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Abstract
We developed a synthetic flame detector based on a 55-parameter feed-forward neural network receiving
as input seven physical quantities measured at different locations of a gas turbine. The model has been
implemented on an edge device for the machine control (MarkVIe) and the synthetic flame detection has
been performed in real time. The model has achieved full recall and full precision on an independent test
set. Further improvements will be aimed at implementing the model on a MarkVIs device, so that the
control loop can be closed.
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1. Introduction

When operating a gas turbine, flame-out detection is a crucial safety-related check to be put in
place. In fact, in case of an accidental flame-out in the combustor, fuel gas can accumulate in
the gas turbine and an explosion may occur, if no prompt action is taken to stop the fuel gas
injection.
Physical devices for flame detection are available on the market. Still, Artificial Intelligence (AI)
technologies, such as a synthetic flame detector, may improve the detection performance or
completely substitute the physical sensor, with a significant cost reduction.
We show how we trained a data-driven synthetic (or virtual) flame detector and implemented it
on MarkVIe.
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2. Method

2.1. The dataset

The dataset used for training the model was acquired from a gas turbine prototype running
on a test bench. Temperature, pressure, flow, speed, acceleration values were measured by
probes installed on different sections of the machine and acquired with a sampling frequency
of 1 Sample/40 ms. With the same sampling frequency, the continuous (𝑠) and boolean (𝑏)
signal from a physical flame detector installed on the turbine were also acquired. The boolean
𝑏, whose value is calculated by the acquisition system based on the value of 𝑠, and has value
1 whenever there is flame, 0 whenever the flame is out. In the training dataset the proper
behaviour of the physical flame detector installed has been assessed by subject matter experts.
A total amount of about 760 kSamples, corresponding to 7 days of gas turbine operation, have
been used as training and validation sets (with an exclusive splitting with ratio 70% vs 30%),
while an independent dataset counting about 1.1 MSamples and acquired during 10 test days
has been used as our test.

2.2. The model

We leveraged a fully data-driven approach and trained a simple fully-connected neural network
(NN) [1] with 55 parameters and one hidden layer to learn the behavior of the flame. We trained
a regression model with a supervised approach, using the continuous signal 𝑠 coming from the
physical flame detector as our ground truth. Basically, we built a digital twin or virtual sensor [2]
of the physical flame detector. The chosen input features were seven and include speed, flow,
pressure, and temperature measurements sampled at different sections of the turbine.
The ground truth used to train the model is the continuous signal 𝑠 coming from the physical
flame detector, and the model is a regression model which outputs �̂�. A boolean signal �̂� has
been calculated out of the model prediction �̂� as well, to give a binary information to the control
system. Also, this allows to compute recall and precision metrics of our model more easily. The
logic used to discretize �̂� is:

�̂� = 1 𝑖𝑓 �̂� > 𝑡ℎ𝑟 (1a)

�̂� = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1b)

where the threshold 𝑡ℎ𝑟 is such that recall and precision (see Sec. 2.3) are maximized on a
validation set, where the model boolean output is compared with the physical detector boolean
output acquired.
The choice of the input features and the NN hyperparameters was led by the maximization of
the recall and precision (see Sec. 2.3) on an independent validation dataset. Also, we preferred
architectures which would keep the number of parameters as small as possible, so that this
solution could be easily implemented on MarkVIe, which is our edge device.

2.3. The metrics

Recall and precision are computed on an event basis. We have a true positive when these
conditions are satisfied:



Figure 1: MarkVIe architecture: each block represents an elemental operation: standard scaling of input
data, matrix multiplication, matrix addition, ReLu for non-linearity and sigmoid for final prediction.

1. 𝑏 switches from 1 to 0 at a certain time instant 𝑡𝑜𝑢𝑡
2. �̂� switches from 1 to 0 at time 𝑡𝑜𝑢𝑡ˆ , such that |𝑡𝑜𝑢𝑡 − 𝑡𝑜𝑢𝑡ˆ | < ∆𝑡

The time tolerance ∆𝑡 is 1.2 s, corresponding to 30 samples, and derives from functional
requirements. In fact, we do not want to have a late flame out detection, since this may cause
explosion risks due to methane accumulation. We may thin to relax this constraint to 40-50
samples in case of an earlier detection, which instead is a desired behaviour.
Analogously with the definition of a true positive, a false positive is given when:

1. �̂� switches from 1 to 0 at time 𝑡𝑜𝑢𝑡ˆ

2. 𝑏 keeps on having value 1 in the time frame [𝑡𝑜𝑢𝑡ˆ −∆𝑡; 𝑡𝑜𝑢𝑡ˆ + ∆𝑡]

Finally, we have a false negative when:

1. 𝑏 switches from 1 to 0 at time 𝑡𝑜𝑢𝑡
2. �̂� keeps on having value 1 in the time frame [𝑡𝑜𝑢𝑡 −∆𝑡; 𝑡𝑜𝑢𝑡 +∆𝑡]

2.4. The deployment on edge

MarkVIe [3] is a flexible controller for multiple applications. It features highspeed networked I/O
for simplex, dual and triple redundant systems. Industry standards Ethernet communications
along with USB and COM ports with 667 MHz Processor and QNX operating system are used
for I/O and supervisory interface to operator and maintenance stations.
Many techniques were explored to deploy flame detector model onto MarkVIe Edge Controller:



1. Converting model weights into ONNX format and further generate xml of functional
blocks that could run on MarkVIe

2. Converting model into a Dynamic Link Library
3. Developing the NN model using the coding language of MarkVIe

We used the third approach. The necessary steps are detailed as follow:

• Convert the trained model into equations whose coefficients are the model weights
• Map the equations onto MarkVIe functional blocks
• Create the functional block library to represent the activations of the neural layers
• Deploy and test the implementation on a virtual controller
• Implement it onto production controller
• Check that the inference time is compatible with the requirements of real-time application.

As shown in Fig. 1, the model deployed on MarkVIe consists of one block for each elemental
operation. The architecture starts with the scaling of sensor data read from the gas turbine,
followed by the multiplication by the weights of the first dense layer. The output is further
added with the bias and a ReLu is applied to introduce non-linearity. The weights of the second
layer are multiplied by the output from ReLu, then the bias is added and finally a sigmoid
operation is performed to have the final output.

3. Results

The model was producing real-time information about the flame status (on/off), given that the
inference time is less than 40 ms, which is the sampling interval used by the control system.
We tested the model on the same gas turbine from which training data were collected. The test
set was chronologically after the training set.
We obtained full recall, meaning that all the flame-out events were correctly detected, and full
precision, i.e. no false alert for spurious flame-out was given by the model, as shown in Fig. 2.
The flame-out was always detected slightly in advance with respect to the physical flame
detector (also see Fig. 3), allowing a larger safety margin.

The model performance were checked both real-time, while the gas turbine was running,
and offline, for a deeper analysis of results, by downloading data from MarkVIe.

4. Conclusions

This work shows a real-case application of a synthetic flame detector consisting of a small
neural network implemented on a MarkVIe edge-device and producing real-time information
on the control system of a gas turbine.
The synthetic flame detector is trained using temperature, pressure, speed, flow time series
collected by sensors installed on the machine, and leveraging the time series acquired from
a physical flame detector as our ground truth. Basically, a digital twin of the physical flame
detector sensor is built.
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Figure 2: Comparison between the boolean output from the physical sensor (in blue) and from the
virtual sensor (in orange), on a dataset collected during two months operation, for a total amount of
about 3.5 MSamples. The boolean signal has value "1" when the flame is on, "0" when the flame is off.
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Figure 3: Detail of two flame-out events. The virtual sensor (orange line) detects flame-out slightly in
advance with respect to the physical sensor (blue line).

The model allows a full recall and full precision in the flame out detection on a test set inde-
pendent from training and validation sets. The deployment on MarkVIe allows to have the
information about the flame status in real time, while the gas turbine is running, so that control
engineers are able to suddenly shut down the machine in case of a flame out, thus preventing



an explosive environment to be generated.
The next step will be to use this flame detector in the control closed loop. To achieve this, we
will need to deploy the model to MarkVIs, which is an enhanced version of MarkVIe aimed at
automatically manage security-related machine controls.
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