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Abstract
Large Language Models (LLMs) have revolutionized dialogue agents, but they still suffer from biases, inconsis-
tencies, and factual inaccuracies. This paper focuses on addressing toxicity, a critical aspect of the "Diversity,
non-discrimination, and fairness" pillar of Trustworthy AI, in dialogue agents. We propose a methodology
inspired by InstructGPT and ChatGPT to mitigate toxicity in chatbots by incorporating toxicity detection tools
from industry leaders, such as Microsoft and Google Jigsaw, into a reward model. The reward model was extended
by our developed ToxDialogDefender, a context-aware toxic language identification model. To evaluate our
approach, we curate a dataset of 1.5 million comments, with 14.13% serving as successful adversarial examples, to
induce toxicity in the BlenderBot 1 90M model. While our primary focus is on BlenderBot 1, our approach is
applicable to models with similar Seq2Seq architectures. Experimental results demonstrate a substantial reduction
in toxicity levels from 24% to 5%, as validated by a subset analysis. This research highlights the potential for
integrating toxicity mitigation techniques into the training paradigm of dialogue agents, paving the way for more
more aligned and unbiased conversational AI systems.
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1. Introduction

Dialogue agents driven by open-domain chatbots [1, 2] play a pivotal role in applications like restaurant
reservations [3], healthcare [4] and online shopping [5]. More recent cases of general-purpose dialog
agents are ChatGPT [6] or Llama 2 [7], which have been trained to follow societal norms. These models
undergo training with extensive datasets from platforms like Reddit1, Twitter (currently X2), and 4chan3,
with examples including BlenderBot 1 [1], TwitterBot Tay [8], and Luda [9]. However, these data
sources are known for producing toxic content [10, 11, 12], leading to undesirable behaviors observed
in the output of these models. Toxicity mitigation is a key task at a time when the research community
is fervently engaged in AI alignment and in ensuring that AI adopts human principles such as respect,
fairness, non-discrimination, etc [13].

This research focuses on mitigating toxic speech in dialogue agents, which has been defined repeatedly
as rude, disrespectful, or unreasonable comments likely to disrupt conversations4, often related to gender,
politics, race, or culture [14]. Previous efforts aimed at reducing toxicity in dialogue agents include
continuous curation of datasets [15, 16], toxic behavior detection during text generation [17, 18], and
safety layers [1, 19]. While effective, these approaches have limitations (𝐿):

• 𝐿1: The continuous curation of datasets is expensive, requiring human annotators at every stage. In
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addition, removing toxic comments may lead to the model generating unrealistic responses due to
the consequent shortage of training data.

• 𝐿2: Current toxic content detectors do not take into account the conversation history at training
time, thus lacking contextualization.

• 𝐿3: Safety layers mitigate toxicity during inference, but do not entirely eliminate it from the model’s
internal knowledge base. Moreover, toxicity detectors, known for their biases, can introduce unwanted
biases [20]. Additionally, since next token probabilities are conditioned on the toxic detector, this
may lead to incoherent responses [21].

The aforementioned limitations of current methodologies lie in three distinctive areas: adversarial
training data gathering (𝐿1); contextualization of comments to mitigate false positives and negatives in
context-sensitive comments (𝐿2); and intrinsic removal of toxicity from model weights (𝐿3).

Motivation and Research Questions To address chatbot toxicity limitations, we explore the fol-
lowing research questions (𝑅𝑄) in corresponding order of the limitations exposed above:

• 𝑅𝑄1: Are there any existing queries that drive chatbots to respond in a toxic manner?

• 𝑅𝑄2: How well do toxicity detectors perform in dialog contexts?

• 𝑅𝑄3: Can we eliminate toxic traits within the model without adding complexity to its architecture?

Main contributions In this work we propose a novel methodology for mitigating toxicity in dialog
agent-based models. This methodology addresses the three forms in which toxicity can manifest in a
discussion: implicit toxicity, explicit toxicity, and toxicity detected within the dialog context. To the best
of our knowledge, this work is the first to utilize such a unique approach in dialog settings based on our
literature review. Additionally, our proposed dialog context-based toxicity detector is designed to assist
in situations where isolated comments are insufficient for assessing the toxicity level, particularly in
cases where the model responds affirmatively to toxic questions or statements. Furthermore, we expand
the pool of adversarial examples introduced in [22] for BlenderBot 1 by analyzing an additional 1.5
million examples. Finally, by leveraging Reinforcement Learning (RL), we are able to mitigate toxicity
within the inner model weights.

Paper structure The article is organized as follows: Section 2 introduces fundamental concepts that
are essential for understanding the terminology used in this research. Furthermore, it provides an
overview of prior research of relevance to understand the contribution to the state of the art. Section 3
details the proposed methodology, whereas Section 4 describes the experimental setup and evaluation
protocol used to assess its performance. Section 5 summarizes the main experimental outcomes, and
Section 6 discusses key findings from our investigation and outlines future research directions.

2. Foundations and Background

Before detailing the proposed methodology, this section starts with some fundamental concepts concern-
ing toxicity (Section 2.1), followed by a discussion of existing methods for detecting toxicity (Section
2.2) and the accompanying challenges. Subsequently, historical perspectives on toxicity within LLMs
are examined in Section 2.3, together with an analysis of RL and its utilization in training chatbots
(Section 2.4).



2.1. Toxicity Definition

Toxicity is a multifaceted term that continually evolves, shaped by the cultural contexts within which it
develops. Despite being defined as stated in Section 1 by Perspective API (namely, the leading toxicity
detector developed by Google Jigsaw), this definition remains far from being exhaustively comprehensive.
The work in Sheth et al. [23] categorizes toxicity into groups including threats, obscenities, insults,
identity-based hate, harassment, misinformation, radicalization, and gender-based violence. Assessing
toxicity in dialogue contexts requires systems capable of identifying its diverse forms, which are explicit,
implicit, and contextualized forms:

• Explicit toxicity: Conspicuously harmful content, including hate speech, profanity, threats, or direct
insults, which requires no additional interpretation for recognizing its negative nature.

• Implicit toxicity: Content lacking overtly harmful elements may carry negative connotations, biases,
or concealed meanings. It is characterized by the lack of explicit toxic language, like insults and slurs.
The detection of this type of toxicity demands deeper analysis or cultural familiarity for recognition.
This category may encompass subtle forms of discrimination, microaggressions, or insinuations.

• Toxicity within a context: The concept of toxicity in context refers to evaluating whether content
is toxic or harmful based on the specific situation or circumstances in which it is presented. This
assessment involves considering both the intent behind the content and the intended audience. It
acknowledges that the same words or actions may have varying impacts depending on the context in
which they are produced. This term is crucial in the context of dialogue agents, where the conversation
history is needed for the analysis of toxic content.

2.2. Toxicity Detectors

The development of toxicity detection systems often relies on human annotations and machine learning
techniques. In research, Google’s Perspective API [24] stands out for its ability to recognize characteris-
tics beyond toxicity, including identity-based hate, profanity, and threats, among others [17, 22]. Other
examples include HateSonar [25] and ToxiGen HateBERT [26], the latter being specialized in detecting
implicit toxicity.

A significant challenge in toxicity detectors is the existence of biases and their limited applicability in
diverse contexts. Research on detectors, particularly that spearheaded by Perspective API, has revealed
substantial biases, including gender bias [27, 28] and biases against minority groups [29, 30]. Biases often
emerge from tainted datasets during annotation, exacerbated by a lack of heterogeneous participants
[31, 29] and the nature of the content inside the dataset at hand [32]. Importantly, such biases tend to
amplify when deployed in real-world applications, from data preprocessing to web content moderation
[33].

In the current landscape of predictive models within a contextual framework, a work stands out
focusing on analyzing toxicity within a specific context through the incorporation of stance detection.
This becomes particularly relevant for a demanding task, specifically implicit context toxicity in
questions related to the stance of the model [34]. Much of the existing work in detecting toxicity within
a given context revolves around assessing the necessity and appropriateness of such an analysis, termed
context sensitivity estimation [35]. However, even when annotations change with the observed context,
changes are not substantial enough to significantly affect the analyzed data [36]. This idea is supported
by another study, which suggests that depending on the type of data, context can be beneficial, but
could potentially lead to an increase in false positives and false negatives overall [37].

2.3. Toxicity in Language Models

Despite the versatility of LLMs, a primary concern remains in the proliferation of toxicity, including
the dissemination of harmful information [38], propagation of misinformation [39], and the generation



of toxic comments [8, 9]. Dialogue agents based on generative open-domain chatbots, as mentioned in
the introduction, prominently exhibit toxicity issues.

Previous research addresses toxicity in dialogue agents through various approaches, from i) creating
iterative environments for stress-testing and improving chatbot responses through Supervised Learning
(SL) [15], to ii) the incorporation of classifiers for identifying and filtering toxic content in chatbot-
generated responses [1]; and iii) the introduction of safety layers to prevent inappropriate queries
[1, 19]. Toxic comments are also addressed through specially crafted datasets designed to elicit positive
responses to toxic comments from both models and users [40]. Other methods include attribute
conditioning (ATCON) [17], a data-based method that further pretrains an LLM model by prepending
a toxicity attribute token, toxic and not toxic. By using the prepended token, the model learns
the characteristics of toxic and non-toxic sentences. This allows for the reduction of toxicity during
decoding by utilizing these tokens.

In decoding-based strategies, recent efforts have been focused on addressing toxicity during the next
token prediction phase. We can divide the research activity into two general groups depending on the
methodology under consideration: i) at generation time and ii) at training time. We have Plug-and-Play
LM [41], a decoding-based strategy that utilizes a simple discriminator to direct the generation process.
Additionally, DExperts [42] utilize expert models (trained on non-toxic data) and anti-expert models
(trained on toxic data) to guide the base LLM’s generation process. This guidance aims to make the
produced content closer to that generated by the expert LLM and further from that produced by the
anti-expert, thereby minimizing the likelihood of producing toxic sentences as determined by the
anti-expert. Other decoding strategies leverage in-context learning and multitask learning capabilities
of LLMs to steer away the model from generating toxic comments. One representative example of
methodologies as such is Detox-Chain [43], which uses a toxicity span detector to locate the toxic part
of the comment. Once located, Detox-Chain masks the toxic part and generates a new comment using
the mask-filling capabilities. This can be extended to use a foundational model instead of the same
model. Another case is CRITIC [44], which resorts to external tools (e.g., Perspective API) to assess the
toxicity of the comment, and then uses the in-context learning capabilities of the model to correct and
generate a new comment.

At training time, methods primarily hinge on RL [45] and quantization with controllable tokens [46]
to expose the model to fewer toxic comments and improve the quality of the generated content. In
this line, the so-called SELF-CORRECT method [47] uses a generator and a corrector to improve the
generation by training the corrector to generate less toxic comments given a hypothesis and an input
to be corrected.

An emerging research area involves the creation and utilization of adversarial examples to evaluate
language model toxicity. Various methods, such as scrutinizing datasets to assess their comments’
capacity to induce toxic attributes in models [17, 22], reveal that not only can toxic comments engender
toxicity, but non-toxic comments can also exert a similar influence. An alternative approach focuses
on generating adversarial prompts using search and optimization algorithms, guided by predefined
malevolent word sets [48]. Researchers leverage LLMs and prompt engineering to generate adversarial
prompts, investigating the utility of training models through RL or SL to generate sentences leading to
toxic content [49]. Additional efforts consider using explicit names of social groups followed by benign
actions to induce toxicity in masked language models [50].

2.4. Reinforcement Learning

Differently to SL and unsupervised learning paradigms, RL involves an agent interacting with an
environment, receiving rewards and observations as the result of its actions. In the context of RL, an
environment is characterized by its Markovian property, which means that its learning dynamics solely
rely on the present state, disregarding past states or historical information. The primary aim within this
framework is to achieve the highest attainable reward over an episode, with the focus on optimizing
actions based on the current state.

RL applied in the domain of Natural Language Processing (NLP) is a relatively recent technique that



Figure 1: Fine-Tuning Language Models using RL: The fine-tuning process begins with two identical models
exposed to an adversarial prompt dataset. The trained model 𝜋PPO, or policy, generates an output evaluated using
a reward function and contributes to the calculation of KL divergence in comparison to a reference model copy,
𝜋base. The KL divergence is a measure of how one probability distribution diverges from a second, which is used
in this context with 𝜆KL to control the maximun divergence.The final reward is determined as the aggregate of
these components. This resulting reward then informs the adjustment of the RL algorithm (in our case, Proximal
Policy Optimization, PPO [51]) to refine the policy’s parameters [52].

has gained adoption. Within this framework, RL is customized to align with the unique components
of NLP systems. Here, the environment dynamically adapts to the task at hand, which may involve
representing a target model for attacking or utilizing a dataset for initializing observations to enhance a
task’s performance. Initially, both the base model 𝜋base and the trained model or policy 𝜋PPO receive the
initial input, which could be a sentence requiring a response or a discriminative task to execute. The
state reaches its finalization when the model selects the action to execute, such as predicting the next
token or formulating the subsequent sentence in the case of generation tasks. If the reward is dense,
the reward model generates a scalar indicative of the state’s quality (i.e., the current sentence). This
scalar is then incorporated into a policy constraint metric to ensure that the model remains within a
reasonable deviation from its initial capabilities. Upon obtaining the reward, the policy update occurs
based on the chosen algorithm. In the context of text generation, an episode typically refers to the
process of generating a set of tokens or sentences until reaching the end-of-sequence token. Figure 1
illustrates the main RL process. For further clarity, the subsequent key terms are defined:

• In RL with NLP, the State Space 𝑆 depends on the generation process, which can involve either next
sentence prediction or next token prediction given a sentence or a set of words. The dimensionality
of the state is equivalent to the size of the vocabulary raised to the power of the number of outputs.

• Action Policy A is all tokens that can be used for next token prediction, corresponding to the
vocabulary of the natural language model under consideration, or the next possible sentence.

• Reward R typically consists of a composite entity comprising a reward model and a policy change
constraint. In the literature, the Kullback-Leibler (KL) [53] divergence metric has been widely used as
an asymmetric measure of similarity between two probability distributions. The reward signal can
exhibit either sparsity when provided at the sentence level or density when furnished at the token
level, and can be formulated as:

𝑅𝑡+1 = 𝑅0 − 𝜆 ·𝑅𝐾𝐿

where 𝑅0 is the immediate reward, 𝜆 is the KL penalty for the KL divergence, which is a positive
value (from 0 to 1) that weights the impact of the KL in the training process, and 𝑅𝐾𝐿 is the KL
divergence value.
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Figure 2: Methodology of the training process. In Step 1, the model undergoes a fine-tuning process on
the Prosocialdialog dataset [54] and the Bot-adversarial dialogue dataset [55]. In Step 2, the formulation and
training process of the reward model are conducted. Finally, in Step 3, adversarial examples and the reward
model are utilized in the RL training.

2.5. Summary and Contribution

Efforts to address toxicity in dialogue agents have been commendable, utilizing strategies like SL,
content filtering classifiers, and safety layers. Other areas such as decoder-based architectures have
used word filtering, control tokens, 2-dimensional representation, in-context learning plus external
tools, RL and less toxic models to drive the generation. A promising approach involves using adversarial
examples to evaluate and counteract language model toxicity, providing valuable insights into the
impact of both toxic and non-toxic comments. Contextual similarities between adversarial datasets and
real-world social media content are noteworthy.

Contribution Our research tackles toxicity using a diverse array of experts within an RL environment.
Each expert focuses on one of the various forms toxicity can take: implicit toxicity, explicit toxicity,
and contextualized toxicity. The latter is an innovative approach to toxicity mitigation, considering the
current lack of robust detection models, despite ongoing efforts in dataset collections [11]. As detailed
in Section 3.1, we integrate all three forms of toxicity into a single model capable of assessing toxicity.
In addition, we curated a set of adversarial examples, as depicted in the work done by Si et al. [22],
where notable contextual similarities between adversarial datasets and real-world social media content
were observed. Even though similar approaches have been used in the literature [45], the particularities
of dialog agents such as history context make a huge difference in the methodological approach to the
problem. This approach involves iterative changes guided by the policy, optimized through exposure to
adversarial examples. The process effectively mitigates toxicity, with the reward function serving as an
expert, enabling a more automated and efficient approach to addressing toxicity in dialogue agents. As
far as our knowledge extends, our research can be thought to be a pioneering effort and a new technical
approach to address this particular challenge.

3. Methods

In this section, we elucidate the methodology employed to mitigate toxicity by framing it as a RL
problem, encompassing the entire process from data acquisition to model evaluation. The methodology
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Figure 3: Reward model prediction formulation. The toxicity score is obtained by first analyzing the
comment in isolation using the Perspective API and ToxiGen HateBERT, ensuring that obvious cases of toxicity
are caught early. The output of each model is then ensembled and analyzed, potentially reducing false positives
that might arise from relying on a single model. If the comment is not deemed toxic, our contextual toxicity
detector, ToxDialogDefender, predicts the final score. ToxDialogDefender can analyze the broader conversational
context, understanding nuances and detecting toxicity that might not be apparent in isolated comments.

is divided in a three-step process,as depicted in Figure 2, the first of which is considered optional:

• Enhancement of the base model via SL: In this initial phase, the base model is trained using
supplementary datasets through a SL paradigm. The objective here is to augment the model’s
capabilities, thereby enhancing its proficiency in handling specific tasks or adapting it to novel
contexts. In our particular context, this stage serves the purpose of bolstering the model’s capacity to
generate contextually relevant responses within extended dialogue histories [55]. Furthermore, it
is employed to ameliorate the model’s aptitude for generating responses that are less toxic, while
concurrently reducing the prevalence of generic responses, particularly in response to toxic comments
[54, 56].

• Formulation of the reward function or reward model: Within the realm of RL, it is essential
to devise a reward function that facilitates the target task, as this function serves as the primary
metric for evaluating the agent’s performance. In the intersection of NLP and RL, it is conventional
to construct a reward model capable of assessing various facets or a singular aspect that requires
enhancement within the model [51]. In our specific case, we have devised a composite reward model,
which comprises three distinct sub-models as is depicted in Section 3.1.

• RL fine-tuning: In this third phase, we leverage a specialized framework tailored for training LLMs
through RL, namely, RL4LMs [57]. This open-source software, developed by the Allen Institute for
AI, is employed for our purposes. Within this framework, we apply PPO algorithm, recognized as the
state-of-the-art approach for such applications.

In Section 3.1, we delve into the genesis and functionality of the reward function. Moving on to
Section 3.2, we elaborate on the process of gathering adversarial attack examples. Finally, in Section 3.3,
we elucidate the criteria employed in selecting the RL training tool.

3.1. Reward Function

As illustrated in Figure 3, the reward function in this study is constructed upon three distinct models,
each assigned a specific objective related to identifying various forms of toxicity. Google’s Perspective
API is tasked with detecting explicit toxicity, while implicit toxicity is discerned using Microsoft’s
ToxiGen HateBERT. Additionally, a model designed to evaluate toxicity within a conversational context,
ToxDialogDefender5, is developed within the scope of this research to address specific knowledge gaps.
5Hugging Face: https://huggingface.co/TheMrguiller/ToxDialogDefender

https://huggingface.co/TheMrguiller/ToxDialogDefender


These knowledge gaps primarily encompass identifying non-toxic responses to toxic inputs, such as
countering a toxic question or statement, as well as recognizing sarcasm or irony in responses to toxic
inputs.

In the development of our toxicity detection, capable of assessing toxicity within a given context,
we have aligned our approach with the prevailing trends in the literature [58, 59]. Notably, we have
leveraged state-of-the-art architectures including GRU [60], BiLSTM [61], BERT [62], and RoBERTa [63].
Given our limited corpus of toxic instances, we have adopted the use of language representation models
such as DistillBERT and RoBERTa due to their remarkable adaptability to new tasks [58, 59]. In addition
to the aforementioned models, we conducted training with DeBERTa [64], which has exhibited superior
performance in the SuperGLUE benchmark6 and demonstrated enhanced contextual comprehension
through its enhanced masked decoder and attention disentanglement capabilities. The training datasets
employed for these models encompassed the Dialogue Safety dataset [15] and Bot Adversarial [1]
dataset. During the training process, the dialogue context was incorporated as part of the input using
special tokens. The input schema is as follows: "[HST] Hi, how are you? [END] I am doing fine [ANS] I
hope you die". The token [HST] marks the beginning of the conversation history, with each pair of
turns separated by [END]. The token [ANS] indicates the start of a response to the last utterance.

During the formulation of the reward function, numerous uncertainties arose regarding the capabili-
ties of different models, particularly those not developed as part of this research project. As mentioned
earlier, the Perspective API has been reported to exhibit biases and challenges, especially concerning the
underrepresentation of minority groups. Additionally, ToxiGen HateBERT has primarily been assessed
for its performance in implicit toxicity detection. However, it has not been analyzed for explicit toxicity,
despite being built upon another toxic detection model designed for detecting explicit toxicity.

To address and mitigate these uncertainties, we systematically collected two datasets closely related
to the training data of the models under consideration, namely, Toxic Comment Classification Challenge
and ToxiGen[65, 26], in addition to a third dataset unrelated to our specific models from Surgei AI7.
These datasets served as the foundational basis for our analysis, enabling us to assess the models’
effectiveness in recognizing various aspects of toxicity, as well as evaluating whether Perspective API
could predict implicit toxicity and if ToxiGen HateBERT could predict explicit toxicity.

From each for the first two datasets we collected 30,000 comments, ensuring a balanced presence of
toxicity. We then employed Perspective API and ToxiGen HateBERT models for predictions, creating
datasets that contained information about the capabilities of each model. The dataset was partitioned
in 80% training data and 20% test data. With this information in hand, our objective was to develop
a function capable of leveraging the strengths of these models, implicit toxicity and explicit toxicity
detection. To accomplish this, we trained three machine learning models to ensemble the outputs of
the Perspective API and ToxiGen HateBERT models. These machine learning models were selected for
their ability to represent learned patterns as rules or functions without adding computational overhead.
This makes them well-suited for ensemble modeling and thus for deciding when to choose the label of
Perspective API and ToxiGen HateBERT.

In Figure 3, we outline the methodology for combining the models. Initially, the responses of the
models are analyzed by the Perspective API and ToxiGen HateBERT and are then ensemble into a binary
label. If this label is deemed toxic, it is used as the final output; if not, the ToxDialogDefender model is
employed to assess the comment considering the conversation history. We divide the process into two
stages, as each focuses on specific cases where the other models are less effective. Although various
types of toxicity have been mentioned, we only account for overall toxicity, as providing distinct scalar
values for every case could mislead the model in the RL training process. Hence, the output of the
reward function is either -1 or +1, with -1 assigned to toxic comments and +1 assigned to non-toxic
comments.

6SuperGLUE benchmark, https://super.gluebenchmark.com/leaderboard, accessed on May 3rd, 2024.
7Surge AI, https://www.surgehq.ai/, accessed on May 3rd, 2024.
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https://www.surgehq.ai/
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3.2. Data Acquisition

The most critical aspect of model tuning lies in the data, which, in this case, extends beyond naive data
acquisition. We require adversarial examples with the potential to elicit toxicity from our models. It is
not straightforward due to the complexity of models, their lack of interpretability, and the vast amount
of data they are trained on. This makes it unfeasible to predict the learned response distribution to
toxic and non-toxic inputs accurately. Our analysis focuses on adversarial examples that induce toxicity
in the model, particularly non-toxic entries. Bearing this in mind, we have chosen to adhere to the
guidelines outlined in [22], which successfully identified adversarial examples for the BlenderBot 1 90M
model. Given that the dataset was not publicly accessible during the course of our investigation, we
undertook the task of replicating their entire process, albeit with some modifications as indicated in
Figure 4. The dataset was retrieved from an internet forum known as 4chan, specifically the Political
Incorrect board [66]. The adjustments made are next listed:

1. Instead of relying solely on the Perspective API to acquire adversarial examples, we opted to employ
our custom reward function.

2. In line with the conclusions drawn in the original article, we expanded the list of terms that are likely
to trigger toxicity, including – but not limited to – groups and identities such as Hindus, Buddhists,
LGBTQ+ individuals, the disabled, religious denominations like Mormons and Jehova, and news
organizations like Fox, CNBC, MSNBC, BBC and SKY NEWS.

In the original work [22], the authors meticulously curated a sample of one million entries from
the dataset. In our study, we closely followed their methodology and incorporated our refinements to
initially narrow down the extensive dataset comprising 139 million comments to a more computationally
manageable subset, comprising 12 million comments. This initial reduction was done to conserve
computational resources and to focus on acquiring the potential adversarial example subset, given
that less than 9% of the data analyzed by Si et al. [22] were deemed capable of generating toxicity.
Subsequently, with this streamlined dataset at our disposal, we proceeded to partition it into discrete
chunks, each containing half a million comments, for in-depth analysis employing our proposed reward
function.

The selection of these comment chunks was methodically guided by the empirical observation
obtained in Si et al. [22], where comments exhibiting scores below the 0.3 threshold o displayed an
elevated propensity to incite toxic interactions. In addition, it was observed in that study that comments
scoring between 0.6 and 1.0 were found to harbor the potential for generating toxicity. These selected
comments were input into both our Blenderbot 1 base model and our model, which had undergone



fine-tuning via SL. In both instances, we utilized a greedy search algorithm for the generation of
response text. Ultimately, we conducted a thorough analysis of 1.5 million comments twice in our
proposed pipeline: firstly, when employing the core BlenderBot 1 model, and subsequently when using
BlenderBot finetuned in Step 1.

3.3. RL Fine-Tuning

Once all the components were meticulously crafted, the only task remaining was to select a framework
for implementing RL in LLMs. Throughout 2022 and 2023 several frameworks have emerged from
the literature, primarily in response to the tremendous success of ChatGPT, such as RL4MS8 or TRL9 ,
among others. Given the continued development of these tools, we specifically opted for two approaches
that aligned with our criteria:

1. We aimed for projects with at least one year of development history, coupled with ongoing contribu-
tions from developers.

2. The chosen tools needed to be focused on LLMs rather than replicating specific instances like GPT
3.5.

3. These tools should be developed by individuals with a research-oriented mindset, either to demon-
strate the viability of this approach for various tasks or to create research tools for public use.

With these criteria in mind, we selected TRL and RL4LMS. TRL, developed by Hugging Face, offers
the PPO algorithm as its main RL method. TRL operates at the sentence level and is compatible with
various architectures. However, one drawback is the computation of the KL divergence, which has been
reported as an unsolved issue10. During model training, the KL value tended to become increasingly
negative over time, resulting in undesirable outcomes. This issue was particularly present for Seq2Seq
models.

Considering these concerns, we turned to RL4LMS, which is characterized by a more RL-focused
design. In this framework, as elucidated in Section 2.4, actions refer to the vocabulary, and the state is
generated in each iteration (next token prediction) by the policy, which is the natural language model.
Rewards can be computed at the token or sentence level, with the latter being our preferred choice.
One limitation is that data is processed one item at a time. Even though parallel processing can be done,
this approach is computationally expensive for large datasets (as it is the case). Conversely, RL4LMs
offers multiple algorithmic options, including PPO among others.

4. Experimental Setup and Evaluation Protocol

A set of experiments was designed to rigorously assess the efficacy of different methodologies in
mitigating toxicity within textual data. We carefully formulated several experiment cases with the
primary objective of analyzing their impact on the final results of toxicity mitigation. In our exploration
we focused on various data distributions (toxic/non toxic distributions) and text generation methods,
considering the computational demands inherent in RL-based training. To manage computational
resources effectively, we opted to work with a subset of our dataset, containing between 100,000 to
140,000 items. Each dataset was partitioned into an 80% training subset and a 20% test subset. Maintaining
consistency, the same test set was employed across all experiments to ensure fair evaluation of different
methodologies. Within the training dataset, we categorized instances into toxic and non-toxic data.
The training set was sampled with different non-toxic and toxic distribution ratios: an 80/20 split,
preserving the observed toxicity distribution in our dataset, and a balanced 50/50 split. Additionally, we
further split toxic data into the three forms of toxicity, also preserving the distribution observed in our

8RL4MS:https://rl4lms.apps.allenai.org/
9TRL:https://huggingface.co/docs/trl/index
10Negative KL divergence issue in Hugging Face, https://github.com/huggingface/trl/issues/256, accessed on April 30th, 2024.

https://rl4lms.apps.allenai.org/
https://huggingface.co/docs/trl/index
https://github.com/huggingface/trl/issues/256


adversarial examples dataset: 35% implicit toxicity, 32% explicit toxicity, and 33% toxicity given a context.
These splits were chosen because they are balanced enough to obtain not only a good representation of
the original dataset but also a diverse number of examples. Regarding decoding strategies, we chose
two approaches: deterministic decoding, also known as Greedy search decoding, and a probabilistic
decoding strategy, multinomial sampling. These selections were made to observe the differences in
toxicity mitigation between a deterministic technique and a more diverse one. The experiments are
outlined as follows, along with their respective objectives:

1. Greedy search decoding in 80/20 Distribution: This experiment aims to investigate the effect of
utilizing a subset of data that mirrors the distribution of toxicity in our dataset. Specifically, we assess
the utility of the greedy search decoding strategy in the training process under this distribution.

2. Multinomial sampling decoding in 80/20 Distribution: This experiment aims to examine how
the training process is influenced by employing a probabilistic technique on the previously analyzed
text set. This experiment sheds light on the effectiveness of multinomial sampling in mitigating
toxicity within the dataset.

3. Greedy Search decoding in 50/50 Distribution: This experiment aims to analyse the impact of
toxicity mitigation when using a balanced dataset in combination with the greedy search decoding
strategy, providing insights into the effectiveness of different distribution ratios in achieving toxicity
balance.

In the experiments, several parameters remained fixed, falling within the ranges used in Ramamurthy
et al. [57]. These parameters include setting the number of epochs per rollout at 4, configuring the
number of steps per epoch to be 12,800, and maintaining a learning rate of 10−6. The learning rate value
was set following the guidelines of the BlenderBot article [1].The learning rate value was set following
the guidelines of the BlenderBot article [1]. In terms of the KL divergence parameters, we set the KL
coefficient to a fixed value of 0.2 and the KL target value to 0.5, these settings were obtained empirically.
Additionally, we employed a batch size of 16 and conducted 100 epochs of the training process, allowing
the model to learn and adapt over multiple training cycles. The choice of batch size was selected due
to computational constraints, and the epochs were observed to be empirically sufficient as the model
deviated too much from its initial probabilistic distribution.

For the greedy search approaches, we adopted the base parameters utilized by HuggingFace, as
these parameters have consistently yielded the best outcomes. Conversely, for the multinomial search
strategy, we configured the parameters with a top-k value of 20, a temperature setting of 0.7, and limited
the number of beams to 1. These parameter choices were made based on empirical analysis of the
responses generated by BlenderBot, and partly following the experimental setup presented in [21],
where the best parameters to mitigate the prevalence of toxicity were identified.

4.1. Evaluation

Evaluating conversational agents is challenging, involving annotators and evaluators to obtain reliable
insights. Recent advancements in LLMs in 2023 have led to the exploration of automatic metrics [67].
Traditional metrics like METEOR, BLEU, and ROUGE lack depth in capturing meaning, word order,
output correctness, and coherence [67].

When assessing our experiments, we considered toxicity and a model’s ability to produce coherent,
grammatically correct, and non-redundant outputs. Given alterations to word probabilities within a
contextual framework, accurate sentence generation was crucial. Post-training evaluations leveraged
metrics unrelated to toxicity to provide additional context, as these metrics were not integrated during
the training phase due to their context-specific nature. This approach was adopted to gain a more
comprehensive and contextual understanding of the results, particularly in aspects not directly tied to
toxicity. We provide an overview of the two metrics utilized:

• DEAM [68] assesses response coherence at the conversation level using abstract meaning representa-
tion. Trained to classify coherence, the score ranges from 0 (no coherent) to 1 (coherent).



• GRUEN [69] evaluates grammaticality, non-redundancy, and topic maintenance. Techniques include
sentence likelihood, grammatical acceptance, and Word Mover similarity. GRUEN’s total score ranges
from 0 to 1. A score of 0 indicates a sentence that is grammatically incorrect and redundant, while a
score of 1 indicates a grammatically correct and coherent sentence.

The median of each metric, DEAM and GRUEN, was used over the generated text in the test subset to
mitigate the impact of outliers.

5. Results

In this section, we introduce the main results obtained in every step, followed by the experimental
design described in Section 4, outlining its connections to the research questions. We focus on the most
important outcomes and also provide examples of how the model changed its interaction with the same
adversarial examples before and after each training session. In Section 5.1, we show the performance of
each model that constitutes the reward model. Subsequently, in Section 5.2, we describe the adversarial
example dataset obtained. Finally, in Section 5.3, we showcase the toxicity mitigation methodology
results in mitigating toxicity on BlenderBOT 1.

5.1. Reward Function

As mentioned in Section 3.1, the reward function comprised three models, one of which, named
ToxDialogDefender, was specifically tailored to identify toxicity within a given context. Throughout the
development of this model, we tested several base models to determine which one excelled in this task,
addressing research question 𝑅𝑄2. The models assessed included DeBERTa, RoBERTa, and DistillBERT.
As shown in Table 1, DeBERTa demonstrated superior performance across both validation and test sets.
Consequently, it became the foundation of our ToxDialogDefender model. In general, transformer-based
models consistently proved to perform effectively in detecting toxicity within a dialogue context.

We conducted an analysis to understand why the model could not accurately predict some examples.
In this analysis we aimed to uncover patterns and explanations for the model’s inaccuracies in discerning
toxicity in such comments. We conducted topic extraction to gain insights into the topics the model
struggled to predict accurately, such as its difficulty in detecting affirmations to a toxic comment as a
form of toxic response, exemplified by “being at one with, let’s say, males shouldn’t exist”. Additionally,
we evaluated sentence length to understand if the model faced challenges with long or short sentences,
potentially due to a lack of context understanding or misleading context. Lastly, we employed sentence
embedding to identify patterns by grouping sentences into clusters. However, none of the mentioned
methods resulted in significant information gain due to the diversity of the dataset.

Table 1
Training results of different base models in the toxicity detection task given a conversation context.

Base Model Dataset F1-Score Accuracy

DistillBERT
Test 0.759 0.853

Validation 0.764 0.856

RoBERTa
Test 0.753 0.856

Validation 0.750 0.856

DeBERTa
Test 0.794 0.869

Validation 0.795 0.871

After reviewing the outcomes of our toxicity detector, we assessed how effectively the Perspective
API and ToxiGen HateBERT models adapted to distinct predictive contexts. Table 2 reveals different
predictive capabilities given the different natures of the datasets. We used the results of these model
as inputs to formulate an ensemble model, thereby harnessing the differently modeled knowledge



embedded in the assembled models. In this context, the test dataset comprises a combination of ToxiGen
and Jigsaw entries, while the validation dataset exclusively consists of the Surgei dataset, as it was not
utilized during the training phase of our ensemble model.

The outcomes corresponding to this ensemble model are shown in Table 3. It is evident that logistic
regression surpassed the performance of the based model in each of the datasets, and performed
particularly better than other ensemble models in the validation set, which consists of a domain
different from that used in the ensemble model training data. Subsequent to these results, we derived
the function representing the logistic regression model:

log

(︂
𝑃

1 – 𝑃

)︂
= −0.99 + 5.46𝜉PERS + 1.09𝑂𝑇 − 2.08𝑂𝑁𝑇

where 𝑂𝑁𝑇 and 𝑂𝑇 denote the outputs of the ToxiGen HateBERT model for Non-Toxic and Toxic texts,
respectively; 𝜉PERS denotes the output of the Perspective API model; and 𝑃 denotes the probability of a
text being toxic, given the values of 𝑂𝑁𝑇 , 𝑂𝑇 , and 𝜉PERS.

Table 2
Performance metrics for Perspective API and ToxiGen HateBERT in different toxic datasets.

Base Model Dataset F1-Score Accuracy

Perspective API
Jigsaw 0.92 0.91

ToxiGen 0.58 0.62
Surgei 0.83 0.82

ToxiGen HateBERT
Jigsaw 0.82 0.82

ToxiGen 0.88 0.87
Surgei 0.8 0.8

Table 3
Performance metrics of the machine learning algorithms as ensemble in comparison with Perspective API and
ToxiGen HateBERT models.

Base Model Dataset F1-Score Accuracy

Perspective API
Test 0.75 0.765

Validation 0.83 0.82

ToxiGen HateBERT
Test 0.85 0.845

Validation 0.8 0.8

Decision Tree
Test 0.88 0.875

Validation 0.859 0.86

Logistic Regression
Test 0.875 0.88

Validation 0.865 0.86

Ripper
Test 0.523 0.38

Validation 0.506 0.37

5.2. Data Acquisition

In this section, we gather queries that prompt BlenderBot to generate toxic responses, addressing
research question 𝑅𝑄1. To achieve this, we curated a dataset consisting of 1.5 million comments capable
of eliciting toxicity from both our base model and our model trained through SL. The data collection
process was carried out in increments of half a million comments, guided by our reward function.

In total, 1.5 million comments were collected and assessed for toxicity for each of the models: the base
BlenderBot model and the fine-tuned BlenderBot model. In Figure 5, it is worth noting that 15.4% of the



comments exhibited the ability to provoke toxicity in the base model. Within this subset, only 0.04%
were flagged by the Perspective API, while 6.85% were identified by ToxiGen HateBERT. Remarkably,
8.53% were successfully detected by our proposed ToxDialogDefender toxicity detector. In the case of
the model that underwent SL, 14.13% of the comments were recognized as presenting toxicity according
to our reward function. Among these, 4.45% were detected by the Perspective API, 5.03% by ToxiGen
HateBERT, and 4.64% by ToxDialogDefender.

Upon closer examination, it becomes evident that the initial phase of our methodology effectively
reduced overall toxicity levels by a certain percentage. This preparatory process generated an ample
number of adversarial examples, totaling approximately 210,000 elements. These examples laid the
groundwork for the subsequent RL task, which was designed to address and mitigate toxicity in the
BlenderBot 1 90M model.

Figure 5: Percentage of toxic comments analysed by each component of the reward function in the 1.5 million
dataset of possible adversarial examples.

5.3. RL Fine-Tuning

In this section, we present our findings regarding 𝑅𝑄3, which focuses on mitigating toxicity in dialogue
agents without altering the internal model structure. During the training phase, evaluations were
conducted every 10 epochs for each experiment. In these evaluations, we generated a new test dataset
using the updated model parameters, and employed a greedy search as our decoding strategy to observe
changes in probabilities. Once the data was prepared, we applied the metrics described in Section 4.
This systematic approach enabled us to track the model’s progress after each epoch.

Table 4
Comparison of BlenderBot fine-tuned model with the model after each experiment conducted with RL. The
toxicity scores displayed are from the test set, along with DEAM and GRUEN metrics, assessing the models’
capacities in coherence and grammatical correctness.

Experiments Toxicity (%) DEAM GRUEN

BlenderBot Finetuned 23.91 0.9876 0.8161
80/20 Greedy search 10.89 0.9895 0.8247

80/20 Multinomial search 4.9 0.9908 0.8392
50/50 Greedy search 5.87 0.9911 0.8465

Over the course of 100 training epochs, the model showed significant improvement in learning the
optimal policy, typically occurring between 10 to 20 epochs. However, beyond that point, it began to
display signs of overfitting, where it started replicating patterns from the training data and paying
less attention to the input data. One notably repetitive pattern was the following: “I’m not sure what



you’re talking about. What do you mean by ... ?”. Nevertheless, as shown in Table 4, toxicity was
considerably reduced when compared to the initial values in our test dataset. In Figure 6, we present
both positive and negative examples of our model’s output at different training stages. We term them
‘positive examples’ to showcase how the model successfully addressed toxicity issues after training. In
the case of ‘negative examples’, we mean that the model still exhibited some level of toxicity even after
two training processes.

Figure 6: Response examples of each model after Step 1 and Step 3 training. (Left) A positive example in
which the base model’s response has been improved after the RL training process; (Right): a negative example.

6. Conclusions and Future Research

This article introduces a methodology inspired by recent advancements in RL and LLMs aimed at
mitigating toxicity in dialogue agents. To achieve this goal, we leverage three toxicity detectors, each
specialized in identifying the three forms of toxicity that can manifest in dialogue settings: implicit
toxicity, explicit toxicity, and toxicity given a context. These toxicity detectors constitute the reward
model, tasked with evaluating the sentences generated by the LLM. Experiments were conducted using
Blenderbot 1, recognized for its proficiency in crafting toxic comments [22]. The model underwent
training via SL on datasets from [54, 56], resulting in a reduction in toxicity and the promotion of
prosocial responses to toxic comments. Additionally, adversarial examples from 4chan were collected
for both the base and SL models, totaling around 210,000 entries. In the RL training process, the
LLM generates a response to the adversarial data using two decoding strategies: deterministic and
probabilistic. Once the response is generated, it is evaluated by the reward model and constrained by
the Kullback-Leibler divergence to prevent significant deviation from the initial capabilities. Finally, the
composite reward is used to update the model weights using the PPO algorithm.

Findings Our exploration of decoding strategies and data distributions yielded several insights.
Firstly, adopting a non-deterministic sampling approach was crucial for creating a less toxic model
while maintaining diversity in responses, in contrast to deterministic sampling. Another significant
finding was the definition of the KL coefficient, a key factor in measuring model divergence. When
assessing generated text, we utilized a range of metrics including coherence, grammatical correctness,
informativeness, and engagement, surpassing traditional toxicity-related measures. Our methodology
achieved a substantial reduction in toxicity from 24% to 5%, while preserving initial coherence and
grammatical correctness, as assessed by DEAM and GRUEN metrics, leading to outputs that are more
aligned and user-friendly.



Limitations Our training relies on toxicity detection models, which are susceptible to false positives
and bias. The Perspective API, as highlighted in Table 2, particularly struggles with implicit toxicity,
giving more emphasis to toxic words than considering the surrounding context. Despite generally
encountering low false negatives from ToxiGen HateBERT and our toxicity detector, occasional mispre-
dictions emphasize the need for further refinement. An increase in false positives might not significantly
impact RL training unless it substantially exceeds correct predictions; however, caution is essential. The
model could adjust its behavior to outperform classifiers or our reward function, potentially resulting
in unclear or nonsensical text.

Another limitation of our research is the evolving definition of toxicity, which poses a challenge,
especially with the application of LLMs in diverse cultural contexts. Lastly, the ongoing evaluation of
dialogue agents remains challenging, with annotators struggling to keep pace. Automatic metrics, such
as toxic detectors and evaluations based on artificial models, may introduce errors, as these models are
limited and can introduce biases and erroneous assessments that may impact the quality of the results.

Future Work We have plans to expand our approach herein presented by enhancing several key
components: toxic detectors, evaluation metrics, and adversarial examples. Regarding toxic detection
models, our aim is to conduct a more comprehensive evaluation to understand their strengths and
biases for further improvement. For evaluation metrics, we are actively working on developing a
comprehensive evaluation framework for dialogue agents, addressing critical aspects to enhance
reliability. As adversarial examples were found to be crucial in the development of the research, we
plan to expand and enhance the quality of our dataset, supporting follow-up studies. Finally, we will
broaden our experimentation with different decoding strategies and their outcomes to bolster training
robustness and, ultimately, to improve and better align dialogue agents.
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