profiles. The analysis focused on understanding the practical challenges of 
implementing these metrics within an industrial context. 

In work by Perez-Palacin et al. [9], a dedicated metric was introduced to comprehensively assess 
the system's size and the effort required to manage its overall architecture. The Absolute Software 
Units Index (ASUI) quantifies the total number of software units utilised within the system. 

The investigation outlined in [10] focused on the interaction aspects of architectural design, 
distinguishing between two types of interactions. In-interactions denote the edges incoming to a 
component originating from other components, while Out-interactions refer to edges outgoing from 
one component to other components. Two metrics were introduced based on these interaction 
characteristics. The Interaction Ratio of a component is calculated by dividing the total number of 
Out-interactions by the total number of In-interactions associated with that component. 
Additionally, the Percentage of Interaction between Components is determined as the ratio of the 
sum of In-interactions and Out-interactions to the maximum potential interactions among the 
components. 

Unlike prior research, the study [11] advocates for employing fundamental metrics: the Number 
of Components, the Number of Connectors (regardless of their directionality), and the Number of 
Elements (totalling the components and connectors). The authors named these metrics 
understandability ones, offering a straightforward approach to evaluating system 
comprehensibility. 

The research [12] assembled and structured a preliminary compilation of architectural metrics 
according to viewpoints and domains. Nevertheless, the study concluded that evaluating the overall 
usefulness of architectural metrics remains an open research question. 

Fascinating is the study [13], which focused on quantifying architectural decay. In the work, the 
authors relied on three existing metrics based on component interdependencies. These are the Ratio 
of Cohesive Interactions, Instability and Modularization Quality. The authors also defined three 
additional new metrics that explicitly detect architectural smells. These are Bidirectional 
Component Coupling, Architectural Smell Density, and Architectural Smell Coverage. The set of 
metrics should provide a set of predictive models that help engineers predict bugs by using both 
implicit and explicit system features. 

In the work [14], the authors undertook a comprehensive evaluation of architecture by 
categorising established metrics into a hierarchical structure and introducing novel aggregated 
metrics. These new metrics encompassed Structural Quality, which comprised Architecture Size and 
Architecture Links, and System Characteristics, which encompassed Domain Characteristics and 
Agility. The study's findings enabled insights into the efficacy of the proposed metrics during the 
architecture design phase for software systems. 

The study in [15] delved into two metrics concerning the traceability connections between 
requirements and architectural design. Traced Requirements per Component quantifies the number 
of requirements linked to a particular component, while Traced Components per Requirement 
assesses the number of components linked to a requirement. The intricate dependencies observed 
between requirements and architectural components could potentially serve as indicators of 
software defects. 

The study outlined in [16] presents several architecture-level metrics to assess architecture 
quality. One such metric is the Decoupling Level, designed to gauge the degree to which a software 



system is divided into small, autonomous modules. The Propagation Cost metric was also 
introduced to evaluate the extent of tight coupling within the system. The study also employed two 
established architecture-level metrics, Component Balance and Dependency Profiles. Their 
investigation into the effectiveness of these metrics revealed that the measurement outcomes 
aligned with practitioners' intuitions in understanding architecture and detecting architectural 
flaws. 

The study documented in [17] focused on developing metrics to assess the security level within 
an architectural model. The authors introduced three metrics specifically aimed at evaluating the 
vulnerability of entry points within composite components, drawing from the concept of "protected 
entry points" pattern. This research is notable for its shift towards examining a specific quality 
attribute within the architectural domain. 

The investigation in [18] examined particular metrics tailored for microservices architecture. 
Should the application's architecture fail to meet requirements during runtime, costly 
redevelopment efforts may become necessary. Establishing relationships between architectural 
metrics of microservices-based applications and runtime metrics makes it feasible to conduct design 
time evaluations. 

Nevertheless, it's worth noting that microservices architecture doesn't inherently demand 
specialised metrics. Recent research [19] indicates that the commonly used structural design 
property metrics—such as coupling, size, cohesion, and complexity—are suitable for evaluating a 
service-based architecture. 

4. Architectural Metrics Taxonomy  

Clustering the metrics used in architectural design creates a metrics taxonomy. Here is a 
description of this taxonomy. 

1. Structural Integrity Cluster focuses on the core structural aspects of the architecture, including 
how well the components are organised and interact with each other and how stable and balanced 
the system is. 

1.a. Cohesion group assesses the degree to which elements within a module or component are 
related and work together effectively. 

1.a.1. Architecture Relational Cohesion evaluates the degree to which components or modules 
within a software architecture are functionally related and work together cohesively. 

1.a.2. Cohesion defines how well the elements within a component relate to each other and 
perform a single, focused function. 

1.a.3. Lack of Cohesion Metric identifies components with elements that are poorly related to 
each other. 

1.a.4. Ratio of Cohesive Interactions is the ratio of interactions within a component compared to 
interactions with other components. 

1.b. Complexity group assesses the intricacy of the system's design and interactions, which can 
impact maintainability and comprehensibility. 

1.b.1. Bidirectional Component Coupling measures the number of dependencies between two 
components where each relies on the other. 

1.b.2. Coupling is the degree of interdependence between components. 
1.b.3. Decoupling Level defines the degree of independence between components. 
1.c. Dependency group analyses the relationships and dependencies among various components, 

which can influence system robustness and modularity. 
1.c.1. Dependency Profiles describe the types and patterns of dependencies between components. 
1.c.2. Fan-in defines the number of components that depend on a particular component. 
1.c.3. Fan-out defines the number of components that a particular component depends on. 



1.c.4. Propagation Cost estimates the effort required to propagate changes in one component to 
other affected components. 

1.d. Size and Uniformity group evaluates the size distribution and uniformity of components, 
which can affect the manageability and balance of the architecture. 

1.d.1. Component Balance determines whether the distribution of functionality across 
components is balanced or skewed.  

1.d.2. Component Size Uniformity defines consistency in the size of components measured in the 
number of methods, interface size, etc. 

1.d.3. Number of Components / Connectors / Operations defines the total number of respective 
elements in the architecture.  

1.d.4. Number of Services of Component defines the number of services a single component 
provides. 

1.e. Stability group evaluates how resistant the architecture is to changes and how well it 
maintains its integrity over time. 

1.e.1. Architecture Stability measures the resistance of the architecture to changes and 
disruptions. 

1.e.2. Instability measures the susceptibility of the architecture to failures and errors. 
2. Adaptability and Evolvability Cluster addresses the system's ability to adapt to changes and 

evolve over time, as well as the granularity of its components, which affects flexibility and 
scalability. 

2.a. Adaptability group measures the ease with which a system can be adapted to new 
requirements or environments. 

2.a.1. Absolute System Adaptability Index was designed to quantify the degree to which a 
software system can adapt to changes in requirements, environments, or technologies. 

2.a.2. Evolution Cost Metrics estimates the effort required to modify the architecture in the 
future. 

2.b. Volatility group measures the frequency and extent of changes within the system, indicating 
how dynamic and change-prone the architecture is. 

2.b.1. Design Volatility measures how often the architectural design needs to be changed due to 
internal or external factors. 

2.c. Granularity group assesses the level of detail and decomposition of services or components, 
which impacts flexibility and scalability. 

2.c.1. Service Granularity Metric evaluates the size and scope of services within a software 
architecture. 

2.c.2. System Breakdown measures the overall health and maintainability of the system 
architecture. 

3. Complexity and Maintainability Cluster examines the complexity of the system, which affects 
how maintainable and comprehensible the architecture is. It also identifies architectural smells that 
may indicate more profound issues. 

3.a. Complexity group assesses the intricacy of the system's design and interactions, which can 
impact maintainability and comprehensibility. 

3.a.1. Complexity of Services measures the complexity of the functionalities provided by services 
in the architecture. 

3.a.2. In-Out Interaction Complexity Metrics measure the complexity of interactions between a 
component and its external environment. 

3.a.3. Impact Scope defines how a change in one component affects other components. 
3.b. Architectural Smell group identifies issues or "smells" in the architecture that might indicate 

deeper problems or areas for improvement. 
3.b.1. Architectural Smell Coverage measures the percentage of design patterns identified as 

potential problems. 



3.b.2. Architectural Smell Density counts the number of potential problems found per design 
unit. 

4. The Traceability and Miscellaneous Quality Attributes Cluster includes metrics related to the 
traceability of requirements and components and other miscellaneous quality attributes that don't 
neatly fit into the other groups. 

4.a. Traceability group measures how well requirements and components can be traced through 
the system, impacting accountability and understandability. 

4.a.1. Traced Components per Requirement measures how many components are associated with 
a single requirement.  

4.a.2. Traced Requirements per Component measures how many requirements a single 
component is responsible for. 

4.b. Miscellaneous group encompasses various metrics that don't neatly fit into the other 
categories but still provide valuable insights into the architecture. 

4.b.1. Depth of Scenario defines the number of components involved in a specific user scenario. 
4.b.2. Independence Level is similar to the Decoupling Level and measures how self-contained 

components are. 
4.b.3. Modularization Quality measures how well the architecture is divided into independent, 

reusable modules.  
4.b.4. Protected Entry Points measure the number of well-defined access points for interacting 

with a component. 
Creating a taxonomy for architectural design metrics through clustering enhances our ability to 

evaluate and improve software architecture. We can systematically assess various aspects of 
architecture by organising metrics into clusters such as Structural Integrity, Adaptability and 
Evolvability, Complexity and Maintainability, and Traceability and Miscellaneous Quality 
Attributes. This structured approach enables more precise identification of architectural 
instabilities, development of predictive models, and proactive enhancement of software 
development processes. As a result, this leads to more stable, robust, and maintainable software 
systems. 

5. Architectural Metrics Application 

Integrating architectural metrics for fault prediction can improve software development 
processes by proactively addressing architectural issues and ensuring the software architecture's 
stability and robustness. 

A review of the literature reveals that research primarily focuses on reactive enhancements. 
Figure 3 illustrates a typical process.  

 



 
Figure 3: Reactive enhancement process. 

 
Initially, a comprehensive development cycle is executed, during which various measurements 

are collected. These metrics pertain predominantly to code properties, while design metrics play a 
supplementary role. The collected data serves as the foundation for identifying potential 
problematic areas within the architectural project. 

The process can be improved. By obtaining sufficient measurements of architectural metrics and 
utilising an effective model to predict quality characteristics based on these metrics, we can enhance 
the architectural design before its implementation in code. Figure 2 illustrates such a predictive 
process. 

 
Figure 4:	Predictive enhancement process. 

 
To establish a predictive process, several preparatory steps are required. 

1. Collect historical measurement data on architectural metrics. As mentioned above, 
architectural design metrics can be leveraged during the design phase to evaluate 



architecture quality. These metrics include Decoupling Level, Propagation Cost, 
Component Balance, and Dependency Profiles. Unfortunately, existing metric 
repositories contain limited data on these measurements. Additionally, categorising 
architectural metrics into a hierarchical structure (presented in section 4) and developing 
new aggregated metrics facilitate a thorough assessment of architecture, encompassing 
structural quality and overall system characteristics. 

2. Identify architectural instability. Utilising these metrics allows for detecting architectural 
instability growth as the system evolves. It also aids in identifying classes that contribute 
to architectural inconsistencies, thereby enhancing fault prediction capabilities. 

3. Utilise architectural metrics in predictive models. It is essential to develop predictive models 
that incorporate architectural design metrics. These models enable practitioners to 
anticipate potential faults and take preventative measures to improve software quality. 

4. Enhance software development processes. Integrating these metrics for fault prediction can 
significantly improve software development processes. By proactively addressing 
architectural issues, we can ensure the stability and robustness of the software 
architecture. 

Thus, while existing research primarily focuses on reactive enhancements, there is a clear 
opportunity to shift towards a more predictive approach. Practitioners can enhance architectural 
design before implementation by collecting comprehensive historical data on architectural metrics, 
identifying architectural instabilities, and developing predictive models. This proactive approach 
will ultimately lead to more stable and robust software systems. 

6. Discussion and Conclusion 

Studies have shown that software architecture design metrics can be valuable for designers. These 
metrics help designers evaluate two critical aspects of an architecture: its ability to generate different 
design options and its stability under various external conditions. 

We observed that the metrics strategy solutions were the most frequently used in identifying 
architectural decay. These metrics can determine the growth of architectural instability with system 
evolution, identify the probability of the classes contributing to architectural inconsistencies, and 
diagnose the anomalies, whether agglomerations or individuals are more correlated to architectural 
problems.  

We can also see that architectural design metrics can be used to measure quality attributes. 
While the introduction discussed the potential of architectural design metrics for fault prediction, 

no existing research directly addresses this. Existing studies focus on the relationship between metrics 
from different development stages. However, these studies analyse the "reverse" effect, where metrics 
from later stages (e.g., code characteristics) are used to identify architectural issues like design 
erosion or antipatterns. 

To summarise, the potential of using architectural design metrics is not fully utilised. Existing 
studies have shown that one set of relatively simple metrics can be successfully used for various 
architectural solutions. Therefore, there are no principal obstacles to using these metrics to predict 
the characteristics of artefacts of subsequent stages of development and software in general. 
Consequently, further research should be conducted to examine the accumulation of data and 
investigate models that can be used for prediction. 
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