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Abstract
Motivated by the recital (67) of the current corrigendum of the AI Act in the European Union, we propose and
present measures and mitigation strategies for discrimination in tabular datasets. We specifically focus on datasets
that contain multiple protected attributes, such as nationality, age, and sex. This makes measuring and mitigating
bias more challenging, as many existing methods are designed for a single protected attribute. This paper comes
with a twofold contribution: Firstly, new discrimination measures are introduced. These measures are categorized
in our framework along with existing ones, guiding researchers and practitioners in choosing the right measure
to assess the fairness of the underlying dataset. Secondly, a novel application of an existing bias mitigation
method, FairDo, is presented. We show that this strategy can mitigate any type of discrimination, including
intersectional discrimination, by transforming the dataset. By conducting experiments on real-world datasets
(Adult, Bank, COMPAS), we demonstrate that de-biasing datasets with multiple protected attributes is possible.
All transformed datasets show a reduction in discrimination, on average by 28%. Further, these datasets do not
compromise any of the tested machine learning models’ performances significantly compared to the original
datasets. Conclusively, this study demonstrates the effectiveness of the mitigation strategy used and contributes
to the ongoing discussion on the implementation of the European Union’s AI Act.
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1. Introduction

Discrimination in artificial intelligence (AI) applications is a growing concern since the adoption of
the AI Act by the European Parliament on March 13, 2024 [1]. It still remains a significant challenge
across numerous domains [2, 3, 4, 5]. To prevent biased outcomes, pre-processing methods are often
used to mitigate biases in datasets before training machine learning models [6, 7, 8, 9]. The current
corrigendum of the AI Act [1] emphasizes this in Recital (67):

“[...] The data sets should also have the appropriate statistical properties, including as regards
the persons or groups of persons in relation to whom the high-risk AI system is intended to be
used, with specific attention to the mitigation of possible biases in the data sets [...]”

Since datasets often consist of multiple protected attributes, pre-processing methods should be able
to handle these cases. However, only a few works have addressed this issue [7, 10, 11, 12, 13] and
de-biasing such datasets is still an ongoing research topic. In addition, there is no straightforward
approach to managing multiple protected attributes, as shown in Figure 1.

Our paper mainly focuses on how to measure and mitigate discrimination in datasets where multiple
protected attributes are present. In our first contribution, we provide a comprehensive categorization
of discrimination measuring methods. Besides introducing new measures for some of these cases, we
also categorize existing measures from the literature. Some of the listed measures specifically address
intersectional discrimination and non-binary groups. The second contribution deals with bias mitigation.
For this, we use our published pre-processing framework, FairDo [9], that is fairness-agnostic. The
fairness-agnostic property makes it possible to define any discrimination measure that should be
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Figure 1: Stick figures can be differentiated by their color and shape. In intersectional discrimination, attributes
are intersected, which leads to new subgroups. In non-intersectional, each attribute is treated independently, i.e.,
colors and shapes are not intersecting in this case.

minimized. By implementing the introduced measures, we can therefore mitigate biases for multiple
protected attributes. Another advantage of FairDo is that it preserves data integrity and does not
modify the features of individuals during the optimization process, unlike other methods [14, 3, 7].

We evaluated our methodology on popular tabular datasets with fairness concerns, such as Adult [15],
Bank [16], and COMPAS [17]. We used different discrimination measures to evaluate the effectiveness of
the bias mitigation process. Because a successful mitigation process does not guarantee that the outcomes
of machine learning models are fair, we trained machine learning models on the transformed datasets
and evaluated their predictions regarding fairness and performance. The code for the experiments can
be found in the accompanying repository: https://github.com/mkduong-ai/fairdo/evaluation.

The results of the bias mitigation process as well as the performance of the machine learning models
are promising. They indicate that achieving fairness in datasets with multiple protected attributes
is possible, and FairDo is a proper framework for this task. Overall, our work contributes technical
solutions for stakeholders to enhance the fairness of datasets and machine learning models, aiming for
compliance with the AI Act [1].

2. Preliminaries

To handle multiple protected attributes, we define 𝒵 = {𝑍1, . . . , 𝑍𝑝} as a set of protected attributes. It
can represent the set of sociodemographic features such as age, gender, and ethnicity. These factors
may make individuals vulnerable to discrimination. Each protected attribute 𝑍𝑘 ∈ 𝒵 is formally a
discrete random variable that can take on values from the sample space 𝑔𝑘. In this context, we refer 𝑔𝑘
to groups that describe distinct social categories of a protected attribute. For example, let 𝑍𝑘 represent
gender; then 𝑔𝑘 is a set containing the genders male, female, and non-binary. To avoid limitations to a
particular group fairness notion, we introduce a generalized notation based on the works of Žliobaitė
[2], Duong and Conrad [9] in the following.

Definition 2.1 (Treatment). Let 𝐸1, 𝐸2 be events and 𝑍𝑘 be a random variable that can take on values
from 𝑔𝑘, then we call the conditional probability

𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖)

treatment, where 𝑖 ∈ 𝑔𝑘 . 𝐸1 describes some favorable outcome, such as getting accepted for a job, while 𝐸2

often represents some additional information about the individual, such as their qualifications.

Definition 2.2 (Fairness Criteria). With the definition of treatment, we can define fairness criteria that
demand equal treatment for different groups. Let 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖) and 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗) be
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treatments, then we call the following equation:

𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖) = 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗)

a fairness criterion, for all 𝑖, 𝑗 ∈ 𝑔𝑘.

Definition 2.2 allows us to define various group fairness criteria, including statistical parity [18],
predictive parity [3], equality of opportunity [19], etc. They all demand some sort of equal outcome for
different groups and can be defined by configuring the events𝐸1, 𝐸2. For instance, statistical parity [18]
requires that two different groups have an equal probability of receiving a favorable outcome (𝑌 = 1).

Example 2.1 (Statistical Parity [18]). To define statistical parity for the attribute 𝑍𝑘 using our notation,
we set 𝐸1 := (𝑌 = 1) and 𝐸2 := Ω. By setting 𝐸2 to the sample space Ω, we compare the probabilities of
the event 𝑌 = 1 across different groups without conditioning on any additional event:

𝑃 (𝑌 = 1 | Ω, 𝑍𝑘 = 𝑖) = 𝑃 (𝑌 = 1 | Ω, 𝑍𝑘 = 𝑗)

⇐⇒ 𝑃 (𝑌 = 1 | 𝑍𝑘 = 𝑖) = 𝑃 (𝑌 = 1 | 𝑍𝑘 = 𝑗),

where 𝑖, 𝑗 ∈ 𝑔 represent different groups.

In real-world applications, achieving equal probabilities for certain outcomes is not always possible.
Due to variations in sample sizes in the groups, it is common to yield unequal treatments, even when
they are similar. Thus, existing literature [2] uses the absolute difference to quantify the strength of
discrimination.

Definition 2.3 (Disparity). Let 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖) and 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗) be two treatments, then we
refer to

𝛿𝑍𝑘
(𝑖, 𝑗, 𝐸1, 𝐸2) = |𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖)− 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗)|

as the disparity, for all 𝑖, 𝑗 ∈ 𝑔𝑘. Trivially, 𝛿𝑍𝑘
is commutative regarding 𝑖, 𝑗. In practice, it prevents

reverse discrimination due to the absolute value.

Definition 2.4 (Discrimination). We use𝜓 : D → R to denote some discrimination measure that quantifies
the discrimination inherent in any dataset 𝒟 ∈ D. A dataset 𝒟 consists of features, protected attributes,
and labels for each individual. The explicit form of 𝜓 depends on the cases introduced in Section 3.

3. Measuring Discrimination for Multiple Attributes

We found that numerous scenarios arise when dealing with multiple protected attributes. We categorize
these scenarios based on the number of groups, denoted as |𝑔|, and the number of protected attributes,
denoted as |𝒵|. By going through all cases, we present possible approaches from the literature as well
as our own suggestions to measure discrimination.

3.1. Single Protected Attribute (|𝒵| = 1)

In the case of having only one protected attribute, i.e., |𝒵| = |{𝑍1}| = 1, we distinguish between
cases by the number of available groups |𝑔| in the dataset. We categorize the cases by |𝑔| = 0, 1, 2, and
|𝑔| > 2.

3.1.1. No Groups (|𝑔| = 0)

When there are no groups, the measurement of discrimination is impossible if no assumptions are being
made. Discrimination can be assessed through proxy variables [20]; however, this approach can be
imprecise and may introduce new biases. This case is equivalent to having no protected attribute, i.e.,
|𝒵| = 0.



3.1.2. Single Group (|𝑔| = 1)

Similarly to the case of having no groups, discrimination cannot be measured when having only one
group. For this, we propose practices where prior information can be incorporated:

1. No discrimination: As no difference towards any other group can be measured, returning a
discrimination score of 0 is one viable option.

𝜓(𝒟) = 0. (1)

2. Difference to optimal treatment: Another way is to return the absolute difference of the group’s
outcome to the optimal treatment. For example, group 𝑖 has an 80% chance of receiving the favor-
able treatment. Ideally, having a 100% chance would represent the optimal scenario. Therefore,
the discrimination score is 20% in this case. It is given by:

𝜓(𝒟) = |𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖)− 1|. (2)

3. Difference to expected treatment: We can use the expected treatment as a reference point. For
example, we know that a company has a 50% acceptance rate for job applications. Now a machine
learning classifier is trained to predict whether an applicant will be accepted and the model’s
predictions result in a 60% acceptance rate for group 𝑖. Hence, the model is positively biased
towards group 𝑖 by 10%. This can be formulated as:

𝜓(𝒟) = |𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖)− 𝑝expect.|, (3)

where 𝑝expect. is the expected treatment. It can describe the average treatment across all groups [21]
or some other prior information that is not included in the dataset.

3.1.3. Binary Groups (|𝑔| = 2)

Without using any prior information, we can calculate the discrimination score by taking the absolute
difference between the treatments of the two groups, as advised by Žliobaitė [2]. The discrimination
measure 𝜓 is then simply given by the disparity as mentioned in Definition 2.3.

3.1.4. Non-binary Groups (|𝑔| > 2)

While the case for binary attributes is straightforward, it becomes non-trivial for non-binary attributes
that arise naturally in real-world data. We can fall back to |𝑔| = 2 by calculating the absolute difference
between every distinct group 𝑖, 𝑗 ∈ 𝑔. Because the discrimination between 𝑖 and 𝑗 is the same as
between 𝑗 and 𝑖, only

(︀|𝑔|
2

)︀
pairs need to be compared and we use an aggregation function agg(1) to

report the differences [2]. Lum et al. [22] refers to measures that aggregate or summarize discrimination
scores as meta-metrics. The aggregate can be the sum or maximum function, depending on the use case.
The result for a single protected attribute 𝑍𝑘 with two or more groups can be computed as follows:

𝜓(𝒟) = agg(1)

𝑖,𝑗∈𝑔𝑘,𝑖<𝑗
𝛿𝑍𝑘

(𝑖, 𝑗, 𝐸1, 𝐸2), (4)

where 𝛿𝑍𝑘
is the disparity as defined in Definition 2.3 and 𝑖 < 𝑗 ensures that each pair is considered

only once (assuming label-encoded groups). According to Žliobaitė [2] and her personal discussions
with legal experts, she advocates using the maximum function, i.e.,

𝜓(𝒟) = max
𝑖,𝑗∈𝑔𝑘,𝑖<𝑗

𝛿𝑍𝑘
(𝑖, 𝑗, 𝐸1, 𝐸2) (5)

= max
𝑖∈𝑔𝑘

𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖)−min
𝑗∈𝑔𝑘

𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗). (6)

Equation (5) describes the maximum discrimination obtainable between two groups. An alternative and
equivalent formulation is given in Equation (6) [7]. The latter is computationally more efficient as it
requires 𝒪(2|𝑔|) operations compared to 𝒪(|𝑔|2) operations for the former.



A more general approach to measuring discrimination is to calculate some form of correlation
coefficient between the protected attribute and the outcome. The correlation coefficient can be calculated
using Pearson’s correlation [23], Spearman or Kendall’s rank correlation [24, 25]. The discrimination
measure can then be defined as the absolute value of the correlation coefficient:

𝜓(𝒟) = |Corr(𝐸1, 𝑍𝑘)|. (7)

This approach can be applied to any number of groups. Fairlearn provides a pre-processing method
that removes the correlation between the protected attribute and the outcome by transforming the
data [7]. However, the given approach violates data integrity constraints as categorical attributes are
transformed into continuous values. Moreover, zero correlation does not imply independence between
two variables.

3.2. Multiple Protected Attributes (|𝒵| > 1)

There are several ways to measure discrimination for multiple protected attributes (|𝒵| > 1). Based
on the works of Kearns et al. [21], Yang et al. [11] and Kang et al. [13], we categorize them into two
approaches: intersectional and non-intersectional (see Figure 1). Intersectional approaches consider the
intersection of identities. The overlapping of such identities forms subgroups [21]. Non-intersectional
approaches treat each protected attribute independently [11].

3.2.1. Intersectional Discrimination

The central idea of intersectionality is that individuals experience overlapping forms of oppression or
privilege based on the combination of multiple social categories they belong to. In the following, we
will introduce definitions to formulate intersectional discrimination, which is based on the work of
Kearns et al. [21].

Definition 3.1 (Subgroup [21]). Let 𝒵 = {𝑍1, . . . , 𝑍𝑝} be a set of discrete random variables representing
protected attributes that can take on values from corresponding groups 𝑔1, . . . , 𝑔𝑝. A subgroup 𝑖 is defined
as 𝑖 = (𝑖1, . . . , 𝑖𝑝) ∈ 𝑔1× . . .×𝑔𝑝. In other words, a subgroup encompasses multiple groups from different
protected attributes.

Definition 3.2 (Subgroup Treatment). Let 𝑖 be a subgroup as defined in Definition 3.1 and let 𝒵 =
{𝑍1, . . . , 𝑍𝑝} be a set of discrete random variables. Subgroup treatment is then defined as:

𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖1, . . . , 𝑍𝑝 = 𝑖𝑝).

Definition 3.3 (Subgroup Disparity). Let 𝒵 = {𝑍1, . . . , 𝑍𝑝} be a set of discrete random variables. Let
𝑖, 𝑗 ∈ 𝑔1 × . . .× 𝑔𝑝 be two subgroups with 𝑖 = (𝑖1, . . . , 𝑖𝑝) and 𝑗 = (𝑗1, . . . , 𝑗𝑝). The disparity between
two subgroups is denoted as �̂�𝒵 and is given by:

�̂�𝒵(𝑖, 𝑗, 𝐸1, 𝐸2) = |𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖1, . . . , 𝑍𝑝 = 𝑖𝑝)− 𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑗1, . . . , 𝑍𝑝 = 𝑗𝑝)|.

Similarly to Equation (4), we can calculate the discrimination score for multiple protected attributes by
aggregating disparities across all subgroups. A subgroup can be treated like a normal group. According
to Definition 3.1, there are theoretically at least 2𝑝 subgroups, where 𝑝 is the number of protected
attributes. However, not all subgroups may be available in the dataset. For unavailable subgroups, the
disparity cannot be calculated as the corresponding treatment is undefined.

Let us denote the set of available subgroups as 𝐺avail ⊆ 𝑔1 × . . . × 𝑔𝑘. To finally capture the
discrepancies across all available subgroup pairs, an aggregation function agg(1) is applied to the
subgroup disparities �̂�𝒵 :

𝜓intersect(𝒟) = agg(1)

𝑖,𝑗∈𝐺avail

�̂�𝒵(𝑖, 𝑗, 𝐸1, 𝐸2). (8)



Table 1
Example dataset of individuals receiving a favorable (𝑌 = 1) or unfavorable (𝑌 = 0) outcome. The dataset
shows four individuals with their respective age group and sex.

Individual Age Sex Outcome (𝑌 )

1 Old Male 1
2 Old Female 0
3 Young Male 0
4 Young Female 1

Equation (8) represents the aggregated discrimination between all available subgroups in the dataset.
When using the maximum function as the aggregator, the calculations are equivalent to Equation (5)
and Equation (6). The only difference is that the conditionals are now subgroups instead of groups:

𝜓intersect(𝒟) = max
𝑖,𝑗∈𝐺avail

�̂�𝑍𝑘
(𝑖, 𝑗, 𝐸1, 𝐸2) (9)

= max
𝑖∈𝐺avail

𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖1, . . . , 𝑍𝑝 = 𝑖𝑝)− min
𝑗∈𝐺avail

𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑗1, . . . , 𝑍𝑝 = 𝑗𝑝).

Kang et al. [13] also dealt with intersectional discrimination in their work by introducing a multivariate
random variable 𝑍 where each dimension represents a protected attribute. Their fairness objective
is to minimize the mutual information between the outcome and the multivariate random variable.
By minimizing the mutual information, the outcome is independent of the protected attributes, which
is a desirable property for fairness [14, 26]. In this context, zero mutual information implies the
absence of intersectional discrimination [13]. However, this approach relies on expensive techniques to
approximate the mutual information. Using our notation, their formulation can be written as [13]:

𝜓MI(𝒟) = MI(𝐸1, 𝑍), (10)

where MI denotes the mutual information.

3.2.2. Non-intersectional Discrimination

The problem with measuring discrimination for intersectional groups is that it has an upward bias
when using meta-metrics [22]. This is because the number of subgroups grows exponentially with the
number of protected attributes. This leads to many subgroups where the number of samples in each
subgroup is possibly small, resulting in larger noise in the treatment estimates [22].

Besides intersectional groups, Yang et al. [11] listed a non-intersectional definition of groups, called
independent groups. Building on the definition of independent groups, we propose an appropriate
approach to measure discrimination for this type of groups. It is more suitable when dealing with a
large number of subgroups or when intersectional discrimination is not deemed important. Our non-
intersectional approach treats each protected attribute independently and aggregates the discrimination
scores across all protected attributes. For this, a second aggregate function with agg(2) is introduced,
yielding the following equation:

𝜓indep(𝒟) = agg(2)

𝑍𝑘∈𝒵

{︃
agg(1)

𝑖,𝑗∈𝑔𝑘,𝑖<𝑗
𝛿𝑍𝑘

(𝑖, 𝑗, 𝐸1, 𝐸2)

}︃
. (11)

The first-level aggregator agg(1) aggregates disparities within a protected attribute, considering unique
pairs of groups 𝑖 and 𝑗. The second-level aggregator agg(2) then combines the results across all protected
attributes. By applying both operators, we obtain a discrimination measure that captures disparities
between groups across multiple attributes.



3.2.3. Example

Let us consider a dataset with two protected attributes, age and sex (see Table 1). The set of protected
attributes is 𝒵 = {𝑍1, 𝑍2} = {Age, Sex} and the set of available subgroups in the dataset is 𝐺avail =
{Old, Young} × {Male, Female}. We measure discrimination using statistical disparity. For simplicity,
all aggregation functions are set to the maximum function. The intersectional approach yields the
following discrimination score:

𝜓intersect(𝒟) = max
𝑖,𝑗∈𝐺avail

�̂�𝒵(𝑖, 𝑗, (𝑌 = 1),Ω) (12)

= max
𝑖,𝑗∈𝐺avail

�̂�{Age, Sex}(𝑖, 𝑗, (𝑌 = 1),Ω)

= max
𝑖∈𝐺avail

𝑃 (𝑌 = 1 | 𝑍1 = 𝑖1, 𝑍2 = 𝑖2)− min
𝑗∈𝐺avail

𝑃 (𝑌 = 1 | 𝑍1 = 𝑗1, 𝑍2 = 𝑗2)

= |𝑃 (𝑌 = 1 | Age = Old, Sex = Male)− 𝑃 (𝑌 = 1 | Age = Young, Sex = Male)| = 1,

while the discrimination score for the non-intersectional approach is given by:

𝜓indep(𝒟) = max
𝑍𝑘∈𝑍

{︂
max

𝑖,𝑗∈𝑔𝑘,𝑖<𝑗
𝛿𝑍𝑘

(𝑖, 𝑗, (𝑌 = 1),Ω)

}︂
(13)

= max
{︀
𝛿Age(Old,Young, (𝑌 = 1),Ω), 𝛿Sex(Male, Female, (𝑌 = 1),Ω)

}︀
= max{|0.5− 0.5|, |0.5− 0.5|} = max{0, 0} = 0.

The non-intersectional approach yields a discrimination score of 0 because the disparities for both
protected attributes are 0. This is quite different from the intersectional approach, which reports a
discrimination score of 1. As seen, the results can differ depending on the approach.

4. Experiments

Our experimentation follows a pipeline consisting of data pre-processing, bias mitigation, model training,
and evaluation. To mitigate bias in tabular datasets with multiple protected attributes, we used the
sampling method, FairDo [9], that constructs fair datasets by selectively sampling data points. The
method is very flexible and only requires the user to define the discrimination measure that should be
minimized. In our case, we are interested in a dataset that has minimal bias across multiple protected
attributes. The experiments revolve around the following research questions:

• RQ1 Is it possible to yield a fair dataset with FairDo, where bias for multiple protected attributes
is reduced?

• RQ2 Are machine learning models trained on fair datasets more fair in their predictions than
those trained on original datasets?

4.1. Experimental Setup

Datasets and Pre-processing The tabular datasets employed in our experiments include the
Adult [15], Bank [16], and COMPAS [17] datasets. They are known for their use in fairness research and
contain multiple protected attributes. We pre-processed the datasets by applying one-hot encoding to
categorical variables and label encoding to protected attributes. Table 2 shows important characteristics
of the datasets after pre-processing.

Each dataset was divided into training and testing sets using an 80/20 split, respectively. We ensured
that the split was stratified (if possible) based on protected attributes to maintain representativeness
across different groups in both sets.



Table 2
Overview of Datasets

Dataset Samples Feats. Label Protected Attributes Description
Adult [15] 32 561 21 Income Race: White, Black, Asian-

Pacific-Islander, American-
Indian-Eskimo, Other
Sex: Male, Female

Indicates individuals
earning over $50,000
annually

Bank [16] 41 188 50 Term
deposit
subscription

Job: Admin, Blue-Collar,
Technician, Services, Manage-
ment, Retired, Entrepreneur,
Self-Employed, Housemaid,
Unemployed, Student, Unknown
Marital Status: Divorced,
Married, Single, Unknown

Shows whether the
client has subscribed
to a term deposit.

COMPAS [17] 7 214 13 2-year
recidivism

Race: African-American, Cau-
casian, Hispanic, Other, Asian,
Native American
Sex: Male, Female
Age Category: <25, 25-45, >45

Displays individuals
that were rearrested
for a new crime
within 2 years after
initial arrest.

Bias Mitigation Applying the bias mitigation method FairDo [9] to the datasets can be regarded as
a pre-processing step, too. This is because the method simply returns a dataset that is fair with respect
to the given discrimination measure. FairDo [9] offers a variety of options to mitigate bias, and we
chose the undersampling method that removes samples. In this option, the optimization objective is
stated as [9]:

min
𝒟fair⊆𝒟

𝜓(𝒟fair), (14)

where 𝒟 is the training set of Adult, Bank, or COMPAS, and 𝜓 is the fairness objective function. We
experimented with both 𝜓intersect and 𝜓indep as objectives functions. Bias mitigation is only applied to
the training set and the testing set remains unchanged. FairDo internally uses genetic algorithms to
select a subset of the training set that minimizes the objective function. We used the same settings and
operators as provided in the package and only adjusted the population size (200) and the number of
generations (400).

Model Training We utilized the scikit-learn library [27] to train various machine learning
classifiers, namely Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and
Artificial Neural Network (ANN). These classifiers were trained on both the original and fair datasets.
Classifiers trained on the original datasets serve as a baseline for comparison. We used the default
hyperparameters given by scikit-learn package for each classifier.

Evaluation Metrics We evaluated the models’ predictions on fairness and performance using the
test set. For fairness, we assessed 𝜓intersect and 𝜓indep. For the classifiers’ performances, we report the
area under the receiver operating characteristic curve (AUROC) [28], where higher values indicate better
performances. Because removing data points can compromise the overall quality of the data, we also
report the number of subgroups before and after bias mitigation to check for representativeness.

Trials For each dataset and discrimination measure combination, the bias mitigation process was
repeated 10 times. The results were averaged over the trials to obtain a more robust evaluation.

4.2. Results

Fair Dataset Generation Table 3 shows the average discrimination before and after mitigating
bias in the training sets. On all datasets, discrimination was reduced after applying FairDo. Without



Table 3
Average discrimination and number of subgroups before and after pre-processing the training sets with FairDo.

Dataset Metric Disc. Before Disc. After Subgroups Before Subgroups After
Adult 𝜓indep 20% 13% 10 10

𝜓intersect 31% 16% 10 10
Bank 𝜓indep 24% 5% 48 48

𝜓intersect 33% 15% 48 46.2
COMPAS 𝜓indep 30% 5% 34 34

𝜓intersect 100% 17% 34 28.8

considering group intersections, discrimination was reduced by 7%, 19%, and 25% for Adult, Bank, and
COMPAS, respectively. When considering intersectionality, the discrimination was reduced by 15%,
18%, and 83%. Hence, discrimination was reduced by 28% on average across all datasets, thus answering
RQ1 positively. When comparing the discrimination scores, it can be observed that the intersectional
discrimination scores are generally higher. This is because in the intersectional setting, more subgroups
are considered, which potentially leads to larger differences between them [21].

We also report the number of subgroups before and after bias mitigation to assess the impact of
the undersampling method on the dataset. The removal of subgroups can only be observed in the
intersectional setting. In the COMPAS dataset 5.2 out of 34 subgroups were removed on average,
indicating the largest amount of subgroups removed across all datasets. While the Bank dataset consists
of 48 subgroups, only 1.8 subgroups were removed on average. Because the COMPAS dataset’s initial
intersectional discrimination score is 100%, removing more subgroups seems inevitable to reduce bias.

Model Performance and Fairness Figure 2 shows the results of the classifiers’ performances on
the test set. The classifiers’ performances are displayed on the y-axis, while the discrimination values
are shown on the x-axis. We note that the axes do not share the same scale across the subfigures for
analytical purposes.

Classifiers trained on fair datasets did not suffer a significant decline in performance compared to
those trained on original datasets. In all cases, only a slight decrease of 1%-3% in performance can be
noted. This indicates that the bias mitigation process does not compromise the dataset’s fidelity and,
therefore, the classifiers’ performances. Regarding discrimination, a significant reduction is evident.
The x-axis scales are much larger than the y-axis scales, suggesting that changes in discrimination
are larger than changes in performance. For example, the RF classifier trained on the Bank dataset
(Figure 2g) shows a decrease in intersectional discrimination from 38% to 15%, while the performance
only decreases by 2%. Similar results can be observed for the other classifiers and datasets as well,
successfully addressing RQ2. The results suggest that FairDo can be reliably used to mitigate bias in
tabular datasets for various measures that consider multiple protected attributes. Still, we advise users
to carefully perform similar analyses when applying the method to their datasets.

5. Discussion

The results of our experiments show that the presented measures detect discrimination in datasets
with multiple protected attributes differently. When using the intersectional discrimination measure,
more groups are identified and compared to each other. While subgroups are not ignored by this
measure, measuring higher discrimination scores by random chance becomes more likely [21, 22]. In
contrast, treating each protected attribute separately prevents this issue but may lead to overlooking
discrimination. The choice of measure is up to the stakeholders and depends on the context of the dataset
and the regulations that apply to the AI system. We generally recommend using the intersectional
discrimination measure if the number of individuals in each subgroup is large enough to draw statistically
significant conclusions. Otherwise, treating each protected attribute separately is more suitable.

By using the mitigation strategy FairDo [9], the resulting datasets in the experiments have improved
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Figure 2: Results on the test set. The x-axis represents the discrimination values (legend indicates used
measure) and the y-axis represents the classifiers’ performances. We compare the pre-processed (fair)
data with the original data. The points/stars represent averages, and the error bars display the standard
deviations of the AUROC and discrimination values over 10 trials.

statistical properties regarding fairness. Whether intersectionality was considered or not, reducing
discrimination in datasets was possible. At the current state, the AI Act [1] does not explicitly mention
intersectional discrimination nor how to deal with multiple protected attributes generally. While recital
(67) states that datasets “should [...] have the appropriate statistical properties”, it does not specify what
these properties are. Hence, our work serves as an initial guideline for what these properties could be
and how to achieve them in practice.

6. Conclusion

Datasets often come with multiple protected attributes, which makes measuring and mitigating dis-
crimination more challenging. Most existing studies only deal with a single protected attribute, and
works that consider multiple protected attributes often focus on intersectionality. In opposition to
this, we proposed a new non-intersectional measure that treats each protected attribute separately.
This is more suitable when the number of subgroups is too large or the number of individuals in each
subgroup is small. We used both intersectional and non-intersectional measures as objectives and
applied the FairDo framework to mitigate discrimination in multiple datasets. The experiments show
that discrimination was reduced in all datasets and on average by 28%. Machine learning models trained
on the bias-mitigated datasets also improved their fairness while maintaining performance compared
to models trained on the original datasets.
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[2] I. Žliobaitė, Measuring discrimination in algorithmic decision making, Data Mining and Knowledge
Discovery 31 (2017) 1060–1089.

[3] M. B. Zafar, I. Valera, M. Gomez Rodriguez, K. P. Gummadi, Fairness beyond disparate treatment
& disparate impact: Learning classification without disparate mistreatment, in: Proceedings of the
26th International Conference on World Wide Web, 2017. doi:10.1145/3038912.3052660.

[4] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, A. Huq, Algorithmic decision making and the cost
of fairness, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 797–806.

[5] S. Barocas, M. Hardt, A. Narayanan, Fairness and Machine Learning, fairmlbook.org, 2019.
[6] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, S. Venkatasubramanian, Certifying and

removing disparate impact, in: proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, 2015, pp. 259–268.

[7] S. Bird, M. Dudík, R. Edgar, B. Horn, R. Lutz, V. Milan, M. Sameki, H. Wallach, K. Walker,
Fairlearn: A toolkit for assessing and improving fairness in AI, Technical Report MSR-
TR-2020-32, Microsoft, 2020. URL: https://www.microsoft.com/en-us/research/publication/
fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/.

[8] A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford, H. Wallach, A reductions approach to fair
classification, in: International Conference on Machine Learning, PMLR, 2018, pp. 60–69.

[9] M. K. Duong, S. Conrad, Towards fairness and privacy: A novel data pre-processing optimization
framework for non-binary protected attributes, in: D. Benavides-Prado, S. Erfani, P. Fournier-
Viger, Y. L. Boo, Y. S. Koh (Eds.), Data Science and Machine Learning, Springer Nature Singapore,
Singapore, 2024, pp. 105–120.

[10] J. R. Foulds, R. Islam, K. N. Keya, S. Pan, Bayesian Modeling of Intersectional Fairness: The Variance
of Bias, 2020, pp. 424–432. doi:10.1137/1.9781611976236.48.

[11] F. Yang, M. Cisse, S. Koyejo, Fairness with overlapping groups, in: Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Curran Associates
Inc., Red Hook, NY, USA, 2020.

[12] L. E. Celis, L. Huang, V. Keswani, N. K. Vishnoi, Fair classification with noisy protected attributes:
A framework with provable guarantees, in: M. Meila, T. Zhang (Eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, PMLR, 2021, pp. 1349–1361.

[13] J. Kang, T. Xie, X. Wu, R. Maciejewski, H. Tong, Infofair: Information-theoretic intersectional
fairness, 2022 IEEE International Conference on Big Data (Big Data) (2021) 1455–1464.

[14] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, C. Dwork, Learning fair representations, in: International
conference on machine learning, PMLR, 2013, pp. 325–333.

[15] R. Kohavi, Scaling up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid, KDD’96,
AAAI Press, 1996, p. 202–207.

[16] S. Moro, P. Cortez, P. Rita, A data-driven approach to predict the success of bank telemarketing,
Decision Support Systems 62 (2014) 22–31.

[17] J. Larson, J. Angwin, S. Mattu, L. Kirchner, Machine bias, 2016. URL: https://www.propublica.org/
article/machine-bias-risk-assessments-in-criminal-sentencing.

[18] T. Calders, F. Kamiran, M. Pechenizkiy, Building classifiers with independency constraints, in:
2009 IEEE International Conference on Data Mining Workshops, 2009, pp. 13–18. doi:10.1109/
ICDMW.2009.83.

[19] M. Hardt, E. Price, N. Srebro, Equality of opportunity in supervised learning, Advances in neural
information processing systems 29 (2016).

[20] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias and fairness in

https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138-FNL-COR01_EN.pdf
http://dx.doi.org/10.1145/3038912.3052660
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
http://dx.doi.org/10.1137/1.9781611976236.48
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://dx.doi.org/10.1109/ICDMW.2009.83
http://dx.doi.org/10.1109/ICDMW.2009.83


machine learning, ACM Computing Surveys (CSUR) 54 (2021) 1–35.
[21] M. Kearns, S. Neel, A. Roth, Z. S. Wu, Preventing fairness gerrymandering: Auditing and learning

for subgroup fairness, in: J. Dy, A. Krause (Eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, PMLR, 2018, pp.
2564–2572.

[22] K. Lum, Y. Zhang, A. Bower, De-biasing “bias” measurement, in: Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’22, Association for Computing
Machinery, New York, NY, USA, 2022, p. 379–389. doi:10.1145/3531146.3533105.

[23] K. Pearson, Notes on regression and inheritance in the case of two parents, Proceedings of the
Royal Society of London 58 (1895) 240–242.

[24] C. Spearman, The proof and measurement of association between two things, American Journal
of Psychology 15 (1904) 72–101.

[25] M. G. Kendall, A new measure of rank correlation, Biometrika 30 (1938) 81–93.
[26] A. Ghassami, S. Khodadadian, N. Kiyavash, Fairness in supervised learning: An information

theoretic approach, in: 2018 IEEE International Symposium on Information Theory (ISIT), IEEE
Press, 2018, p. 176–180. doi:10.1109/ISIT.2018.8437807.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–
2830.

[28] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (2006) 861–874.
doi:10.1016/j.patrec.2005.10.010.

http://dx.doi.org/10.1145/3531146.3533105
http://dx.doi.org/10.1109/ISIT.2018.8437807
http://dx.doi.org/10.1016/j.patrec.2005.10.010

	1 Introduction
	2 Preliminaries
	3 Measuring Discrimination for Multiple Attributes
	3.1 Single Protected Attribute (|Z| = 1)
	3.1.1 No Groups (|g| = 0)
	3.1.2 Single Group (|g| = 1)
	3.1.3 Binary Groups (|g| = 2)
	3.1.4 Non-binary Groups (|g| > 2)

	3.2 Multiple Protected Attributes (|Z| > 1)
	3.2.1 Intersectional Discrimination
	3.2.2 Non-intersectional Discrimination
	3.2.3 Example


	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Discussion
	6 Conclusion

