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Abstract
An important aspect of summarizing videos is understanding the temporal context behind each part of the video
to grasp what is and is not important. Video summarization models have in recent years modeled spatio-temporal
relationships to represent this information. These models achieved state-of-the-art correlation scores on important
benchmark datasets. However, what has not been reviewed is whether spatio-temporal relationships are even
required to achieve state-of-the-art results. Previous work in activity recognition has found biases, by prioritizing
static cues such as scenes or objects, over motion information. In this paper we inquire if similar spurious
relationships might influence the task of video summarization. To do so, we analyse the role that temporal
information plays on existing benchmark datasets. We first estimate a baseline with temporally invariant models
to see how well such models rank on benchmark datasets (TVSum and SumMe). We then disrupt the temporal
order of the videos to investigate the impact it has on existing state-of-the-art models. One of our findings is that
the temporally invariant models achieve competitive correlation scores that are close to the human baselines
on the TVSum dataset. We also demonstrate that existing models are not affected by temporal perturbations.
Furthermore, with certain disruption strategies that shuffle fixed time segments, we can actually improve their
correlation scores. With these results, we find that spatio-temporal relationship play a minor role and we raise
the question whether these benchmarks adequately model the task of video summarization. Code available at:
https://github.com/AashGan/TemporalPerturbSum
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1. Introduction

A striking amount of short-form video content is created, hosted, and consumed within the online
media landscape. Several platforms such as Tiktok, Youtube and Instagram promote these short snappy
videos as they immediately capture the users’ interest. These videos are often created by cutting a
longer video into its best parts. However, the process of editing them into these bite-sized pieces is still
time-intensive with significant potential for automation. One way to broach automatic editing is by
using video summarization algorithms [1].

What makes a good video summary is however largely subjective and is dependent on the underlying
media. Regardless of this subjectivity, a pivotal aspect in understanding what is pertinent for a video
summary is the temporal context behind different parts of a video. The context in this case is the
relationship one part of a video shares with other parts, as the preceding or succeeding frames or shots
inform us as to what may be relevant. The information gained by learning the temporal context gives
us vital cues regarding what should be included in a summary. Therefore, we may expect automatic
video summarization algorithms by design to discover and exploit such relationships.

Based on this assumption, modern approaches to video summarization utilise Deep Neural Networks,
which employ spatio-temporal relationships within the data [2, 3, 4, 5] to understand the temporal
context within the videos. These approaches often estimate a frame-wise importance score, which
indicates how likely is that a frame should be included in a summary. To evaluate the accuracy of their
predictions, they measure how well these scores correlate with gold standard human labels provided
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by two important benchmark datasets: TVSum [6] and SumMe [7]. These datasets despite their small
size, are a cornerstone within video summarization research due to their diverse set of videos and the
inclusion of multiple human annotations per video to capture the subjectivity of video summarization.

An important question that can be raised regarding these benchmark datasets is the role spatio-
temporal relationship play within them. Despite the state-of-the-art Kendall rank correlation coefficient
scores achieved by these spatio-temporal models, it has been observed by Otani et al [1] that a simple
multi-ranking model which does not account for temporal relationships by design, also achieved
competitive scores. This casts a doubt regarding the trustworthiness of the aforementioned models to
capture temporal context.

A similar question has also been posed within activity recognition research [8, 9]. Some of the relevant
works showcase how activity recognition models could effectively ignore the temporal component of the
video, while still accurately predicting the activity. In some cases, this could be due to a “representation
bias” within the dataset. This bias, as illustrated by Li et al. [9], is where a dataset may favour a certain
data representation, influencing the model to learn spurious relationships. For instance, videos could
be collected for an activity such as playing football, may have associated videos from a specific field.
This type of intrinsic correlation might be captured by the DNN model, which recognizes correctly the
activity class by detecting the field instead of the football related motion. This may give us the false
impression that an activity recognition model should simply recognize the salient objects or scenes. This
also poses a significant challenge to the trustworthiness of such systems, since it may use unexpected
and spurious relationships for predicting a certain activity class.

An investigation of the role temporal dependencies play within popular video summarization bench-
mark datasets is important in order to evaluate the trustworthiness of these methods. If a temporally
invariant model achieves a performance that is on par with its temporally dependent counterparts, then
this may highlight an issue within the benchmarks used to compare them. To analyse this hypothesis,
experiments which manipulate the temporal order of a video will indicate whether these dependencies
are truly needed. Furthermore, interesting insights could be formulated with respect to the amount of
data needed to capture various temporal relationships. These observations highlight the growing need
for scrutiny over benchmark datasets, by critically assessing whether the underlying data distribution
is adequate to model the intended types of relationships, leading to increasing trust in AI systems.

Therefore in this work we investigate the role spatio-temporal dependencies play on the video
summarization benchmark datasets. We achieve this goal by disrupting the temporal order of the
videos. We first establish a baseline performance using temporally invariant models on TVSum and
SumMe datasets. On this baseline, we investigate the effect that temporal disruptions have on models
which utilise spatio-temporal relationships. We take inspiration from time series data augmentation
[10] to design different temporal disruptions introduced at different timescales, including low-level,
intermediate and global levels, represented by frames and shots. Through these experiments, we
investigate the role played by the temporal context in video summarization on two important benchmark
datasets.

To summarise, in this paper we make the following contributions:

• We demonstrate that models which do not utilise temporal context can still achieve close to the
state-of-the-art correlation scores on the TVSum and SumMe datasets.

• We highlight that the introduction of temporal disruptions had a limited effect on the performance
of video summarization models on the two considered benchmark datasets. Moreover, we
also prove that the analyzed temporal disruptions in some cases even improved the models’
performance, underscoring the role played by spatio-temporal relationships.

• Finally, we trace back the aforementioned results to the design of the datasets, the architecture
and the evaluation stage. Our results indicate the need to address the identified limitations,
when designing future benchmarks in video summarization, by properly evaluating the expected
contributions at various temporal levels.



2. Related Work

Video summarization, as defined by Apostolidis et al. [11], is the task of retrieving a “synopsis” of a
video by selecting the fewest and most pertinent parts of the video. Recent work favours the summaries
creation in the form of video skims, due to user preferences [11]. The primary datasets which serve
as benchmarks for the state-of-the-art are: TVSum [6] and SumMe [7]. Chhara et al. [12] is among
the first works that introduces and evaluates the concept of “fairness” within video summarization.
In this context fairness addresses equal representations of individuals and protected groups within a
final summary. In our work, we evaluate whether spatio-temporal relationships play a role or if these
benchmarks may be statically biased.

2.1. Supervised Video Summarization with spatio-temporal models

Among the earliest examples which utilised neural networks and spatio-temporal modeling with
supervised learning was the approach introduced by Zhang et al. [2]. They employed the Long Short
Term Memory (LSTM) model and formulated strategies to create optimization objectives from the
provided annotations in the TVSum and SumMe datasets. Subsequent works built on top of it, while
addressing the challenges posed by LSTMs in terms of modelling long range dependencies. These
include approaches with Fully Convolutional Sequence Networks [5], Memory networks [3], Graph
networks [13] and the predominant approach, Self Attention [4, 14, 15, 16, 17].

2.2. Temporal Dependencies in Video Data

Several works have reviewed whether deep learning models applied to video data truly learn spatio-
temporal relationships. An example of this from Li et al. [9] in activity recognition, demonstrated
that due to “representation biases” within the dataset, models can ignore the temporal information
within activity recognition benchmark datasets, UCF101 [18] and Kinetics [19] and rely only on static
cues to classify activities. Li et al. [8] also demonstrated a means to remove representation biases
through dataset resampling. Some works within activity recognition also manipulate the temporal
order of frames/shots. Sevilla-Lara et al. [20] highlighted a shuffling approach which aims to identify
which videos require temporal information, dubbing them to be “temporal classes”. Huang et al. [21]
introduced two frameworks to isolate and analyse temporal features within popular activity recognition
models.

3. Methodology

Our followed methodology consists of adapting an existing pipeline, using state-of-the-art models,
which are trained using a series of temporal perturbation approaches.

3.1. Video Summarization Pipeline

The video summarization pipeline used for this work is adapted from Zhang et al. [2]. In the following
subsections we describe the formulatad pre-processing optimization and evaluation approaches.

3.1.1. Pre-processing

Given a video 𝑉 with a sequence of 𝑀 frames, we first sub-sample it to a lower frame-rate, typically to 2
frames per second. This step will lead to 𝑁, frames, denoted by 𝑁𝑗, 𝑗 ∈ [1, 2 , 3, . . . 𝑁 ] frames. Next,
these frames are given to a feature extractor 𝐹. In this work we are using GoogleNet [22], in order to
enable a fair comparison with previous works. This results in a feature representation 𝐹(𝑁𝑗) per frame
of the sub-sampled sequence, which are fed to the model for training/inference.

The TVSum and SumMe dataset annotations are pre-processed to create an optimization objective or
“ground truth” importance scores. These scores represent what a collection of human annotators deem



to be relevant for a final summary. Both datasets provide multiple human annotations per video. For
TVSum, this takes the form of a score between 1 to 5, while for SumMe, it is a score selected between
0 and 1. The ground truth importance score is then computed as the average over all annotators as
mentioned by Fajtl et al. [15] in case of the TVSum dataset, while for SumMe, the scores are provided
by the dataset creators.

3.1.2. Model

The whole or partial sequence of processed frames are given to the model to predict their “importance
scores”. This results in a sequence of scores ̂𝑦𝑗 = Summariser(𝐹 (𝑁𝑗)) where ̂𝑦𝑗 ∈ (0, 1), while the
Summariser is a Deep Neural Network. This work provides the model with the full video as an input
in line with previous work with self attention models [23, 4, 15]. The loss function is computed with
respect to the ground truth importance scores per frame 𝑦𝑗 and depicted in equation 1:

ℒ = 1
𝑁

𝑁
∑
𝑗=1

(𝑦𝑗 − ̂𝑦𝑗)2 (1)

3.1.3. Evaluation metrics

The models are evaluated by predicting the importance scores of all frames from a single video. The
primary evaluation metrics used in video summarization are the Kendall and Spearman correlation
coefficients as proposed by Otani et al. [24]. This choice is due to the fact that the F1 score metric has
been demonstrated to be greatly affected by the pre-processing and post-processing pipeline.

Due to the differences in the dataset annotations, the correlation coefficient is computed in two
separate ways. In the case of the TVSum dataset, the correlation score of a video is computed as the
average correlation over the model predictions with each human scaled score, since the annotations
are scores between 1 to 5. In the case of the SumMe dataset, as it provides only a 0/1 score of whether
a shot is included or excluded in a summary, we first compute the average score over all annotators
and then we measure the correlation with the model’s prediction. For our experiments, we report and
compare our results using only the Kendall correlation coefficient.

3.2. Models

3.2.1. Temporally Invariant Models

For this study, the Multi-layer Perceptron (MLP) and VASNet [15] are the chosen baselines. The VASNet
model was chosen as it lacks positional encoding, since the authors noted that the positional order
may not be relevant for video summarization [15]. However, they provide the model with the whole
video as an input, which could already provide a degree of temporal context. Therefore, we utilise
this model for testing our hypothesis with respect to temporal modeling. We investigate whether the
frame-wise temporal dependencies within a video were important to achieve their success or whether
VASNet could rely on spatial features alone to achieve the same performance. The MLPs architecture is
described in the supplementary material.

3.2.2. Adapted Models from Literature

We utilise and adapt two models from the literature for our temporal perturbation experiment: VASNet
[15] and PGL-SUM [4].

VASNet The VASNet architecture [15] utilises a self attention module alongside a regressor network
to predict frame-wise importance scores. Their approach lacks positional encoding which renders
the model permutation invariant. For our temporal perturbation experiment, we introduce absolute
positional encoding added directly to the processed frame features prior to the self attention module.



PGL-SUM The PGL-SUMmodel [4] also utilises self attention and positional encoding. This approach
uses both local and global attention, fuses the information obtained from both attention branches and
incorporates positional encoding directly to the attention matrix. Therefore, this model is an ideal
candidate for the temporal perturbation, as by design it should be sensitive to temporal changes.

3.3. Temporal Perturbations

We define two timescales of information as each video is comprised of disjointed shots, “local” in-
formation within a shot and “global” which pertains to the order of the shots. Therefore, we study
perturbations across both of these defined scales. In this manner we address the question whether video
summarization models are affected significantly either by the short term disruptions or by changes to
the overall video structure. We formally define five strategies to perturb the order of the video frames
for our experiments, described below. We also illustrate the effect different shuffling strategies have on
the original sequence in Appendix A.

3.3.1. Shuffling Strategies

Let us consider a dataset composed of𝑁𝑉 videos (e.g. 𝑁𝑉 = 50 for TVSum). Each video 𝑉 𝑗, 𝑗 ∈ {1, … , 𝑁𝑉 }
is comprised of 𝑁 𝑗 frames, represented as an ordered set 𝑉 𝑗 = {𝐹1, 𝐹2, 𝐹3, . . , 𝐹𝑁 𝑗} where 𝐹𝑖, 𝑖 ∈ 𝑁 𝑗 is
the feature representation corresponding to the video frame with index 𝑖.

Flip: First, the ordered set is flipped leading to: 𝑉 𝑗
𝑓 = {𝐹𝑁 𝑗 , 𝐹𝑁 𝑗−1 , 𝐹𝑁 𝑗−2 , . . , 𝐹1}.

Fixed Segment Shuffles: Next, the ordered set is divided into 𝑀 fixed segments having a length
of 𝑁 𝑗/𝑀. For simplicity, lets assume a subset of the original video into a number of 𝑀 = 3 segments
with length 𝑀𝑙 = 2, as 𝑉 = {𝐹1, 𝐹2 |𝐹3, 𝐹4 |𝐹5, 𝐹6}. A fixed segment shuffle will permute the video as
𝑉𝑓𝑠 = {𝐹3, 𝐹4 |𝐹5, 𝐹6 |𝐹1, 𝐹2}

Shot Level Shuffles: Since the TVSum and SumMe datasets provide shot boundaries, we also utilise
shot level shuffles1. Let’s assume that given a video 𝑉 𝑗 of 𝑁 𝑠 shots, the corresponding representation
will be 𝑉 𝑗 = {𝑆1, 𝑆2, 𝑆3, ... , 𝑆𝑁 𝑠}. Furthermore, each shot is composed of 𝑆𝐹 frames, such that 𝑆𝑖 =
{𝐹1, 𝐹2, 𝐹3...𝐹𝑆𝐹}, where 𝐹𝑗 represents the frame level feature representation at index 𝑗. We propose three
strategies that manipulate the shot order at various scales while keeping intact the order within the
shots:

1. Intra-shot shuffling: The overall shot order of the video is retained, but the frames within
each shot are shuffled. For simplicity, for a video 𝑉 of four shots with varying length 𝑉 =
{𝐹1, 𝐹2 |𝐹3, 𝐹4, 𝐹5, 𝐹6 |𝐹7, 𝐹8, 𝐹9| 𝐹10, 𝐹11}, the shuffled video appears as:
𝑉𝑖𝑠 = {𝐹2, 𝐹1| 𝐹5, 𝐹4, 𝐹3, 𝐹6| 𝐹9, 𝐹7, 𝐹8| 𝐹10, 𝐹11}.

2. Neighbouring Shot Shuffling: Neighbouring shots are shuffled between each other, leading for
example to: 𝑉𝑛𝑠 = {𝑆2, 𝑆1, 𝑆3, |𝑆6, 𝑆4, 𝑆5 | . . |𝑆𝑁, 𝑆𝑁−1}

3. Any shot shuffling: This strategy is similar to the approach proposed within the fixed segment
shuffles, while the difference consists of the varying size of a shot. Each shot is shuffled to
randomly appear in a different position in the video.

4. Experiments

We conducted two experiments. In the first, we estimated a baseline with temporally invariant models.
This allows us a first sense of howmuch order contributes to the performance on benchmark datasets. In

1Since we utilise a sub-sampled input video, but the shot boundaries are defined for videos in the original frame-rate, we
decide which frame belongs to which shot based on the frame index and the sampling rate. This choice is further discussed
in the supplementary material



the second, we disrupted the temporal order of videos in different ways. This allowed us to investigate
the impact of different types of temporal disruptions on performance.

4.1. Experimental protocol

Datasets. The TVSum and SumMe datasets are used for our experiments since they are the benchmarks
in question. We utilised a pre-processed version of each of these datasets as provided by Zhang et al [2].
In this paper, we report the results using the canonical data setting as described by Zhang et al [2]. The
description of each dataset is provided in Table 1.

Table 1
Datasets descriptions, according to Apostolidis et al. [11]

Dataset Duration Videos Topics

TVSum 3 - 10 25
news, how-to’s, user-
generated, documentaries

SumMe 1-6 50 holidays, events, sports

Experimental Design. The experiments were conducted using with the procedure followed in
previous studies [15, 4, 25, 26, 14]. Each experiment is conducted using a five-fold cross validation
split, where 80% of the videos are used in the training split and 20% of the videos are used in the test
split from each of the benchmark datasets. The best correlation scores are recorded for each split and
the overall performance is computed as an average over all the splits. We utilise 3 permutations of a
five-fold cross-validation split.

Implementation Details. The pre-processing is adopted from Zhang et al. [2], in which each video
is sub-sampled to 2 frames per second and each frame undergoes feature extract using GoogleNet [22]
to. The full configuration for each of the models and each of the experiments can be found in the
supplementary material. All models were trained for 50 epochs, with a weight decay of 1𝑒−5, using the
mean squared error loss function and gradient clipping. The temporally invariant baseline models are
trained with a batch size of 128, with a learning rate of 5𝑒−5, while the temporal perturbation models
are trained with a similar learning rate, but with a batch-size of 1.

4.2. Description of experiments

Experiment 1: Temporally invariant Baselines. We first establish a baseline for supervised video
summarization relying purely on spatial features by removing any temporal context. Previous ap-
proaches [2, 5, 15, 27] typically give a part of the same video, or the whole video to the model for training.
In our approach, we sample a batch of frames and ground truth annotations from any video in the train-
ing set, wherein the selected frames in the batch can be from different videos and from any time-step.
This approach removes any potential temporal context, focusing entirely on the frame content. The
model is optimised using the frames’ ground truth scores and is evaluated in the same manner as done
by previous existing works in video summarization (i.e the model is evaluated by providing the whole
test video as an input).

To compare between approaches, we train the MLP and VASNet models described in Section 3.2.1
and we train two temporally aware models, namely, VASNet with positional encoding and PGL-SUM
[4]. These models are trained using the original procedure as described in Section 3.1

Experiment 2: Temporal Disruptions. We investigate the effect of temporal disruptions on the
performance of a video summarization model. To demonstrate this, we first establish the baseline
performance of a model trained on and evaluated with unshuffled data. Then, for each perturbation
strategy as proposed in Section 3.3, we train the model on shuffled data and evaluate their performance



on the unshuffled test split. The models used for this study are the PGL-SUM [4] and VASNet [15] with
incorporated positional encoding.

5. Results

We conducted two experiments. In the first, we estimated a baseline with temporally invariant models.
In the second, we disrupted the temporal order of videos in different ways.

Table 2
Kendall Correlation coefficients from the Temporally Invariance Experiment

Model TvSum SumMe
Human Baseline[24] 0.177 -

Temporally Invariant Baseline
VASNet (-PC) 0.180 0.0545

MLP 0.170 0.065
Temporally Dependent Models

VASNet (+PC) 0.147 0.082
PGLSum [4] 0.174 0.033

5.1. Temporally Invariant Baseline

The first experiment establishes the Kendall correlation coefficients that the temporally invariant models
achieve on the two benchmark datasets for video summarization. We compare their results to existing
work within video summarization, the human baselines provided by Otani et al. [24] and with the
existing works trained on our procedure to allow comparison. The results, as seen in Tables 2 and 3,
show that the MLP baseline is comparable to that of the human baselines (0.170 vs 0.177) on the TVSum
dataset. The self-attention model trained with the temporally invariant paradigm described in Section
4.2 also achieved 90% of the performance of the state-of-the-art model MAAM [16] on the TVSum
dataset (e.g. 0.180 vs 0.207). It is also worth noting that the Self Attention model trained using our
temporally invariant paradigm described in Section 4.2 (−𝑃𝐶) outperformed its temporally dependent
counterpart (+𝑃𝐶) by 19% on the TVSum dataset. This result is notable as the self attention model with
the temporally invariant paradigm received frames from different videos. This behaviour can be due to
two possibilities, either that the frame level features alone are effective for the TVSum dataset, or that
the use of positional encoding directly added to the CNN features may harm the models’ prediction
capability.

Table 3
Comparison of the Baseline Kendall Correlation Coefficients with other state-of-the-art models

Model Split type TvSum SumMe
Existing Work

A2Summ[26] 1 × 5 FCV 0.137 0.108
MAAM[16] 1 × 5 FCV 0.179 -
MAAM(VIT) 1 × 5 FCV 0.207 0.227
SSPVS[28] 1 × 5 FCV 0.181 0.192
VHJMT[23] 1 × 5 FCV 0.097 0.106
Clip-It[14] 1 × 5 FRV 0.108 -

SumGraph[29] 1 × 5 FCV 0.094 -
PGL-SUM[4] 1 × 5 FRV 0.150 -
MSVA[27] 1 × 5 FRV 0.190 0.200

Baselines
MLP 3 × 5 FCV 0.171 0.080

VASNet(-PC) 3 × 5 FCV 0.186 0.067



However, in the case of the SumMe dataset, the results showcase that the VASNet with positional
encoding(+PC in the table) narrowly beat VASNet without positional encoding(-PC in the table). This
indicates that positional information may play a minor role within this benchmark dataset.

(a) Ground Truth Differences (b) Framewise Cosine Similarity

Figure 1: A visualization, for one video, of the heatmaps of the pairwise differences between the ground truth
scores compared with the frame-wise cosine similarity. Here, frames that are visually similar also appear to have
low differences in their importance (note, inverse color).

To further investigate why these temporally invariant models achieve competitive Kendall coeffi-
cients, we analyse the processed datasets, in terms of features and labels to check whether there is
any relationship between them. Our assumption is that similar features, measured in terms of their
representation, will also be assigned similar importance scores. The exact followed procedure consists
of creating two heatmaps, one including the pairwise cosine similarity between the features of each
frame and the second encompassing the differences between their ground truth scores. We analyzed
these relationships using with a few examples taken from the TVSum dataset and in Figure 1, 𝑉 𝑖𝑑𝑒𝑜−5 is
depicted. It can be easily noticed that frames having a high cosine similarity also have small differences
in their ground truth importance scores. In contrast, for Video − 32,2 the rated importance difference
did not follow the frame-wise similarity.3 As Video − 5 recorded a higher score than Video − 32 for all
of the models, this provides us with a possible explanation for the success of our temporally invariant
models – the nature of the datasets.

Table 4
The resulting Kendall Correlation Coefficients(best model in bold) of the temporal disruption experiment, for
different models (PGL-SUM, VASNet+PC), and datasets (TVSum, SumMe).

Shuffle PGLSum VASNet(+PC)
TvSum SumMe TVSum SumMe

Unshuffled 0.174 0.033 0.147 0.088
Fixed Segment 0.189 0.085 0.169 0.138

Flip 0.176 0.039 0.128 0.883
IntraShot 0.175 0.085 0.175 0.091

Neighbour Shot 0.175 0.062 0.170 0.128
Any Shot 0.190 0.113 0.191 0.125

2Visualized in the supplementary material due to space limitations.
3This may be because Video − 32 depicts a flash mob where each frame possesses similar objects and settings, but the actions
and motions within the video are distinct between shots.



5.2. Temporal Disruptions

The second experiment demonstrates the effect that the temporal perturbations described in Section 3.3
have on the performance of temporally dependent video summarization models. The results suggest that
some of these strategies show little change over their unshuffled baselines, but show an improvement
in strategies that shuffle across fixed time segments. As illustrated in Table 4, the intra-shot, flip, and
neighbouring shot shuffles strategies score close to the TVSum baseline performance in both models.
In the case of the SumMe dataset, they invariably improve the performance of the model.

The Fixed Segment Shuffle and Global level shot shuffling improve model performances across TVSum
and SumMe. In particular, PGL-SUM shows an improvement on the Kendall correlation coefficient
of 9.7% using the Fixed Segment Shuffle and 8.6% using the Global level shot shuffling on the TVSum
dataset. A notable point is that the shuffling strategies improved the correlation score over the SumMe
dataset significantly in the case of VASNet with positional encoding, especially when using the Fixed
Segment Shuffling, but not as significantly in the case of PGL-SUM.

(a) PGLSum: TVSum (b) VASNet: TVSum

(c) PGLSum: SumMe (d) VASNet: SumMe

Figure 2: The Results of the Data Augmentation Experiment. The orange shows the extent to which the
models exhibited an improved Correlation Coefficient. As seen here, both PGLSUM and VASNet recorded an
improvement, while this improvement was larger in the case of the SumMe dataset.

Temporal Perturbation as Data augmentation. The improvements recorded on the Kendall
correlation scores using the Fixed Segment Shuffles and Shot Level Shuffles strategies could be because
they provide different views on the same data. One could assume that permuting fixed shots and
segments provides multiple cuts over the same long video, presenting a different narrative each time.
In other computer vision tasks such as image classification, such modifications like cutting parts of an
image or flipping the image are used as data augmentation strategies to address data limitations. Along
these lines, we tested whether these strategies can function as data augmentation since they appear to



work similarly. As an extension to the previous experiment, we combine the flip and the fixed segment
perturbations and present the model with a probability of receiving shuffled data. These two strategies
were chosen as they introduce a change both globally (Flip) and locally (Fixed Segment Shuffle). The
results in Figure 2 show that both models achieve an improved performance for both datasets.

6. Discussion

Given that the results without temporal information are already comparable to the human baseline
(0.170 for the MLP model vs 0.177 for the human baseline in terms of their Kendall correlation in the
case of TVSum), we checked for which percentage of the predictions made by one baseline model (in
this case the MLP) correlated well with human summaries. Assuming an acceptability threshold for the
Kendall correlation informed by the human baseline of 0.15, we see that this is achieved by 52% videos
of the TVSum dataset (26 out of 50) and 20% of the SumMe dataset (5 out of 25). This indicates that a
notable portion of each dataset may not require temporal context. However, this could also indicate
that simply correlating between model predictions and human labels may not adequately measure a
model’s capacity to summarise videos based on context.

The improvements seen when we introduce the Shot level Shuffles and the Fixed Segment Shuffles could
indicate that short-term temporal context may benefit the model to a certain extent. This behaviour
could be explained by the labeling strategy employed by the TVSum dataset, since the annotators were
presented with video shots in a random order. The improvements recorded over the SumMe dataset
especially highlight the data scarcity issue that plagues supervised video summarization, as a simple
strategy improving the performance is quite indicative of this effect.

7. Conclusion

A key aspect of creating video summaries resides in deciding what should be included based on past
and future context. Supervised video summarization models should learn to use temporal context to
predict what is, and what is not, relevant to the final summary. The results indicate that temporal
context provides a limited benefit towards supervised video summarization and that short temporal
dependencies may be useful for the TVSum and SumMe benchmark datasets. More crucially, the results
of our experiments suggest that models that lack temporal context achieve competitive scores on the
video summarization benchmark datasets. Jointly, our findings underscore the need for future work to
concretely evaluate the potential static biases that may prevail in these benchmarks. More vitally, we
need to consider the temporal bias not only when designing new methods, but also when we create new
benchmark datasets. These new benchmark datasets for summarization should also consider temporal
information.
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A. Differences between Shuffled and Original Video Sequences
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Flip 1 0.15

Intra Shot Shuffle 3 100.00
Fixed Segment Shuffle 3 11.03

Neighbouring Shot Shuffle 3 58.15
Whole Shot Shuffle 3 6.43
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Table 6
The Levenshtein distance of multiple shuffles for the SumMe Dataset. A lower score implies that there has been
a significant change between the sequences.

Shuffle type Shuffle Iterations Levenshtein Distance (scaled to 100)
Flip 1 0.19

Intra Shot Shuffle 3 100.00
Fixed Segment Shuffle 3 18.79

Neighbouring Shot Shuffle 3 59.71
Whole Shot Shuffle 3 13.22

the original and that videos with their shots shuffled internally have no difference with their unshuffled
counterparts.

B. Shot Division in Downsampled inputs

Both the TVSum and SumMe datasets provided shot-boundaries which were created utilising the Kernel
temporal segmentation algorithm. These shot boundaries were computed using the full sequence of
inputs and given as indices where a shot starts or ends . For e.g Shot 1 could be between (0, 12) can
be between the frame indices of 0 to 12. However, the processed sequences used for training and
evaluation of the models were sub-sampled by skipping every fifteenth frame. Therefore, to assign
which index belongs to which shot, we simply multiply each index by 15 in the sub-sampled sequence
and then assigned to which shot boundary in the original sequence based on the boundaries provided.
An example of this is illustrated of this as follows; Assume we have a subsampled sequence of 9 frames,
lets arrange this as an index [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ], lets assume the shot boundaries provided by the
original videos to be (0, 12), (13, 60), (61, 106), (107, 120). Then we multiply the subsampled index by 15
[0, 15, 30, 45, 60, 75, 90, 105, 120 ], then the final shots assigned are as [0, 1, 1, 1, 1, 2, 2, 2, 2, 3 ]

C. Experimental Configurations

C.1. Shared Hyperparameters

All of the models were trained with the following set of hyperparameters shared between them

1. Epochs: 50
2. Weight decay: 1e-5
3. Gradient Norm Clipping: 3
4. Learning rate: 5e-5
5. Optimizer: Adam
6. Input Dimensions: 1024

C.2. MLP and Attention

For the temporally invariant baselines, the hyper-parameters for each model are listed as follows. The
main observations relate to the batch size of 128 with a learning rate of 5e-5 and the ADAM optimizer
to train the model.

• Self Attention configuration

– Self Attention Linear projection dimension: 1024
– FeedForward Neural Network dimensions: 1024
– Number of heads: 1
– Drop-out: 0.5



The Multi-layer perceptron architecture used in this work is described as follows:

class MLPM(nn.Module):
def __init__(self,dim=1024,pos_enc=False):

super(MLPM,self).__init__()
self.m = 1024
self.hidden_size = dim
self.ka = nn.Linear(in_features=self.m, out_features=1024)
self.kd = nn.Linear(in_features=self.ka.out_features, out_features=1)
self.layer_norm_ka = LayerNorm(self.ka.out_features)
self.relu = nn.ReLU()
self.drop50 = nn.Dropout(0.5)
self.sig = nn.Sigmoid()
self.pos_enc = pos_enc

C.3. PGL-SUM

The PGL-SUM architecture was directly taken from the code provided by Apostolidis et al[4]. We take
the configuration specified in the code which is as follows

• Number of heads:

– Local attention: 4
– Global attention: 8

• Number of Segments: 4
• Absolute positional encoding frequency : 10000
• Fusion Strategy: Addition
• Drop-out: 0.5

D. Cosine Similarity versus Ground Truth Differences visualizations

These are some of the visualizations of the frame-wise cosine similarity of the CNN features of a video
versus the absolute differences between the ground truth importance score given in each of the datasets.
We chose these examples to showcase the relationships between them



(a) Ground Truth Differences (b) Framewise Cosine Similarity

Figure 3: Heatmap of Video 32 of the TVSum Dataset
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