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Abstract

This work explores the efficacy of symbolic knowledge-extraction (SKE) techniques in identifying biases

and unfairness within opaque predictive models. Logic rules extracted from black-box predictors make it

possible to verify if decisions are influenced by protected or sensitive features. In particular, the identifi-

cation of biased or unfair decisions can be achieved through the evaluation of if-then rules, detecting

the inclusion of protected and/or sensitive information in the rules’ precondition. The effectiveness of

SKE in this regard is demonstrated here by conducting various simulations on a well-known data set

for loan grant prediction. Our findings highlight the potential of SKE as a valuable tool to reveal biases

and discrimination in opaque predictions, ultimately contributing to the pursuit of fair and transparent

decision-making systems.
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1. Introduction

As predictive models become increasingly integrated into various domains, ensuring their fair-

ness and transparency is of paramount importance [1]. Opaque predictive models in machine

learning (ML), often referred to as black-box models, pose challenges in understanding the

underlying mechanisms by which they make predictions. Consequently, biases and discrim-

ination can inadvertently permeate these models, leading to unfair or prejudiced outcomes

[2]. To address this critical issue, the present paper investigates the application of symbolic

knowledge-extraction (SKE) techniques in uncovering biases and discrimination within opaque

predictive models.

SKE offers a promising avenue to extract interpretable logic rules from black-box models, en-

abling a deeper understanding of decision-making [3, 4]. By distilling complex model behaviours

into human-readable rules, SKE facilitates the identification of specific conditions under which

biases may arise. This approach proves particularly valuable when examining whether pro-

tected features play a role in decision-making since the presence of protected information in the
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preconditions of extracted rules can provide direct evidence of bias. The same considerations

may also extend to sensitive features, e.g., those that are not protected themselves but are

related to other features identified as protected (e.g., name or height, which allow ML models

to infer race and/or gender of individuals; [5, 6, 7]). We point out that identifying correlations

between protected/sensitive features and other input variables is not within the scope of SKE

techniques, nor is the recognition of protected/sensitive attributes in the rule preconditions
1
.

The classification of input features into “unfairness-enablers” and “potentially-fairness-neutral”

should be performed by human users as an independent task.

The main objective of this paper is to demonstrate the effectiveness of SKE in identifying

unfairness and discrimination within opaque predictions. To achieve this, we employ a well-

known classification data set aimed at predicting loan grants. We conduct various simulations to

illustrate how SKE can be exploited to extract logic rules and evaluate their fairness implications.

Through these examples, we aim to shed light on the potential of SKE as a practical tool for

highlighting biases and promoting fairness in predictive modelling.

By revealing biases and discrimination present in opaque predictive models, this research

contributes to the broader discourse on fairness, accountability, and transparency in algorithmic

decision-making. Understanding and rectifying biases in these models are crucial steps towards

building equitable systems that mitigate the perpetuation of societal inequalities. The insights

gained from this study serve as a foundation for developing strategies to enhance fairness in

predictive models and promote the responsible deployment of artificial intelligence (AI) in

critical domains.

In the following sections, we will discuss the methodology employed for SKE, present the

results of our experiments, and discuss the implications and potential future directions of

this research. By critically examining the power of SKE in identifying biases, we hope to

provide practical insights and actionable recommendations for researchers, practitioners, and

policymakers working towards fair and transparent predictive models.

2. Related Works

Several studies have explored different approaches and methodologies to address bias in AI.

One line of research focuses on rule-based techniques for bias detection and explanation

[8, 9]. These studies aim to extract interpretable rules from black-box models and analyse

them for potential biases. For instance, in [8] the authors have proposed algorithms mining

association rules or decision trees to identify discriminatory patterns in the rule sets generated

by predictive models. These approaches often leverage fairness criteria or sensitive attribute

definitions to guide the rule extraction process.

Another area of related work involves the use of fairness-aware machine learning techniques

[10, 11]. These approaches aim to incorporate fairness considerations during the model training

phase, ensuring that the resulting predictions are less likely to be biased. Fairness-aware

algorithms often employ mathematical optimisation techniques to balance predictive accuracy

1

In the following, we adopt the terms “protected” and “sensitive” as synonyms, since the considerations discussed in

this work apply to both categories



and fairness objectives, taking into account various fairness definitions such as demographic

parity [12], equalised odds [13], or individual fairness [14].

Furthermore, researchers have explored post-hoc methods to detect and mitigate biases in

predictive models [15, 16]. These methods involve analysing the outcomes of model predictions

on different subgroups defined by sensitive attributes, such as race, gender, or age. By quantifying

and comparing the disparities in prediction outcomes across subgroups, these techniques can

help identify and address discriminatory behaviour in models.

SKE techniques, including rule extraction and logic rule analysis, have been used in various

domains to interpret and understand black-box models [17, 18, 19, 20]. However, thus far, their

specific application for bias and discrimination identification in opaque predictions has not

gained much attention. The proposed research aims to contribute to this body of work by

demonstrating the effectiveness of SKE in uncovering biases and discrimination and providing

insights into its practical application for fairness assessment in predictive models.

Through a comprehensive review of existing related work, this paper will situate SKE methods

within the broader context of bias detection and fairness assessment in predictive modelling.

It will build upon and extend the current knowledge by showcasing the unique capabilities

of SKE techniques in addressing biases and discrimination in opaque predictive models, thus

contributing to the growing literature on fair and transparent algorithmic decision-making.

3. Symbolic Knowledge Extraction: Methods and Methodology

SKE is a methodology aiming to extract interpretable and logic rules from complex black-box

models, enabling a deeper understanding of their decision-making processes. There are two

main approaches within SKE: pedagogical and decompositional [21].

In the pedagogical approach, the focus is on extracting human-readable rules providing mean-

ingful explanations of the model’s behaviour. These rules are often represented in if-then format,

making them easily understandable by both humans and machines. The pedagogical approach

prioritises generality, allowing stakeholders to gain insights into the decision criteria employed

by any predictive model, even though the explanations may lose some of the underlying model’s

complexity and performance.

On the other hand, the decompositional approach aims to decompose the black-box model

into simpler, more interpretable sub-models or components that are typically easier to under-

stand and analyse individually. The inner black-box structure is carefully analysed and the

resulting explanations may be more adherent to the underlying model behaviour. However,

these techniques are strictly tailored to narrow categories of predictors, thus lacking flexibility

and generality.

Since both approaches generate intuitive explanations that can be easily communicated and

understood by a broader audience, this work prioritises bias evaluations independent of the

underlying predictive model. Therefore, we exploit pedagogical approaches as the main tools

for our experiments.

In the following, we provide a summary of some state-of-the-art pedagogical SKE techniques

– namely, GridEx, CART and CReEPy – offering insights into the specific techniques employed

in the experimentation section.



We leverage the implementations available within the PSyKE Python package
2

[22, 23]. This

library encompasses all the aforementioned SKE implementations, allowing for their seamless

comparison and evaluation [24]. The PSyKE platform offers a unified interface, enabling

the application, assessment, and comparison of various SKE techniques. Moreover, it is fully

compatible with other widely-used Python packages [25], such as Scikit-Learn [26], and provides

additional extensions for SKE [27] and functionalities for feature engineering, data manipulation

and visualisation, Semantic Web compatibility [28], and assessment of knowledge quality

[29, 30].

3.1. GridEx

GridEx [31] is a pedagogical SKE algorithm originally designed for regression tasks and based

on hypercubic partitioning of the input feature space. The partitioning is recursive, symmetric

and performed top-down to obtain human-interpretable rules describing as many disjoint,

hypercubic input space subregions. Thanks to the generalisation presented in [32, 33], it is

possible to apply GridEx to both classification and regression tasks if they are encoded via data

sets having only continuous input features.

GridEx requires the following set of hyper-parameters to be defined by users:

recursion depth defining the maximum number of recursions to perform during the knowl-

edge extraction;

splitting strategy to partition the input space. It may be fixed, if each input dimension is

split into a fixed number of partitions, or adaptive if the number of splits depends on the

relevance of the features;

number of splits defining how many slices have to be performed along each input dimension;

error threshold used to decide on which regions the recursive step of the algorithm has to be

performed. In particular, only regions with a predictive error greater than the user-defined

threshold are recursively split.

This set of parameters may be automatically tuned with the PEDRO procedure [34].

3.2. CART

The CART algorithm [35] is based on the induction of a classification or regression binary

decision tree. It may be directly applied to a data set to build a human-interpretable predictor

(if the induced tree is not deep) or it may be adopted as an SKE technique to produce human-

interpretable rules mimicking the behaviour of an opaque ML model. Human-interpretable rules

are obtained by reading the complete paths from the tree root to each distinct leaf, given that

internal nodes represent constraints on input variables and leaves contain output predictions.

The most important parameters to consider for CART are:

maximum depth defining the maximum allowed depth for the decision tree;

2
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maximum number of leaves defining the maximum allowed number of tree leaves.

These two parameters are intertwined and both the predictive accuracy and the human-

readability extent of the tree critically depend on them. In particular, deep trees usually exhibit

higher predictive performance but smaller human-readability extent than shallow ones. The

same holds for trees with a large number of leaves compared to trees with fewer leaves.

3.3. CReEPy

The CReEPy algorithm [36, 37] is a pedagogical SKE technique applicable to opaque classifiers

and regressors. It relies on underlying explainable clustering procedures aimed at identifying

hypercubic human-interpretable regions within the input feature space [38, 39]. At the end of

the knowledge extraction, each hypercubic region is translated into a Prolog rule describing the

boundaries of the region and the corresponding output prediction.

Suitable explainable clusterings adopted by CReEPy are CREAM [40] and ExACT [41]. They

both perform hierarchical clustering according to different recursive strategies and require the

following parameters, possibly tuned with the OrCHiD automated procedure [40]:

recursion depth defining the maximum number of performed recursions;

maximum number of Gaussian components defining the maximum number of compo-

nents to use in the Gaussian mixture model clustering performed within ExACT and

CREAM;

error threshold used to pre-emptively stop the recursive clustering when clusters exhibit a

predictive error smaller than the threshold.

To execute CReEPy users have to provide the parameters required by the underlying instance

of ExACT or CREAM as well as an optional feature relevance threshold used to drop from

the output Prolog rules all the antecedents involving input features with relevance below the

threshold.

4. Experiments

4.1. Running Example: the Loan Data Set Case Study

We selected the Loan data set
3

as a case study to carry out experiments and verify if SKE

techniques are effective tools to identify discriminative predictions provided by opaque models.

The data set is composed of 11 input features representing relevant variables to decide if a

loan should be granted or not. The final decision is the binary output feature. The data set is

completed by an additional feature representing a unique identification code for each loan. The

data set counts 614 instances. Only 480 have no missing values. The names, types, and values

of the features are reported in Table 1.

3
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Table 1

Loan data set features.

Feature name Type Values

Gender Binary, nominal Female, Male

Married Binary, nominal No, Yes

Dependents Discrete, nominal 0, 1, 2, 3+

Education Binary, nominal Graduate, Not graduate

Self employed Binary, nominal No, Yes

Applicant income Numeric from 150 to 81000

Coapplicant income Numeric from 0 to 33837

Loan amount Numeric from 9 to 600

Loan amount term Discrete, numeric 9 distinct values between 36 and 480

Credit history Binary, numeric 0, 1

Property area Discrete, nominal Rural, Semiurban, Urban

Loan status Binary, nominal No, Yes

In conducting the experiments presented in this study, instances in the data set that contained

missing values were excluded, and nominal attributes were converted into discrete numeric

features.

To evaluate the fairness of the data sets and opaque predictors, we employed the disparate

impact index [42]. This metric measures the extent of differential treatment between two distinct

groups, specifically by quantifying the proportion of individuals from each group who receive

positive outcomes. The disparate impact index serves as a quantitative measure of the disparate

treatment experienced by individuals from different classes.

The calculation of the disparate impact index involves grouping the instances in a data set 𝒮
into two subgroups: a privileged (or base) group 𝒮𝑃

and an unprivileged (or protected) group

𝒮𝑈
, typically affected by fairness concerns. Formally,

𝒮 =
{︁
𝑥𝑖 : 𝑥𝑖 = (𝑥1𝑖 , 𝑥

2
𝑖 , . . . , 𝑥

𝑑
𝑖 )
}︁
,

where 𝑥1𝑖 , 𝑥
2
𝑖 , . . . , 𝑥

𝑑
𝑖 are the 𝑑 features of instance 𝑥𝑖 and

𝒮𝑃 = {𝑥𝑖 : 𝑥𝑖 ∈ 𝒮 ∧ 𝑥𝜋𝑖 = ⊕} ,

𝒮𝑈 = {𝑥𝑖 : 𝑥𝑖 ∈ 𝒮 ∧ 𝑥𝜋𝑖 = ⊖} ,

by assuming that the sensitive feature 𝜋 have values in {⊕,⊖}, with 𝑥𝜋 = ⊕ representing the

membership to the privileged group.

For each group, the ratio of positive outcomes to the total number of individuals is computed.

Subsequently, the disparate impact index, denoted as 𝐷𝐼 , is defined as follows:

𝐷𝐼 =

⃒⃒{︀
𝑥𝑖 : 𝑥𝑖 ∈ 𝒮𝑈 ∧ 𝛾(𝑥𝑖) = ⊙

}︀⃒⃒
|𝒮𝑈 |⃒⃒{︀

𝑥𝑖 : 𝑥𝑖 ∈ 𝒮𝑃 ∧ 𝛾(𝑥𝑖) = ⊙
}︀⃒⃒

|𝒮𝑃 |

, (1)



Table 2

DI scores calculated for the Loan data set and the corresponding predictions generated by RF classifiers.

* denotes “any possible value”.

Male Female 𝐷𝐼
Loan outcome * Yes No * Yes No index

Data set (original) 394 278 116 86 54 32 0.890

Data set (28% perturbed) 394 278 116 86 39 47 0.643

Data set (56% perturbed) 394 278 116 86 24 62 0.396

Data set (83% perturbed) 394 278 116 86 9 77 0.148

RF (original) (accuracy = 0.79) 394 333 61 86 72 14 0.991

RF (28% perturbed) (accuracy = 0.75) 394 336 58 86 58 28 0.791

RF (56% perturbed) (accuracy = 0.79) 394 336 58 86 5 81 0.068

RF (83% perturbed) (accuracy = 0.79) 394 335 59 86 1 85 0.014

where 𝛾(𝑥𝑖) represents the output of instance 𝑥𝑖 and ⊙ is the positive output.

In our experimental setup, we specifically focus on the scenario of gender discrimination

(𝜋 = 𝑔𝑒𝑛𝑑𝑒𝑟). Consequently, we designate female individuals as the unprivileged group

(⊖ = 𝑓𝑒𝑚𝑎𝑙𝑒) and male individuals as the privileged group (⊕ = 𝑚𝑎𝑙𝑒). This choice allows us

to investigate and analyse potential biases and disparities that may affect females within the

context of the studied predictive models. In our case study 𝛾 is a function denoting the approval

or denial of a loan (therefore, 𝑙𝑜𝑎𝑛(𝑥) = 𝑦𝑒𝑠 corresponds to a positive outcome). The 𝐷𝐼 is

accordingly defined as follows:

𝐷𝐼 =

⃒⃒⃒{︁
𝑥𝑖 : 𝑥𝑖 ∈ 𝒮 ∧ 𝑥𝑔𝑒𝑛𝑑𝑒𝑟𝑖 = 𝑓𝑒𝑚𝑎𝑙𝑒 ∧ 𝑙𝑜𝑎𝑛(𝑥𝑖) = 𝑦𝑒𝑠

}︁⃒⃒⃒
⃒⃒⃒{︁
𝑥𝑖 : 𝑥𝑖 ∈ 𝒮 ∧ 𝑥𝑔𝑒𝑛𝑑𝑒𝑟𝑖 = 𝑓𝑒𝑚𝑎𝑙𝑒

}︁⃒⃒⃒
⃒⃒⃒{︁
𝑥𝑖 : 𝑥𝑖 ∈ 𝒮 ∧ 𝑥𝑔𝑒𝑛𝑑𝑒𝑟𝑖 = 𝑚𝑎𝑙𝑒 ∧ 𝑙𝑜𝑎𝑛(𝑥𝑖) = 𝑦𝑒𝑠

}︁⃒⃒⃒
⃒⃒⃒{︁
𝑥𝑖 : 𝑥𝑖 ∈ 𝒮 ∧ 𝑥𝑔𝑒𝑛𝑑𝑒𝑟𝑖 = 𝑚𝑎𝑙𝑒

}︁⃒⃒⃒
. (2)

As reported in the first row of Table 2, 394 out of 480 instances describe loans demanded by

male applicants. The remaining 86 instances correspond to female applicants. Even if the gender

attribute is not balanced, it is possible to observe that loans are fairly granted to female and male

applicants. Indeed, 278 out of 394 male applicants receive the loan, as well as 54 out of 86 female

applicants. This corresponds to the 71% and 63% of male and female applicants, respectively.

By applying Equation (2) it is possible to find a disparate impact score of 0.89, corresponding

to a quite fair situation. We recall here that 𝐷𝐼 = 1 denotes a perfectly fair situation. Lower

score values are associated with unfair conditions. A score of 0.8 is usually considered the

threshold to divide fairness (𝐷𝐼 > 0.8) from unfairness (𝐷𝐼 < 0.8). As a consequence of all

these observations, we consider the Loan data set fair from the gender standpoint.

The distribution of the output feature of the data set with respect to the gender attribute is

visually presented in Figure 1a. The x-axis represents the credit history input feature, which is

considered the most significant for classification purposes. Gender is reported in the y-axis. The



Table 3

Parameters adopted to perform knowledge extraction with CART, GridEx and CReEPy from the RF

classifiers trained on the Loan data set.

Extractor Parameters

CART Maximum depth = 2

Maximum leaf amount = unbounded

GridEx Maximum recursion depth = 1

Splitting strategy = adaptive

Spits = 3 along the most relevant input feature

2 along the second most relevant input feature

1 along the other input features

Error threshold = 0.1

CReEPy Underlying clustering = CREAM

Maximum recursion depth = 3

Maximum Gaussian components = 2

Error threshold = 0.01

size of the circles corresponds to the number of instances in each subregion of the input feature

space. Orange circles indicate granted loans, whereas green circles indicate denied loans.

4.2. SKE on the Loan Data Set: Uncovering Insights and Patterns

A random forest (RF) classifier has been trained upon the Loan data set. The data set has been

randomly split into training (85%) and test (15%) sets. The RF predictor was composed of 50

base decision trees having a maximum depth of 5 and achieved a classification accuracy equal

to 0.79. The decision boundaries of the RF classifier are reported in Figure 1e as a bidimensional

projection on the credit history and gender input features.

The RF can be considered a fair predictor since its disparate impact score is equal to 0.99

(cf. first row of the bottom part of Table 2). It is worth mentioning that fairness is not directly

associated with classification accuracy. In this particular case, despite the RF classifier’s pre-

dictive performance not being excellent, it is noteworthy that it demonstrates a high level

of fairness from a gender perspective. Fairness, in this context, refers to the absence of bias

or discrimination based on gender, regardless of the classifier’s overall accuracy in making

predictions.

The goal of our experiments is to demonstrate if SKE techniques can be used to detect unfair

opaque predictors. To this purpose, we use the CART, GridEx and CReEPy algorithms to

perform knowledge extraction on the trained RF classifier. Extractors have been parametrised

as summarised in Table 3. The number of extracted rules, as a proxy of the human-readability

extent of the models, and the fidelity measured for each extractor with respect to the RF

predictions, expressed as classification accuracy, have been reported in Table 4. All extractors

can achieve a fidelity of 0.99 with 2 rules.

The decision boundaries obtained via CART, GridEx and CReEPy are reported in Figures 1i,

1m and 1q, respectively. The corresponding Prolog rules are shown in Listings 1 to 3, respectively.



(a) Loan data set (origi-

nal, fair 𝐷𝐼 score).

(b) Loan data set (28%

perturbed, unfair

𝐷𝐼 score).

(c) Loan data set (56%

perturbed, unfair

𝐷𝐼 score).

(d) Loan data set (83%

perturbed, unfair

𝐷𝐼 score).

(e) RF (original, fair

𝐷𝐼).

(f) RF (28% perturbed,

fair 𝐷𝐼 score).

(g) RF (56% perturbed,

unfair 𝐷𝐼 score).

(h) RF (83% perturbed,

unfair 𝐷𝐼 score).

(i) CART (original). (j) CART (28% per-

turbed).

(k) CART (56% per-

turbed).

(l) CART (83% per-

turbed).

(m) GridEx (original). (n) GridEx (28% per-

turbed).

(o) GridEx (56% per-

turbed).

(p) GridEx (83% per-

turbed).

(q) CReEPy (original). (r) CReEPy (28% per-

turbed).

(s) CReEPy (56% per-

turbed).

(t) CReEPy (83% per-

turbed).

Figure 1: Visualisation of loan data set output distribution with respect to the most relevant input

feature (i.e., credit history) and the gender feature. The circle sizes represent the number of instances for

each input coordinate pair. Decision boundaries are illustrated for an RF opaque predictor and various

SKE techniques. Columns progressively demonstrate increasing bias and discrimination, indicated by a

greater number of loans denied to female applicants.



Table 4

Predictive performance and human-readability extent of all SKE techniques applied to the described RF

classifiers.

Opaque predictor Extractor Fidelity Extracted rules

RF (original) CART 0.99 2

GridEx 0.99 2

CReEPy 0.99 2

RF (28% perturbed) CART 0.99 2

GridEx 0.99 2

CReEPy 0.99 2

RF (56% perturbed) CART 0.97 3

GridEx 0.97 3

CReEPy 0.97 2

RF (83% perturbed) CART 1.00 3

GridEx 1.00 3

CReEPy 1.00 3

Listing 1: Rules extracted with CART for the Loan data set (original and 28% perturbed data set).

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory < 0.5.

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES).

Listing 2: Rules extracted with GridEx for the Loan data set (original and 28% perturbed data

set).

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory in [0.00, 0.33].

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES) :-
CreditHistory in [0.67, 1.00].

Listing 3: Rules extracted with CReEPy for the Loan data set (original).

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory in [0.00, 0.00].

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES).

The three SKE algorithms reveal that the predictions made by the RF model are solely

influenced by the credit history input feature. Irrespective of the applicants’ gender, loans are

granted to individuals with a positive credit history (credit history = 1), while they are denied

to those with a negative credit history (credit history = 0). The SKE techniques confirm the RF’s

fair behaviour concerning the applicants’ gender, as the predictions are solely driven by the

credit history attribute and are independent on gender.



Listing 4: Rules extracted with CReEPy for the Loan data set (28% perturbed).

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES) :-
CreditHistory in [1.00, 1.00].

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO).

4.3. Injecting Bias in the Loan Data Set

To inject bias, we perturbed the output feature of the Loan data set, which was originally fair

with respect to gender. The perturbation involved changing the loan status from ‘Yes’ to ‘No’ for

a variable number of female applicants. Specifically, we conducted three different perturbations,

modifying the positive loan outcome for 15, 30, and 45 female applicants. These numbers

correspond to 28%, 56%, and 83% respectively, of the total female applicants who originally had

a positive loan outcome in the unaltered data set.

The output feature distribution for the biased data sets is reported in Figures 1b to 1d and in

the top part of Table 2. The corresponding disparate impact measurements are reported in the

rightmost column of the same table. As expected, the score values decrease by increasing the

introduced bias, down to 0.15 for the most perturbed data set. Each data set has been used to

train an RF classifier with 50 base predictors having maximum depth equal to 5 and a measured

predictive accuracy on the test set varying between 0.75 and 0.79 (cf. bottom part of Table 2).

4.3.1. 28% Perturbed Data Set

The RF classifier trained upon the Loan data set with a perturbation involving 28% of the

positive female applicants has 𝐷𝐼 = 0.79, even though the biased data set has a lower score

(𝐷𝐼 = 0.64). This difference is due to the predictive error of the RF. There are no noticeable

differences in the decision boundaries of this RF compared to the one trained on the original

Loan data set (cf. Figures 1e and 1f). Also CART, GridEx and CReEPy applied to the RF provide

outputs similar to those obtained for the unbiased case study (see Figures 1j, 1n and 1r). The

only difference is the Prolog theory obtained via CReEPy, having the same semantics as the

unbiased counterpart, but different clauses. The theory is listed in Listing 4.

Also in this case the human-interpretable rules extracted via SKE techniques do not identify

discriminative predictions based on gender for the RF classifier and this is in agreement with

the corresponding disparate impact scores.

4.3.2. 56% Perturbed Data Set

A different situation is evident if we modify the data set in order to refuse the loan to the 56%

of female applicants that conversely should have received it. In this case, the disparate impact

score drops to 0.40 for the data set and to 0.07 for the corresponding trained RF. These values

highlight strong unfairness, especially for the RF predictions. The corresponding decision

boundaries are reported in Figure 1g. It is clearly visible that the loan is granted only to male

applicants having a positive credit history.

Decision boundaries obtained viaCART,GridEx andCReEPy and the corresponding extracted

rules expressed as Prolog theories are reported in Figures 1k, 1o and 1s and Listings 5 to 7,



Listing 5: Rules extracted with CART for the Loan data set (56% perturbed).

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory < 0.5.

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
Gender = ‘Female’.

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES).

Listing 6: Rules extracted with GridEx for the Loan data set (56% perturbed).

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory in [0.00, 0.33].

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES) :-
CreditHistory in [0.67, 1.00], Gender in [‘Male’].

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory in [0.67, 1.00], Gender in [‘Female’].

Listing 7: Rules extracted with CReEPy for the Loan data set (56% perturbed).

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES) :-
CreditHistory in [0.00, 0.00], Gender in [‘Male’].

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO).

Listing 8: Rules extracted with CART for the Loan data set (83% perturbed).

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
Gender = ‘Female’.

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory < 0.5.

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES).

respectively.

In this scenario, the credit history of the applicant remains the primary feature considered

during the prediction phase of the RF model. For instance, the initial split in the input feature

space performed by CART focuses on this attribute. However, the gender feature also plays a

role in predicting the outcomes for a subset of instances, specifically those with a good credit

history. As a result, the SKE techniques demonstrate their effectiveness in identifying unfair

predictors by revealing the influence of the gender attribute on outcomes within specific credit

history subgroups.

4.3.3. 83% Perturbed Data Set

Finally, we report here the results obtained for the Loan data set with a perturbation involving

83% of the female applicants receiving positive outcomes. The disparate impact scores for

this data set and the corresponding trained RF are equal to 0.15 and 0.01, respectively. The

scores highlight severe unfairness. Decision boundaries identified by the RF, CART, GridEx



Listing 9: Rules extracted with GridEx for the Loan data set (83% perturbed).

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory in [0.00, 1.00], Gender in [‘Female’].

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory in [0.00, 0.50], Gender in [‘Male’].

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES) :-
CreditHistory in [0.50, 1.00], Gender in [‘Male’].

Listing 10: Rules extracted with CReEPy for the Loan data set (83% perturbed).

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO) :-
CreditHistory in [0.00, 0.50], Gender in [‘Male’].

loan(Gender, Married, ..., CreditHistory, PropertyArea, YES) :-
CreditHistory in [0.50, 1.00], Gender in [‘Male’].

loan(Gender, Married, ..., CreditHistory, PropertyArea, NO).

and CReEPy are reported in Figures 1h, 1l, 1p and 1t, respectively. Prolog rules provided by the

SKE techniques are reported in Listings 8 to 10.

The extracted rules clearly emphasise the significant reliance of the RF predictions on the

gender feature. Despite the decision boundaries being the same as in the previous case study

with a 56% perturbation, in this instance gender is employed as the primary feature for decision-

making, followed by credit history as the secondary feature. Essentially, loans are primarily

granted or denied based on gender, with credit history playing a secondary role. The SKE

techniques effectively identify and reveal this unfair behaviour, presenting it to human users in

the form of interpretable logic rules.

5. Conclusion

This paper provides preliminary insights into the value of leveraging SKE techniques for studying

biases in AI predictors. The findings demonstrate the potential of SKE techniques, particularly

in analysing the relationships between decision outcomes and sensitive input attributes. This

work highlights the importance of considering the correlation between decisions and sensitive

attributes, such as gender, and how SKE can effectively identify and highlight these dependencies.

Looking ahead, future research will focus on further testing and refining the proposed ap-

proach. This will involve exploring the application of SKE techniques with proxy variables,

investigating intersectional discrimination, and employing counterfactual techniques. Addi-

tionally, the study will delve into the evaluation of different fairness metrics to gain a more

comprehensive understanding of bias and discrimination within predictive models.

Merging the field of AI fairness with explainable AI seems to be a promising approach. By

doing so, we can develop robust methodologies to mitigate biases and promote fairness in AI

systems. The ongoing exploration of SKE techniques holds great promise in fostering a more

equitable and unbiased landscape for AI decision-making.
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