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Abstract		
One of the primary challenges in cloud computing environments is the efficient utilization of resources. 
The growing demand for computational power requires the creation of algorithms that can not only 
optimally allocate the load among microservices but also maximize the use of server and channel 
capacities. This article discusses algorithms and chooses the most fitting ones that help achieve these 
goals. 
The idea of the article is to describe in details the algorithm of finding complementary microservices that, 
when combined, they form a common close to maximal load on a server group. This can be achieved by 
different techniques of division and combining the microservices having the channel load, processor load 
and memory usage statistics as input characteristics. The algorithm details are described in details and 
with examples in the article. In particular, Z-Scale, K-Means and FastDTW are well-known algorithms 
combined with the author ideas are used to receive final matches. 
One of the necessary aspects to consider is to correctly perform transition of the initial profiled 
microservice data to the realities of the cloud system. Yet, if something goes very wrong, there is a stage of 
regrouping using the cloud profiled data during which a better match will be found. 
Using the technique of finding compliments, load balancing is still needed with the difference that it will 
happen more rarely, and it will be predicted. 
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1. Introduction	

Efficient resource utilization is one of the key challenges in modern cloud computing environments. 
The increasing demand for computational resources necessitates the development of algorithms 
that can not only optimally distribute the load among microservices but also ensure full utilization 
of server and channel capacities.  

It is not only the cloud system that matters but also the style the software is developed. In the 
dynamic landscape of modern software development, microservices architecture has emerged as a 
pivotal approach, enabling scalable and maintainable systems. As microservices proliferate, 
optimizing their interactions becomes paramount. This paper explores various algorithms designed 
to determine the similarities and complementarities between microservices based on their 
operational methodologies and load amplitudes. By identifying the most effective algorithm, we aim 
to facilitate the grouping of complementary microservices, thereby enhancing system efficiency and 
resilience. Furthermore, we delve into the conceptual framework of complementing microservices, 
offering a detailed exposition of its principles and practical implications.  

Additionally, this study presents visual representations of different methods of microservice 
complementation. These images illustrate the comparative effectiveness of various algorithms in 
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identifying and grouping complementary microservices. By analyzing these visual aids, readers can 
gain a deeper understanding of the problem and better imagine the boundaries of different sets of 
microservice input data, providing a comprehensive overview of the potential strategies for 
optimizing microservice interactions.  
  
2. Idea of a Search for a Microservice Compliment 

Cloud providers are constantly seeking ways to optimize resource usage. Efficient resource usage 
not only reduces operational costs but also minimizes the carbon footprint, contributing to more 
sustainable development. The environmental impact of IT operations is becoming increasingly 
significant, with the energy consumption of AI technologies notably higher than that of traditional 
search engines. According to recent studies, the energy required for AI operations can be several 
times greater than for standard computational tasks [1]. Therefore, optimizing resource allocation 
and utilization in cloud systems is critical for both economic and environmental reasons. 

Ensuring the stable operation of all elements within a cloud system often involves updating 
servers once their warranty periods expire. Thus, maximizing the utilization of these servers is 
essential to fully leverage their resources. This paper proposes an overlook on algorithms and 
choice of the best one that designed to help cloud systems not only efficiently distribute workloads 
among microservices and orchestrate the initiation or cessation of additional services, but also to 
maximize server and bandwidth utilization. 

When applications run on servers, the servers are typically not fully loaded. The degree of 
loading depends on the application's purpose, the time of day, and the day of the week. Since 
loading is a predictable characteristic, this knowledge can be utilized to form server groups or 
allocate server and bandwidth capacities to host multiple microservices, which collectively 
approach full load capacity. 

Regarding microservice architecture, it is important to recognize that not all software products 
require this approach or the associated serverless architecture. Monolithic architecture may be more 
efficient, particularly for smaller applications or those with evenly distributed loads. In such cases, 
the monolithic application can be treated similarly to a large microservice without possibility to 
divide them, thus simplifying the problem to that described previously [2], [3]. 

Microservice architecture has gained immense popularity for large applications with distinct 
functionalities that are not always tightly coupled with other subsystems. Users of such 
applications, e.g. an online store, may spend considerable time browsing or making selections while 
spending less time on other actions like login and payment. Microservices enable the separation of 
these parts, allowing additional instances to be launched for only the components that require it 
during high load periods. This method already saves business owners' money, as starting an 
additional application and distributing the load between them (load balancing) is more efficient than 
supporting two or more instances all the time [4]. 

 
2.1.  General Load Distribution Algorithm 

The load distribution algorithm we propose aims to optimize resource utilization in cloud 
computing environments by effectively managing and distributing workloads. This algorithm is 
designed to predict load patterns, dynamically orchestrate microservices, and balance the load 
across servers to prevent bottlenecks and underutilization. The algorithm consists of the following 
stages: 

2.1.1. Load Prediction 

The first step involves analyzing historical data to forecast future load patterns. By identifying 
trends and peak usage times, the algorithm can anticipate high and low demand periods. This 



predictive capability allows the system to prepare for varying loads, ensuring that resources are 
allocated efficiently. 

 
2.1.2. Server Grouping 

The purpose of the server grouping is to strive for maximal utilization of server and channel 
capacities. The algorithm also focuses on maximizing the utilization of server and channel 
capacities. By combining multiple microprocessors on a single server, the system can achieve a 
balanced load distribution. Additionally, optimization techniques, such as data compression and 
efficient use of communication channels, are employed to ensure that channel resources are used to 
their full potential. 

Based on the predicted load of computing, channel, and RAM resources, the algorithm forms 
server groups or volumetric servers. These groups are designed to handle the anticipated load, 
maximizing resource utilization. By clustering servers according to expected demand, the system 
can create configurations that prevent overloading and underutilization, ensuring a balanced 
distribution of resources. This part is the one developed in the article further. The ideas and 
algorithms of how to make the serve grouping are discussed. 

 
2.1.3. Microservices Orchestration 

Dynamic management of microservices is crucial for responding to changing loads. The algorithm 
orchestrates the deployment and shutdown of microservices based on real-time demand. During 
peak periods, additional microservices are deployed to handle the increased load. The new instances 
can have the state of cold or hot load, meaning that they are prepared. This is possible with having 
predicted the time of load increase [5]. Conversely, during off-peak times, unnecessary 
microservices are deactivated to save resources. This dynamic approach ensures that the system 
remains responsive and efficient [6], [7]. 

 
2.1.4. Load Balancing 

To prevent any single server from becoming a bottleneck, the algorithm employs load balancing 
techniques, the same as on cloud systems or Kubernetes but for the groups. Requests are evenly 
distributed across servers, ensuring a smooth and efficient operation. Load balancing helps in 
maintaining system stability and performance by preventing overloading of individual servers and 
ensuring that all resources are utilized effectively [8], [9], [10]. 

 
2.1.5. Server Regrouping 

During runtime, the algorithm continuously monitors performance metrics to evaluate resource 
usage efficiency. If inefficiencies are detected, the algorithm initiates a server regrouping process. 
This involves reassigning resources and reorganizing server groups to better match current load 
conditions. By dynamically adjusting server group configurations, the system can improve resource 
utilization and maintain optimal performance. 

 
2.2.  Server Grouping Steps 

Typically, when applications run on a server, resources are not used to their full potential. This can 
be due to various factors such as the application’s specifications, time of day, or day of the week. 
For example, during working hours, servers may be more loaded than during nighttime or 
weekends. An important characteristic of the load is its predictability, which allows optimizing the 
distribution of resources. 

The key effective management and distribution of workloads, our proposed load distribution 
algorithm incorporates mechanisms to identify similar or complementing microservices. This 
capability enhances the system's efficiency by ensuring that microservices are grouped and 
orchestrated in a manner that maximizes their synergistic potential. Below the key stages of this 
process are depicted. 



 
2.2.1. Microservice Profiling 

The first step in identifying similar or complementing microservices is to profile each 
microservice within the system. Profiling involves collecting detailed metadata about each 
microservice, including its computational requirements, typical load patterns, resource 
consumption, and functional dependencies. This metadata provides a comprehensive view of how 
each microservice operates. Based on this information conclusion on how to organise interaction of 
this microservice with others will be made. 

In order to effectively manage and distribute workloads in cloud computing environments, it is 
essential to accurately measure processor load. Processor load can be quantified by considering  

1. the number of cores,  
2. core capacity, and  
3. the current load on each core.  
There are more details on how it is performed in the section Processor Load. Below is the 

example of a table with the characteristics mentioned above. The primary qualities of each resource 
should also be included, as far as the similar should be compared with the similar. 
 
Table 1.  Example of General Microservice Profiling	

 
Characteristics 
name 

Peculiarities Value 

Channel 
Throughput 

10 Мбіт/с 
(ethernet) 

8 Мb/s 

 Channel load 
daily variations  

±2% 

Processor (CPU) 
load 

2,5 GHz Quad-
Core Intel Core 
i7 

75% 

Cores Quad-Core 4 

 CPU load daily 
variations  

±8% 

RAM 8 GB 1600 
MHz DDR3 

4 Gb 

 RAM daily 
variations  

±7% 

Hard Drive (HD) Seagate 
BarraCuda 
HDD 

60 Gb 

Can be chunked 
(canChunk) 

Needed if 
requirements 
are too high 

yes 



	
2.2.2. Similarity Analysis 

Using the collected profiles, the algorithm performs a similarity analysis to identify 
microservices with comparable characteristics. Techniques such as clustering, correlation analysis, 
and pattern recognition are employed to group microservices with similar load patterns, resource 
usage, and operational behaviors. This grouping helps in forming server clusters that can handle 
homogeneous workloads more efficiently. 

 
2.2.3. Complementarity Analysis 

In addition to finding similar microservices, the algorithm also identifies complementing 
microservices—those that, when deployed together, enhance overall system performance. 
Complementarity analysis involves evaluating the functional dependencies and resource usage 
patterns to determine which microservices work well together. For example, a microservice with 
high CPU usage but low memory consumption might complement another microservice with the 
opposite resource usage pattern. 
 
2.2.4.  Dynamic Grouping 

Based on the results of similarity and complementarity analyses, the algorithm dynamically 
forms groups of microservices that are either similar or complementing. These groups are then 
deployed on the same server or server cluster to optimize resource utilization. By ensuring that 
similar microservices share resources and complementing microservices balance each other’s load, 
the system can achieve higher efficiency and stability. 

 
2.2.5. Continuous Monitoring and Adjustment 

The system continuously monitors the performance of grouped microservices to ensure that the 
initial grouping remains optimal. If performance metrics indicate suboptimal resource utilization or 
increased latency, the algorithm re-evaluates the grouping and makes necessary adjustments. This 
dynamic re-grouping process ensures that the system adapts to changing conditions and maintains 
high performance. 

 
3. Primary Characteristics and Cloud Environment Specifics 

The primary characteristics of microservices, such as processor load, memory usage, and 
network demand, are initially profiled based on the environment in which they are developed and 
tested. However, these environments often differ from the actual cloud infrastructure where the 
microservices will eventually be deployed. This disparity can lead to variations in performance 
metrics, as cloud providers often optimize their services to work efficiently within their own 
ecosystems. 

Consider Amazon DynamoDB as an example. DynamoDB is a fully managed NoSQL database 
service offered by Amazon Web Services (AWS). It is designed to provide fast and predictable 
performance with seamless scalability. The architecture of DynamoDB is optimized for AWS 
infrastructure, offering enhanced performance characteristics compared to other NoSQL databases 
that might be used during the development phase. In the sources there is information about 
comparison of DynamoDB and some other DBs [11], [12], [13]. 

Developers might initially profile their microservices using a different NoSQL database, such as 
MongoDB or Cassandra, on local or non-AWS infrastructure. When these microservices are 
migrated to AWS and start using DynamoDB, they may exhibit different performance 
characteristics. For instance, DynamoDB might offer lower latency and higher throughput due to 
AWS-specific optimizations, leading to more efficient resource utilization [14], [15]. 

Despite these differences, the initial statistics provided by the developer team should still serve 
as a reasonable baseline for the cloud deployment. These statistics include: 

1. Processor Load: the percentage of CPU capacity used by the microservice. 



2. Memory Usage: the amount of RAM required for optimal performance. 
3. Network Demand: the bandwidth and latency requirements for communication. 

While these initial metrics might not perfectly match the cloud environment's performance, they 
provide a starting point. To manage this transition smoothly, it is crucial to set boundaries based on 
these initial statistics. These boundaries act as guardrails, ensuring that the microservices operate 
within acceptable limits once deployed in the cloud. 

 
3.1. RAM Usage 

Profiling based on RAM usage involves monitoring the memory consumption patterns of each 
microservice. Some microservices might require large amounts of memory for caching, data 
processing, or other operations, while others may have minimal memory needs. When a machine 
has less RAM than required by the application, it may lead to frequent paging or swapping. This 
process involves moving data between RAM and disk storage, significantly slowing down the 
application [16]. This should be prevented as much as possible.  

Sufficient or excess RAM ensures that the application data and processes are kept in memory, 
leading to faster access times and better overall performance. More RAM allows for better support 
of concurrent processes and threads, enabling higher levels of parallelism and efficient multitasking. 
Applications that rely heavily on in-memory data processing (e.g., databases, large data analytics 
tasks) will benefit more from increased RAM which should be the case on large shared memory 
space in a cloud environment. 

Use cloud services that support dynamic resource allocation [17], allowing applications to 
request additional memory as needed. Services like AWS Auto Scaling and Azure Virtual Machine 
Scale Sets can help manage resources efficiently. Yet, using them the user should count on 
horizontal scaling, meaning opening new instances [18]. Well-known cloud providers do not 
propose automatic vertical scaling, which is adding only RAM without other additional resources or 
remaking of VM [19].  

AWS proposes to use different instance types that have more RAM within predefined in 
configurations Auto Scaling groups by defining them in the launch template. Azure Automation 
proposes to create scripts that monitor performance metrics and resize VMs when certain 
thresholds are met. This approach requires a complex setup and management strategy. Google 
Cloud Platform works similarly through stopping the virtual machine, reallocation memory 
resource and starting the VM again. 

By categorizing microservices according to their RAM usage, the algorithm can identify which 
microservices can be co-located on the same server without causing memory contention. 
Developers should perform load testing on different machine configurations to understand how 
varying RAM capacities affect performance in order to correctly state the requirements to the 
software. This helps in making informed decisions about memory allocation and preventing issues 
related to memory overcommitment or underutilization. 

 
3.2. Channel Load 

Channel load profiling involves assessing the network and I/O demands of microservices. This 
includes monitoring the bandwidth usage, latency sensitivity, and data transfer rates required by 
each microservice. Similarly to any other characteristic, some microservices need high network 
bandwidth for data-intensive operations, for example video or other large files transfer, while 
others might be more sensitive to latency and require low-latency communication channels, for 
example batch transfer.  

The physical distance between the data source and destination affects latency and bandwidth 
usage. Distributed systems may experience higher channel loads due to long-distance data transfers 
[9]. The number of concurrent users or devices accessing the network impacts channel load. High 
concurrency can lead to congestion and reduced performance. Shared network resources can 
become bottlenecks when multiple applications or services compete for the same bandwidth [8], 
[20]. Traffic with sudden spikes in data transmission can strain network channels, causing 
temporary congestion and packet loss [8], [20]. These are the issues that may cause serious troubles, 



and the cloud environment helps to treat many of those in particular with load balancing and stable 
connections between its global network of data centres. In case of IoT edge computing comes into 
turn. Edge computing brings computation and data storage closer to the location where it is needed 
to improve response times and save bandwidth [9], [21], [22]. Cloud providers offer edge computing 
solutions that enable processing data closer to the end-users or IoT devices.  

It is easier to manage and optimize the applications with a steady, predictable data flow. By 
understanding the metrics of channel load, its throughput, latencies, possible package loss and jitter, 
by running load tests on channels with different throughput it is possible to understand the 
requirements for the channel and make statistics of usage. Using of these requirements at each 
moment of time, the algorithm can group microservices in a way that optimizes network resource 
usage. Several microservices grouped together, can make one more predictable system and at the 
same time receive more resources for the channel. This will provoke reduce in network congestion, 
improve data transfer efficiency, and ensure that latency-sensitive microservices will operate 
smoothly. 

 
3.3. Processor Load 

Processor load profiling focuses on the CPU usage patterns of microservices. Some microservices 
might perform CPU-intensive tasks, such as data encryption, complex calculations, or real-time 
processing, leading to high CPU load. Others might have lower CPU demands. By analyzing the 
CPU load characteristics, the algorithm can group microservices that either have similar CPU usage 
patterns or can complement each other by balancing high and low CPU loads on the same server. 
This ensures efficient CPU utilization and avoids scenarios where some microservices starve for 
CPU time while others leave the CPU underutilized. 

Modern processors have multiple cores, each capable of handling separate tasks simultaneously. 
The total processing capability of a server is directly related to the number of cores it has. 
Depending on the program, it might be important to give a microservice a certain amount of cores. 
This information is clear only to the developers because they are the ones who could use special 
algorithms of parallelization that are effective for a certain number of cores, e.g. to 2, 3, 4 or any 
multiplier of 2, 3, 4 correspondingly. 

Each core has a specific capacity, typically measured in GHz. The core capacity determines how 
many instructions per second a core can process. The current load on each core is usually expressed 
as a percentage of its total capacity. This load represents the proportion of time the core is actively 
processing tasks versus being idle. Time, for which this information is taken, is also important. 
Some microprocessors might have random load because tasks are of different quality and come in a 
random time. Still, the idea of microprocessors is to solve a defined type of tasks and so usually the 
regularity in time of processor load is followed if not from day to day than from week to week. 

Transforming these three factors into a single, representative digit can simplify the process of 
resource allocation and optimization. Yet, computers on which the software is tested can be of a 
different quality than the ones present in the server rooms of a cloud provider. The brand can be 
neglected, but the power is what should be extracted and normalized to the possibilities of the cloud 
environment. Later, on the iteration of 2.1.5. Server Regrouping the microservice could be replaced 
if its initial characteristics were estimated very wrongly. The steps are below. 

 
3.3.1. Calculation of Processor Load 

To calculate the overall processor load and transform it into a single digit, the following steps 
are needed [23]. For each core, the load can be calculated using the formula: 

 

   (1) 
The total load for the processor is the sum of the loads for all cores: 



 

      (2) 
where N is the number of cores,  is the load of core i, and  is the capacity of core i. 

To transform the total load into a single digit, it is necessary to normalize it relative to the 
maximum possible load. The maximum possible load occurs when all cores are at 100% capacity. 

Therefore: 

      (3) 
The normalized load is then: 

    	 (4) 
3.3.2. Example of Processor Load Calculation 

Let us assume a processor with  
• 4 cores, each with a capacity of  
• 2.5 GHz, and  
• current loads of 60%, 75%, 50%, and 90% respectively. 

Calculate the load per core using (1): 

 

 

 

 
Summing the loads of all cores using (2) 

    

Calculate the maximum possible load using (3) 
     

Normalize the total load using (4) 

     
The normalized load, transformed into a single digit, is approximately 6.88. This value can be 

rounded to one decimal place, making it 6.9. 

3.3.3. Transforming the Load Percentage Calculation to the New Environment 

When performing transition of the values counted on developer environment to the cloud 
environment, several complexities should be taken into consideration. Here are the factors to 
consider. 

1. Inter-core communication overhead - more cores may lead to increased overhead for 
managing communication between cores, particularly if the microservices require frequent 
synchronization or data sharing. 

2. Task scheduling inefficiencies - distributing tasks across a larger number of cores can 
introduce inefficiencies in task scheduling, potentially leading to underutilization of some 
cores. 



Due to the reasons mentioned above, as the number of cores increases, the performance gain 
from adding each additional core might diminish. To incorporate these factors, we can introduce an 
adjustment coefficient  that accounts for the overhead of distributing tasks across more cores. This 
coefficient can be derived empirically or estimated based on typical system behaviour. This should 
be done based on cloud statistics with their specific environment. Adjustment to the cloud needs by 
itself is changing the base of the processor. 

The formula for the adjusted load percentage per core becomes: 

(5) 
Taking an adjustment coefficient  multiplies the unadjusted load percentage by 

110% to account for the inefficiencies. 
Let us apply the adjustment factor mentioned in (5) to our example described in 4.1.5. Example of 

Processor Load Calculation transporting the computations onto cloud environment to calculate the 
adjusted load percentage. 

Given a server group with the following characteristics: 
Total Required Load: 6.875 GHz 
Number of Cores: 8 
Core Capacity: 3.0 GHz each 
Adjustment Factor: 0.1 or 10% (together with 100% gives 110%) 
Calculate the total capacity of the cloud environment called Max Possible Cloud Load, we use 

formula (3): 
 

 
The adjusted load percentage per core is calculated as follows: 

 
Summing it up, the initial value of 68.7% of total general load should be replaced by 31.5% of total 

load on a cloud server. A small percentage of adjustment to the new environment allows us to take 
into account the additional overhead and inefficiencies when distributing tasks across more cores. 
This adjusted load percentage provides a more accurate reflection of the actual processor load in the 
cloud environment. 10% in the example is a pretty big percentage and is taken only for comfortable 
counting. In practice, it should be less. 

 
4. Organizing and Matching Microservices Algorithm 

Efficient management of resources in cloud computing involves several steps of microservice 
preparation, grouping based on resource usage patterns, and after searching for complementary 
microservices within these groups. When a group is formed, it can be deployed. This approach 
enhances performance and resource utilization. Additionally, microservices with high requirements 
should be divided into smaller parts if possible. In this paragraph, there is a detailed explanation of 
the process. 

4.1. Pre-steps - preparing data for the algorithm 

These steps are cloud-specific and have to be based on the hardware the cloud provider has. The 
idea is to transform the metrics collected by the developer team to metrics relevant to the resources 
present in the server rooms. Normally the majority of the servers are similar or the same, so this 
makes the task easier.  

 



4.1.1. Characteristics’ Adoption to Cloud Infrastructure 

To ensure the input data is correct and corresponds to the cloud environment, all the metrics has 
to be divided by the corresponding load characteristic of a standard server of the cloud 
environment, taking into consideration possible error or coefficient of adjustment. Formula (5) 
corresponds to this action. The steps are the following: 

1. Collect the resource usage data (CPU, RAM, Channel) from the microservices. 
2. Change the base for the profiled data (normalize) setting on the characteristics of the cloud 

servers using formula (5). 

4.1.2. Dividing High-Requirement Microservices 

Before grouping and searching for similar and complementary microservices, it is necessary to 
filter out the microservices that might not fit. These are the microservices with extremely high 
resource requirements. Let us mark  as a moment of time when load reaches its maximal 
value. Then criteria for the division looks like the following: 

  
     (6) 

 
 These microservices should be divided into smaller parts if they can be chunked. Possibly this is 

a monolith application, because an idea of microservices has to do with usually small tasks that are 
separated from others [24], so they should not consume loads of any space. More information on 
dividing microservices and using boundaries can be found in [25]. This division can help to predict 
the time when microservices should be started and prepare additional servers, installing pre-start 
data and copping last actual information onto them, e.g. cold, warm or hot standby state [5]. 

When decomposing a monolithic application into smaller components, it's advisable to base the 
segmentation on the usual or average load that the system handles. For periods when the load 
exceeds the average, it is efficient to provision additional instances of the monolith that are 
configured to handle the increased demand. This strategy ensures that the system remains 
responsive and stable during peak usage times, while optimizing resource utilization during normal 
operations. Please see Figure 1 for visualization. 

 

Figure 1: Division of highly loaded microservice onto 2 instances. 

There are situations where creating additional instances of an application may not be feasible or 
beneficial. For instance, if the application begins to receive unusually large messages sequentially—
rather than small, frequent ones—this could lead to overloading of the channel resources. Such 
scenarios, which may only be evident to the business analysts and developers familiar with the 



operational context, should prompt these stakeholders to set the `canChunk` attribute to `false` in 
Table 1, indicating that chunking is not advisable. This should be considered an exceptional case. 
Alternatively, it may be possible to redesign the application to manage data transfer more 
effectively, thereby alleviating the need for additional instances. 

For this part of the algorithm, there will be the following input values: 

● "canChunk" - this characteristic indicates whether a microservice can be divided into 
smaller, more manageable parts, 

and maximal possible values based on which the cut-off of excessive loads will occur: 
●  
●  
●  

The division algorithm is the following: 
1. Identify microservices with resource requirements exceeding ,  

or . 
2. Check the "canChunk" characteristic. 
3. If (6) is met, Divide High-Requirement Microservices (description and example are below). 
4. Form a separate group of ‘High-Requirement Microservices’ for those that cannot be 

chunked but exceed the boundaries. Elements from this group will take separate large 
resources and won’t participate in the following algorithm. 

Division, mentioned in the 3rd point, happens if a microservice or a monolith can and should be 
chunked, it gets divided into smaller parts with resource requirements below the maximum 
thresholds. This division is performed only when a specific characteristic exceeds its minimal value 
by a certain percentage, known as "Δ" (Delta), and their sum is below the threshold. The Δ 
represents the additional percentage that should be added to the minimal value of the characteristic 
causing the division. 

Let  be the minimal threshold for a characteristic,  be the percentage increase, ranging 
from 0% to 100%, and  be the maximum threshold. This formula should also include a small 
percentage of variations δ that may occur daily. This parameter is provided together with the initial 
metrics. The algorithm works for all the criteria in the same way, so formulas and examples are 
written without specifying for which exact characteristic they are taken. The division should occur 
if the characteristic exceeds : 

 
    (7) 

where: 
-  is the threshold for initiating the division. 
-  is the moment with minimal value for a certain characteristic. 
-  is the percentage increase required for division. 
-  is the maximum threshold value. 
For example, if  = 30%, δ = 5%,  = 10, and  = 20. Placing values in the formula, we 

receive the following: 
 

 
Since 13.5 is less than the boundary value of 20, the microservice should be divided if the 

characteristic exceeds 13.5 units. This ensures that microservices are efficiently divided only when 
necessary, optimizing resource usage in the cloud environment. The division will still happen by 
boundary value rather than the  percentage.  

To determine the number of parts  into which a microservice should be divided, we use the 
formula (8). This formula takes into account the sum of the maximum load  and a small 
percentage to account for daily variations , dividing this sum by the boundary value , and 
rounding to the nearest integer which is marked by the floor-ceiling function . 

 



     (8) 
 

The resulting last microprocessor load might be too small and finally neglected. The criteria 
should be cloud and other calculations specific. We propose to neglect creating the last unit if the 
remainder does not exceed δ. This parameter will be used in the other formulas and should be taken 
into consideration when counting the total group load. In formulas, it looks as follows: 

if   then  otherwise  (9) 

If  is 50,  is 8% or 0.08 which makes 50 * 0.08 = 4, and  is 20, the results of the 
application of (8) and (9) are calculated as following: 

 

 | as  which is < 0.08, then we round up|  
 

 4.2 Search for the Similarity Groups 

Interest in finding similarity groups is related to the faster search for complementary 
microservices. Yet, this step might not be necessary as it involves an additional check of all vectors, 
so if a huge amount of data needs to be processed, it might be omitted.  

Grouping by similar behaviour and, further, by similar amplitudes will make the search for 
complements faster and more efficient. If processing the whole big initial array of data, it might be 
useful to agree on the first more or less okay match using a greedy algorithm. However, having a 
group of similar ones will make it possible to find the best match. That is why this step might be 
used not when starting the practice of complementary microservices for the first time on a large 
scope, but sooner for the regrouping phase for the ones, for which the match wasn’t found 
perfectly. 

The similarity should be searched only after normalization of vectors. This is the different 
normalization from the one in the pre-steps described in “Characteristics’ Adoption to Cloud 
Infrastructure”. Here, the idea is to put all the characteristics of the microservices onto the same 
scale rather than adopt them to the cloud potential. This normalization will be used only for 
searching similar behaviour and clusterization, which will be the next step, rather than for the 
resulting match search. So the plan is the following: 

Normalization of amplitudes to see the same usage pattern. 
Clusterization on groups of the similar behavior. 
 

4.2.1. ormalization Using Z-Score 

The performance pattern serves as the primary criterion for identifying similar microservices. 
There are 3 points to consider during similarities computation, described in the third section 
“Primary Characteristics and Cloud Environment Specifics”. Their statistical data could be 
compared separately or concatenated into one array, which will be of the same size for every 
microservice. We propose collecting microservice usage statistics every hour, so having 3 
characteristics together will make 3 by 24 which is 72 places in the resulting array.  

For more detailed clusterization which might be meaningful having given a large set of 
microservices, a week data might be combined. As a smaller and faster alternative, a combination of 
a working day and a weekend day may be considered. When having a few microservices, feeding a 
high-detailed set of input data into the algorithm provokes a risk of too high clusterization level. 
This can lead to too many clusters to check for matches, reducing the quality of complementarity as 
additional characteristics might be treated as noise. Consequently, the threshold for defining 
complementarity would need to be lowered. 

Z-score normalization addresses the issue of differing amplitudes while preserving the inherent 
performance patterns. This approach is more suitable than min-max normalization, which ensures 



all features have the same scale but does not handle outliers well [26]. In our scenario, outliers—
very distant values—may exist, and our focus is on identifying the underlying patterns rather than 
strictly maintaining scale. Hence, min-max normalization is not appropriate in this context. 

Normalization using the Z-score allows data to be scaled to a common scale, which is 
particularly useful for comparing vectors and visualizing differences in the behavior. This is done 
using the mean and standard deviation of the vector elements. The formula for normalizing a vector 
is: 

     (10) 
Where: 
-  is the normalized value for the -th element. 
-  is the -th element of the original vector. 
-  is the mean of the vector elements. 
-  is the standard deviation of the vector elements. This is a measure of the amount of variation 

or dispersion in a set of values. 
The mean  and standard deviation  for the vector  are calculated as: 

,    (11), (12) 
 
Where: 
-  is the number of elements in the vector. 
 

4.2.2. Vector Difference with FastDTW Algorithm 

To count the strength of similarity between vectors and visualize it, the Dynamic Time Warping 
(DTW) algorithm can be used. It is designed to find the optimal alignment between two time series, 
making it useful for determining time series similarity, classification, and identifying corresponding 
regions between series. However, DTW has quadratic time and space complexity, limiting its 
application to small datasets. FastDTW, an approximation of DTW, addresses this limitation by 
providing linear time and space complexity. FastDTW employs a multilevel approach, recursively 
projecting a solution from a coarse resolution and refining it, enabling efficient processing of larger 
time series datasets [27]. 

 The goal is to find the path that minimizes the total cumulative distance. Here are the key steps 
involved in the FastDTW algorithm: 

1. Coarsening - reduce of the resolution of the sequences by downsampling. This involves 
creating a lower-resolution version of the sequences. E.g. every second number in the vector 
is taken. 

2. Recursive calculation of path at the coarsened resolution. This step finds an approximate 
path at the lower resolution. 

3. Projection of the path from the coarsened resolution back to the original resolution. 
4. Refinement of the path at the higher resolution using a local search around the projected 

path. This involves adjusting the path to minimize the distance further. 
 
The DTW distance  between two sequences  and  is calculated using: 

    (13) 
Where: 
-  is the distance between points  and . It can be measured by euclidean algorithm or 

another chosen. 
-  is the warping path length. 
To demonstrate how the similarity between the statistics data from 2 microprocessors with time series 

can be counted and that using the Z-normalization will even the values even if they strongly differ but 



find the pattern, a graph is provided after processing the datasets below. The difference in their 
amplitudes is 2 times. But the time of being more and less active is similar. Please see Figure 2 for an 
image. 

1: [10, 8, 15, 21, 25, 17, 13, 15, 11, 7, 12, 8, 7, 6, 5, 10, 12, 13, 22, 25, 15, 12, 14, 11] 
2: [20, 24, 30, 40, 50, 36, 26, 24, 22, 20, 18, 16, 14, 12, 10, 20, 24, 30, 40, 50, 36, 26, 24, 22] 
 

 
Figure 2:	Normalization + FastDTW for time series which initial amplitudes 2 times differ.		
	
4.2.3. Grouping based on Clustering Algorithms KMeans and DBSCAN 

To group microservices by similar behavior, clustering algorithms such as KMeans and DBSCAN 
(Density-Based Spatial Clustering of Applications with Noise) can be employed. Objects in the same 
group called a cluster are more similar to each other than to those in other groups. KMeans and 
DBSCAN are two widely used clustering algorithms, each with its own peculiarities. This section 
provides a detailed comparison between these two methods, focusing on their core principles, 
advantages, limitations, and use cases. 

DBSCAN algorithm identifies clusters based on the density of points. It can find arbitrarily shaped 
clusters and can handle noise. In the task, the data points are expected to form predominantly circular 
clusters, K-Means clustering emerges as the more suitable choice over DBSCAN. The following points 
describe the algorithms and highlight why K-Means is better fitted for this scenario: 

1. The data points are expected in a radius of a circle. K-Means excels at identifying spherical 
or circular clusters, which aligns well with our expected data distribution. DBSCAN, while 
capable of detecting arbitrary shapes, may unnecessarily complicate the analysis for our 
circular clusters. 

2. For the further search of the compliments the centroid points are needed as a base for which 
the compliment will be searched. K-Means produces explicit cluster centroids, which is 
valuable.  

3. Outline handling is not expected as it should be filtered on the previous stage. DBSCAN's 
ability to identify noise points can be advantageous in some scenarios, however, the task 
requires including outline points in the clusters as they are. K-Means naturally incorporates 



all points into clusters, which is beneficial since outlines are not to be treated as noise. This 
pre-processing step enhances K-Means' effectiveness for our specific task. 

4. When initializing the new complimentary structure following the idea described in the 
paper, there might be need to treat plenty of microservices. That’s why the computational 
efficiency is an important point to consider. K-Means generally offers better scalability for 
larger datasets. In scenarios where processing speed is crucial, K-Means can provide faster 
results, especially if the number of clusters is known or can be estimated. 

KMeans clusters data into  groups by minimizing the variance within each cluster. The 
objective function is to find an argument - centroid with which the distance function to a point will 
have the minimal value. In other words, the closest centroid should attract a point to its cluster: 

     (14) 
Where: 
-  is the set of clusters. 
-  is the centroid of cluster . 
- The algorithm iterates to update the centroids and reassign points to the nearest centroids until 

convergence. 
There is also another method that could be considered - cosine similarity. It measures the cosine 

of the angle  between two vectors, indicating how similar they are regardless of magnitude. 
This method would work well of only the vectors were multidimensional in reality. The vectors in 
the problem are in fact time series. The angels in different parts of the same timeline are 
controversial. The cosine similarity method works rather with the line instead of a curve, so does 
not fit in this case. 

 
4.2.4. Example of how grouping works 

To make an example close to real, 24 microservices that accomplish each other were generated 
for each type of five behaviors. The behaviors with the number of generated microprocessors are 
presented below: 

• 2 microservices with stable load for. 
• 4 microservices with peak load during working hours (9 AM to 5 PM). 
• 2 microservices with peaks after midnight and before 6 AM. 
• 2 microservices with peaks from 5 PM till night. 
• 2 microservices with random peaks. 
• Complements for each of these patterns (load in the opposite time). 

The mentioned above microservices went through the following steps: 
1. Data preparation through normalization of microservices data through Z-Score method. This 

data has 24 dimensions (one for each hour of the day). An example can be seen in Figure 2.  
2. Clusterization through  KMeans algorithm. Principal component analysis (PCA) was used for 

vectors and centroids to make a clear and understandable image [28]. The algorithm is used only for 
graphical representation for better understanding of the KMeans algorithm quality of work, so it is 
not described in the paper. More information about it can be found here [29], [30]. It reduces the 24-
dimensional data to 2 dimensions, what allows visualization of the high-dimensional data in a 2D 
plot. Yet, it is necessary to mention that some information is inevitably lost in the dimension 
reduction process. 

On a scatter plot in Figure 3 each point represents a microservice. The centroids are plotted as 
large 'X' markers. Points of the same color form a cluster. Each point's x and y coordinates are the 
first and second principal components, respectively. This visualization allows observation of how 
well-separated the clusters are and if there are any clear groupings in the data.  

Figure 4 shows 24-D vectors divided into clusters marked by certain colors. Dashed lines are the 
centroid vectors. The symmetry of an image is explained by the method of complementary vector 



generation. Addition of noise changes the picture. For the purpose of a more explicit and clear to 
understand example the “ideal” case is shown. 

 

 
Figure 3: 2D vector-centroid visualization after KMeans algorithm after principal component 

analysis.  X - centroids, point - 24-D vectors turned into 2-D vectors with PCA. The color indicates 
belonging to certain centroids. 

 
Figure 4: 24-D vectors divided into clusters which can be seen by the colour. Dashed lines are 

the centroid vectors. The symmetry of an image is explained by the method of complementary 
vector generation. 



4.3 Search for Compliments 

The idea of search of the compliments comes from the lattice theory. More information on this 
theme can be read in [31]. When having found the clusters of similarity, it will be faster to find the 
compliments matching the main characteristics of clusters instead of full enumeration of all the 
microservice vectors. Several methods might be used that are described in the following subsection. 

 
4.3.1. Algorithm for a Complementary Microservice Search 

1. Firstly, it is necessary to find the clusters which contain potentially accomplishing vectors. For 
each pair of clusters, including oneself, we calculate the discrepancy between their centroids to 
determine if they are complementary. Combination with oneself is necessary for the case of the 
even load during all the period of time. The discrepancy is defined as the sum of the differences 
between the maximal sum of corresponding vector elements sum_max and sum of the centroids, 
normalized by the maximal possible sum of those values sum_max. The formula for centroid 
discrepancy  is: 

 

        (15) 
 

where  is the number of parameters in the vector, and  and  are the i-th 
parameters of the two centroids. A pair is considered complementary if , where 
30% is a variable threshold that can be adjusted. 
2. Another or additional way to determine if the clusters are complementary is to apply the KMeans 
algorithm to determine if the complementary centroid, counted as maximal value minus centroid vector, 
can be part of the matching cluster.  
3. The results from the first two verifications are saved in a dataset called complementation_stats. 
This array will be used to search for exact matches of microservices. While sorting is optional at 
this stage, it may be beneficial to sort the pairs by their discrepancy values for the subsequent steps. 
This will allow fast finding the next centroid pair to match by going to the next pair in a loop. 
Downside of the sorting at this stage is possible size change of the array because of deleting or 
marking empty some of the clusters that may be parts of the other pairs. 
4. Taking complementation_stats, we process pairs starting with the smallest discrepancy. For each 
pair of clusters, microservice matches by comparing the minimum, maximum, and range 
characteristics of the microservice data are identified. Range is the difference between max and min 
values. This is done to ensure the discrepancy of these characteristics is less than allowed value 

 which is taken also equal to 30% in the example. This threshold is separately adjustable. 
Not all vectors may find matches due to varying amplitudes and possible different number of 
vectors in a centroid. 

5. Once a match is found, the vectors are recorded in an array named 
`complimentary_microservices`. They are also removed from their respective clusters. 

6. If a cluster becomes empty, its pairs, especially not visited ones, are marked as inactive in 
complementation_stats. An ongoing search involving this cluster is also stopped. 

7. The steps 4-6 are repeated for all active clusters pairs in complementation_stats until no further 
matches can be found. 

An example of the result of cluster matching is presented below. The mark “Active: No” means 
that one or both of the clusters contain zero elements after the matching took place: 

Clusters 3 and 4: 
Discrepancy: 2.53% 
Centroid Match: Yes 
Active: No 
Clusters 1 and 3: 
Discrepancy: 16.44% 
  Centroid Match: Yes 
  Active: No 



8. If not all microservices found their matches from the first iteration, the algorithm should be 
repeated starting from the clusterization with the KMeans method. The number of clusters can be 
chosen as the number of possible groups of microservices described in 4.2.4 Example of how 
grouping works possibly multiplied by 2, to better divide the “cases and anti-cases”. This makes 10 
in total. If there are not so many microservices, more than 27, the cluster number can be picked as 
the number of microservices divided by 3 plus 1 as in (16). This formula is empirical and is based on 
thoughts that when the microservices are too different, it is hard to unite them in one cluster, or the 
cluster quality will be low. Too many clusters are not needed either. The microservices’ pattern 
strongly varies when the majority is processed and little is left which cannot find their pairs. If no 
matches are found in an iteration, this is a reason to stop the algorithm and process to the next step.  

   (16) 

Where   denotes the ceiling function, which rounds up to the nearest integer. 
 

4.3.2. Handling Empty Matches 

There is a chance that all the microservices will find their perfect matches from the first 
iteration. Yet, in general case it is not so probable. The reasons can be an odd number of the 
microservices or amplitudes that strongly vary. These both cases can be fixed by combining more 
than two microservices for a match or devoting separate servers to very odd clusters with often or 
unpredictable high load. The criteria are the following: 

1. If the max value of the microservice is high, close to maximal, and the average load is over a 
threshold equal to, let’s say 70%, then this microservice requires a separate instance. 

2. If the load is hard to predict, and it can strongly vary from day to day, then a separate 
instance is also required. 

3. In the other case, microservices with minimal load can be combined based on the best 
possible match determined by (15) and in a combined state enter the clusterization algorithm 
with all the next steps again.  

An example of using this algorithm with an image is proposed in this article [25].  
 

5. Conclusion 

The paper describes in details the algorithm of finding the complimentary microservices 
providing explicit examples of how the stages work and interact with each other. While the general 
load distribution algorithm for complimentary microservices integrates predictive analysis, dynamic 
microservices orchestration, load balancing, and server regrouping to optimize resource utilization 
in cloud computing environments, it is drastically different from the present solutions for the 
microservice cloud management. Relying on anticipated load patterns and efficiently managing 
resources through putting a combination of matching microservices onto server groups, the 
algorithm ensures high performance, reliability, and cost-effectiveness. 

The incorporation of algorithms for finding similar microservice groups and combining them in 
search for the complementing microservices adds a critical layer of optimization to the load 
distribution process. By profiling microservices and regrouping combinations when they don’t 
already work well, the system maximizes resource utilization and enhances overall efficiency.  

A very important stage of planning is to receive correct input data. Taking in consideration the 
differences between initial servers on which tests were made and a real production environment, 
the normalization should be applied when transforming data to the new cloud-server capabilities. 
By introducing an adjustment coefficient to account for the overhead and inefficiencies of 
distributing tasks across multiple cores, we can derive a more accurate estimate of the processor 
load in the cloud environment and give space for small errors during calculations. This approach 



acknowledges that simply having more cores does not linearly translate to better performance and 
accounts for the practical limitations of multi-core processing. In practice, the value of the 
adjustment coefficient can be fine-tuned based on empirical data and specific characteristics of the 
microservices and cloud environment. Chance of errors and possible differences in data is also 
taken into consideration with the help of small delta provided in initial data statistics and collected 
during metrics of real usage. 

During implementation of the compliment search algorithm Z-Score algorithm is used for data 
normalization which leaves the usage pattern and removes attachment to the load amplitude. 
KMeans algorithms separates the load time series into groups of similarity. Those groups are 
combined to find, which ones work the best together using our own algorithm. As a result, 
microservices that can be combined to provide a maximal possible common load, are extracted. 
FastDTW method is used for visualisation of intermediate results.  

In the paper, other relative methods are also discussed. It is grounded why they are not leading 
to a better result. The methods are DBSCAN for clusterization, cosine similarity for grouping load 
vectors, and minimax algorithm for normalization.  

Combining the mentioned algorithms enables a robust approach to finding, grouping and 
matching complementary microservices.  
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