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Abstract
The problem of fairness in AI can be tackled by minimising bias in the data (pre-processing), in the algorithms
(in-processing), or in the results (post-processing). In the particular case of in-processing applied to supervised
machine learning, state-of-the-art solutions rely on a few well-known fairness metrics – e.g., demographic
parity, disparate impact, or equalised odds – optimised during training—which, however, mostly focus on binary

attributes and their effects on binary classification problems. Accordingly, in this work we propose FaUCI as a
general purpose framework for injecting fairness constraints into neural networks (or, any model trained via
stochastic gradient descent), supporting attributes of many sorts—there including binary, discrete, or continuous
features. To evaluate its effectiveness and efficiency, we test FaUCI against several sorts of features and fairness
metrics. Furthermore, we compare FaUCI with state-of-the-art solutions for in-processing, demonstrating its
superiority.
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1. Introduction

Nowadays, fairness has become a crucial issue in the development of AI systems, especially in the
context of ML [1]. ML models are often trained on datasets that are biased toward certain groups of
individuals, and the bias impacts the predictions of the model. This can lead to unfair outcomes, which
may be damaging to the individuals from the disadvantaged groups—in terms of gender, ethnicity, age,
religion, political views, etc.

One prerequisite for fairness enforcement in AI systems is measuring bias. In the literature, several
metrics have been proposed to measure the degree of fairness of a predictive model.

Broadly speaking, these metrics score the extent to which a model treats different groups of individuals
fairly and without prejudice. Technically speaking, they do so by relating sensitive attributes (e.g. gender,
ethnicity, etc.) – and, in particular, their some protected values of their (e.g. female, black, etc.) – to
some target variable of choice for the application at hand (e.g. loan approval, job hiring, etc.).

Once fairness metrics are defined, focus can be shifted to enforcing fairness in predictive models.
Among the many techniques proposed in the literature, the so-called in-processing ones attempt to
enforce fairness at the model level during training—as opposed to pre- or post-processing techniques,
which operate before or after training, respectively.

Focussing on in-processing techniques, we acknowledge that state-of-the-art methods essentially
rely on regularisation techniques to enforce fairness optimisation during training. In other words,
these methods address ML models based on some loss-function minimization: the loss function is
augmented with a fairness-related term – most commonly, derived from a fairness metric from the
literature – to be minimised during training. While the approach is indeed effective, it is also limited by
the fact that the fairness metrics used are mostly tailored to binary attributes and binary classification
problems. This limitation may hinder the applicability of these methods to real-world datasets, where
sensitive attributes may be of different sorts—e.g., categorical or continuous. Another practical issue
characterising state-of-the-art methods is their reliance on several hyper-parameters, making them
difficult to tune and use in practice.
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To mitigate such issues, in this work, we propose FaUCI, a general-purpose method for enforcing
Fairness Under Constraints Injection into any model trained via stochastic gradient descent (SGD).
FaUCI advances the state-of-the-art of in-process fairness by letting users enforce the optimisation of
different fairness metrics, over sensitive attributes of different sorts—namely, binary, categorical, and
continuous. To let our method deal with non-binary sensitive attributes, we propose novel variants of
the aforementioned fairness metrics, and we design FaUCI to support pluggability of these metrics. In
other words, we let users choose the most adequate fairness metrics for their use case, while FaUCI
takes care of the rest. Finally, to keep our method exploitable in practice, we design it to rely on a
minimal set of hyper-parameters. In fact, apart from the fairness metric of choice, FaUCI users are only
required to specify the batch size of the underlying training algorithm.

Despite its simplicity, it turns out that our method overcomes other similar state-of-the-art solutions
in optimising fairness while retaining predictive accuracy. To verify this claim, we evaluate FaUCI on a
real-world dataset and compare it with state-of-the-art methods. Experimental setup and results are
presented in Section 4.

Accordingly, the paper is structured as follows: Section 2 provides background on fairness metrics and
related works. Section 3 introduces variants of fairness metrics and our method, FaUCI, for enforcing
fairness in ML models. The novelty of the approach is discussed. Section 4 presents results applying
FaUCI to a real-world dataset, comparing with state-of-the-art methods. Section 5 concludes and
discusses future work.

2. Background

In the literature, several metrics have been proposed to measure the degree of fairness of a predictive
model. These metrics can be classified into two main categories: group vs. individual fairness [1].
Group fairness metrics aim at gauging the extent to which different groups are treated equally by
some model (e.g., demographic parity [2], disparate impact [3], equalised odds [4]). Individual fairness
metrics assess the extent to which similar individuals receive similar treatment from a given model
(e.g., fairness through awareness [2] or through unawareness [5], and counterfactual fairness [6]). In
this work, we focus on group fairness metrics, mainly because they are the most commonly used in the
literature—individual fairness techniques being less common because of their computational cost.

Once fairness metrics are defined, the focus can be shifted to enforcing fairness in predictive models.
There are three main approaches to this problem: pre-, in-, and post-processing. Pre-processing techniques
aim at removing bias from the training data [7]. In-processing techniques modify the training algorithm
to enforce fairness at the model level. Post-processing techniques treat the biased model as a black-box,
and then reassign the predictions to enforce fairness. In this work, we focus on in-processing techniques,
as we propose a new method falling into this category.

In the remainder of this section, we provide a brief overview of the most common fairness metrics
from the literature, as well as most recent in-processing algorithms relying upon them.

2.1. Fairness Metrics

In AI, a fairness metric is a formula used to quantitatively measure the level of fairness or bias in the
outcomes generated by AI algorithms. These metrics play a crucial role in evaluating whether the AI
system treats various groups of individuals fairly and without prejudice. Fairness metrics encompass
diverse formulæ, each specifically designed to target particular aspects of fairness.

In this study, we focus on three well-known and extensively used metrics from the literature, which
guide our experiments. Additionally, in Section 3.1 we provide considerations and reformulations for
each metric aimed at ensuring a consistent comparison with other state-of-the-art techniques.

Demographic Parity (DP) DP – also known as “statistical parity” – is a metric that measures
whether the prediction of an ML model is independent w.r.t. a given protected attribute, i.e., values of



the sensitive feature do not affect the output of the model [2]. DP compares two different distributions:
the distribution of the predictions of the model and the distribution of the conditioned – by the values of
the protected attribute – predictions of the same model. For a binary classifier ℎ and a discrete sensitive
attribute 𝐴, DP can be defined as follows:

DPℎ,𝐴(𝑋) =
∑︁
𝑎∈𝐴
‖E[ℎ(𝑋) | 𝐴=𝑎]− E[ℎ(𝑋)]‖ (1)

where 𝑋 is a random variable ranging over the test data, 𝐴 is the random variable ranging over the
admissible values of the sensitive attributes – in turn, denoted by 𝑎 –, E is the expected value function,
and ‖ · ‖ denotes the absolute value operator. A model ℎ satisfies DP if its value is below an arbitrarily
small bias threshold 𝜖 (a common value is 0.01).

DP can be useful in real applications like loan approval/denial. If a specific demographic group has
been disproportionately denied loans in the past, DP can be used to ensure that approval rates are
similar across different groups, helping to mitigate discrimination.

Disparate Impact (DI) DI measures how much a classifier disproportionally affects people given a
sensitive attribute [3]. The minimal definition of DI for binary classification tasks and binary sensitive
attributes is commonly provided as the ratio among the expected value of the model when 𝐴=1 and
when 𝐴=0:

diℎ,𝐴(𝑋) =
E[ℎ(𝑋) | 𝐴=1]

E[ℎ(𝑋) | 𝐴=0]

However, this would make admissible values of DI unbound in value—which is undesirable for a scoring
function. Hence, to guarantee that DI values are always in [0, 1], the score is most commonly defined
using the ratio standardisation function 𝜂(𝑥) = min{𝑥, 𝑥−1}:

DI ℎ,𝐴(𝑋) = 𝜂(diℎ,𝐴(𝑋)) (2)

Values of DI above 0.8 are commonly considered acceptable. In other words, values close to 0 imply
high fairness violation, viceversa for values close to 1. For this reason, whenever requiring positive
scores (i.e., scores where greater values are preferable), we may report the value 1−DI (e.g., computing
the loss function during the training of a neural network).

DI as well may be useful in real-life applications such as loans. It enables the identification of any
disproportionate denial rates that may have adversely affected specific demographic groups, historically.

Equalised Odds (EO) EO is a fairness metric scoring the extent to which a classifier equally predicts
a given class for all values of a sensitive attribute [4]. According to recent works [8, 9], in case of binary
classification (𝑌 ∈ {0, 1}), and if 𝐴 is a categorical sensitive attribute, EO can be written as follows:

EOℎ,𝐴(𝑋) =

𝐴×𝑌∑︁
(𝑎,𝑦)

eoℎ,𝐴(𝑋, 𝑎, 𝑦) (3)

where 𝑌 refers to the ground truth, the sum is aggregating all possible pairs (𝑎, 𝑦) s.t. 𝑎 ∈ 𝐴 and 𝑦 ∈ 𝑌 ,
and eo is a shortcut defined as follows:

eoℎ,𝐴(𝑋, 𝑎, 𝑦) = ‖E[ℎ(𝑋) | 𝐴=𝑎, 𝑌=𝑦]− E[ℎ(𝑋) | 𝑌=𝑦]‖ (4)

Similarly to DP, a classifier is considered fair w.r.t. a given sensitive attribute value and output value if
its EO value is below an arbitrarily small bias threshold 𝜖.

In real life contexts such as loan approvals, EO enables the identification of disparities in approval
rates that may have disproportionately favored specific demographic groups.



2.2. In-Processing Methods for AI Fairness

Most recent state-of-the-art works for optimising fairness over neural classifiers1 vary from one another
in terms of (i) the type of sensitive attributes they support (among binary, discrete, or continuous) and
for (ii) the fairness metrics they optimise [8, 9, 10, 11].

The first method – FNNC [8] – is based on Lagrangian multipliers to induce a fairness-based cost
into a two-step stochastic gradient descent (SGD). Authors validate their method using all three fairness
metrics (i.e., DP, DI, and EO) on real-world datasets. However, this approach comes with a strong
limitation: the protected attribute must be a boolean variable so that categorical or continuous features
cannot be handled.

The second work – Cho [9] – exploits kernel density estimation (KDE) methods. It approximates
the computation of the cumulative distribution function of a Gaussian kernel with a Q-function [12].
This strategy enables the estimation of probabilities derived from the fairness formulæ. The approach
has been validated on two metrics – DP and EO – on real-world datasets. Limitations of this work are
the fine-tuning of additional hyper-parameters introduced by the KDE (e.g, bandwidth, factors in the
Q-function) and the lack of tests for continuous sensitive features.

The third method – Wagner [10] – exploits the logic tensor network (LTN) framework [13]. Authors
write the fairness constraints into formal logic rules that affect the training of the NN. DP and DI on
non-continue protected features are used to validate the method.

Finally, the fourth method – Jiang [11] – is similar to KDE. It generalises the DP metric to take
into account continuous features—see Equation (6). Authors validate their method on real-world
datasets using a variant of DP metric – similar to the one we define in Section 3 –, but only on a
continuous sensitive attribute. The work is limited by one single fairness metric and it is not validated
on non-continuous protected features.

Other notable works for the fairness optimisation of ML models are the ones by Kamishima et al. [2012]
and Berk et al. [2017]. The former proposes a regularisation method for probabilistic discriminative
models, but it is tailored to the metrics the authors defined in that same work (i.e., prejudice index
and underestimation index) that are not as common as other fairness metrics. The latter proposes a
regularisation method for regression tasks.

3. Proposed Method

Here we introduce variants of the previously mentioned fairness metrics, extending those definitions
to support categorical and continuous data. Then, we present our method for fairness enforcement,
and we discuss how it differs from the related works. Finally, we provide an in-depth analysis of the
functioning and the computational cost of our method.

3.1. Novel Metrics

Here we propose weighted and generalised variants of the fairness metrics presented in Section 2.1, to
support categorical and continuous attributes, respectively. Broadly speaking, such variants generalise
fairness metrics beyond binary data. This may help in measuring fairness in real-world datasets. For
instance, these may be useful to measure / mitigate bias by taking into account the frequencies of
sensitive attributes’ values. In the loan approval example, one may e.g. prioritise fairness for most
underrepresented ethnicity groups—provided that more than 2 groups exist.

Weighted and Generalised Demographic Parity. For binary classification problems, E[ℎ(𝑋) |
𝐴=𝑎] and E[ℎ(𝑋)] from Equation (1) are both in the range of [0, 1], so the absolute value of their
difference is still in range of [0, 1]. Therefore, the maximum theoretical value of DP depends on the
number of possible values of the sensitive attribute 𝐴, i.e. 0 ≤ 𝐷𝑃 ≤ |𝐴|.
1As our method is an in-processing method for neural networks (NN), we discuss existing in-processing methods tailored to
NNs.



A metric whose upper bound is not fixed is undesirable since it prevents comparisons among DP
values on different datasets, or even on different samples of the same dataset—which may lack some
values for sensitive features. To avoid this issue, we propose two variants of DP, namely weighted

(WDP) and generalised demographic parity (GDP), supporting the discrete and continuous cases,
respectively. We define WDP as the weighted mean of the absolute value of the difference between the
two distributions:

WDPℎ,𝐴(𝑋) =
∑︁
𝑎∈𝐴
‖E[ℎ(𝑋) | 𝐴=𝑎]− E[ℎ(𝑋)]‖ · 𝑤𝑎 (5)

where 𝑤𝑎 is the weight of the 𝑎-th value of the sensitive attribute 𝐴. The sum of the weights must be
equal to 1. In this way, we can compare WDP values across different datasets since the upper bound
is always 1. The values of the weights can be chosen according to the distribution of the sensitive
attribute in the dataset, or they can be set to the same value (i.e., every value of the sensitive attribute is
equally important). Doing so prevents the metric from being biased towards the most frequent values
of the sensitive attribute. For instance, if we use the frequency of the values of the sensitive attribute
as weights, the metric will be biased towards the most frequent values of the sensitive attribute. This
could be undesirable when the dataset is unbalanced.

The definition of the GDP has been already introduced in a recent work [11]. This metric is a
generalisation of DP in the continuous domain:

GDP ′
ℎ,𝐴(𝑋) =

∫︁ 𝑢

𝑙
(‖E[ℎ(𝑋) | 𝐴=𝑎]− E[ℎ(𝑋)]‖ · P[𝐴=𝑎]) · 𝑑𝑎 (6)

where 𝑙 = min{𝐴} (resp. 𝑢 = max{𝐴}) is the minimum (resp. maximum) admissible value of 𝐴 and
P[𝐴=𝑎] is the probability density function of 𝐴. However, this definition of GDP could be blind to
unbalanced distributions of the sensitive attribute due to the frequency weighting. So, we propose a
variation of GDP where the weights can be chosen by the user:

GDPℎ,𝐴(𝑋) =

∫︁ 𝑢

𝑙
(‖E[ℎ(𝑋) | 𝐴=𝑎]− E[ℎ(𝑋)]‖ · 𝑤𝑎) · 𝑑𝑎 (7)

when 𝑤𝑎 = P[𝐴=𝑎], Equation (7) is equivalent to Equation (6). Similarly, in WDP, the integral of the
weights must be equal to 1.

Weighted and Generalised Disparate Impact The definition of DI can be straightforwardly
extended to categorical sensitive attributes. It is worth noticing that DI for categorical sensitive features
can be written with different aggregation functions. Here we use the weighted sum of all admissible
values of 𝐴 (this is not the only admissible choice: e.g., the minimum function is a valid alternative).
In this way, we average over all admissible values of the sensitive attributes, similarly to Equation (5).
Notably, when computing the conditional probability w.r.t. some admissible value 𝑎 of the sensitive
feature 𝐴, there are now two relevant cases: 𝐴 = 𝑎 and 𝐴 ̸= 𝑎. Accordingly, we define the weighted DI
(WDI) function as follows:

WDI ℎ,𝐴(𝑋) =
∑︁
𝑎∈𝐴

𝜂

(︂
E [ℎ(𝑋) | 𝐴=𝑎]

E [ℎ(𝑋) | 𝐴 ̸=𝑎]

)︂
· 𝑤𝑎 (8)

Finally, we provide a continuous definition for disparate impact (GDI), similarly to 6:

GDI ℎ,𝐴(𝑋) =

∫︁ 𝑢

𝑙
𝜂

(︂
E [ℎ(𝑋) | 𝐴=𝑎]

E [ℎ(𝑋) | 𝐴 ̸=𝑎]

)︂
· 𝑤𝑎 · 𝑑𝑎 (9)

where 𝑙, 𝑢 have the same meaning of eq. (6).



Weighted and Generalised Equalised Odds Despite Equation (3) already handling both binary
and categorical data for the protected feature, the metric suffers the lack of limits in the resulting value.
To overcome this issue, and to be uniform with the other metrics as well, we define the weighted version
of EO (WEO) as follows:

WEOℎ,𝐴(𝑋) =

𝐴×𝑌∑︁
(𝑎,𝑦)

eoℎ,𝐴(𝑋, 𝑎, 𝑦) · 𝑤𝑎 (10)

There, eo is defined as in eq. (3).
Following the same generalisation approach used for DP, we extend EO defining the generalised

equalised odds (GEO) for a binary classification task:

GEOℎ,𝐴(𝑋) =

∫︁ 𝑢

𝑙
(eoℎ,𝐴(𝑋, 𝑎, 0) + eoℎ,𝐴(𝑋, 𝑎, 1)) · 𝑤𝑎 · 𝑑𝑎 (11)

3.2. FaUCI

Our method targets all ML models that are trained with stochastic gradient descent (SGD)—and, in
particular, neural networks (NN). Similarly to other fairness algorithms, the main idea consists of
introducing a specific cost factor in the loss function of the model. The cost factor depends on the
specific fairness metric to be minimised. More precisely, the fairness metrics are the ones presented
in Section 2.1—WDP and GDP, WDI and GDI, WEO and GEO for categorical and continuous versions
of DP, DI, and EO, respectively. Unlike other methods, FaUCI (i) requires that the fairness metric to
optimise is bounded in the range [0, 1] (i.e., the training phase is not affected by the variation in the
number of admissible values of the sensitive attribute), (ii) supports binary, categorical, and continuous
sensitive attributes, and (iii) can be used to achieve intersectional fairness.

In particular, FaUCI prescribes the adaption of a loss function matching the following pattern:

ℒℎ,𝐴(𝑋,𝑌 ) = 𝐸(ℎ(𝑋), 𝑌 ) + 𝜆𝐹ℎ,𝐴(𝑋,𝑌 ) (12)

where 𝐸 is the function scoring the error of the model, 𝐹ℎ,𝐴 is an additive regularisation component
aimed at scoring fairness w.r.t. 𝐴 – and, potentially, also 𝑌 –, and 𝜆 ∈ R>0 is a hyperparameter that
weights the regularisation term. The particular choice of 𝐸 depends on the learning task at hand. So,
for instance, classification tasks may rely on accuracy or cross-entropy. Similarly, 𝐹 may be chosen
among the fairness metrics presented in Section 2.1.

In practice, one key aspect of applying eq. (12) is w.r.t. to which input data (𝑋) the fairness metric
(𝐹ℎ,𝐴) is computed. Ideally, the bigger the dataset, the better. However, as a loss function aimed at
steering the SGD process, ℒℎ,𝐴 must be computed several times along the many epochs of a model’s
training. The amount of data upon which the loss function is computed is called batch size, and it
is commonly a hyperparameter of any implementation of SGD. So, the batch size is controlling the
goodness of the fairness estimation provided by 𝐹ℎ,𝐴, for the current epoch. This implies FaUCI is
essentially subject to an implicit trade-off: the greater the batch size, the more accurate the fairness
metric will be, at the price of a slower learning process.

About novelty. FaUCI differs from other related works in many aspects. First, it supports sensitive
attributes of any kind – i.e., binary, categorical, and continuous –, and it is agnostic w.r.t. the fairness
metric of choice—e.g., DP, DI and EO. The resulting loss function (ℒℎ,𝐴) can be exploited in binary
classification problems.

Second, FaUCI relies on a straightforward estimation of the probabilities that appear in the fairness
metrics during training. Given a batch of size𝐵, it is reasonable to consider the probabilities computed on
the batch similar to the ones computed on the entire dataset if 𝐵 is sufficiently large. This approximation
does not hold if 𝐵 is not high enough, i.e., if the distributions in the batch differ from the distributions in
the whole dataset with statistical significance. Other approaches, e.g. the ones based on kernel density
estimation (KDE) such as Cho, require the fine-tuning of additional hyper-parameters to estimate the



probabilities—and therefore to compute fairness metrics. By avoiding KDE, FaUCI does not require
fine-tuning additional hyperparameters, other than 𝜆 in Equation (12).

Third, because in Section 3.1 we introduced the weighted versions of the fairness metrics, FaUCI does
not suffer from unbalanced distributions of the sensitive attribute. Indeed, despite being a relatively
small change, the weighted versions of the fairness metrics are paramount to avoid biases towards
the most frequent values of the sensitive attribute. Unbalanced datasets are common in real-world
applications, and the weighted fairness metrics are a key feature to ensure fairness in such scenarios.
Using the non-weighted versions of the fairness metrics could lead to misleading values that suggest
absence of bias when it is not the case.

Finally, FaUCI is general enough to be easily extendible with fairness metrics of other sorts. Moreover,
one intriguing possibility is to use FaUCI to achieve intersectional fairness [16]. We will discuss this in
Section 3.4.

3.3. Theoretical Analysis

During the training of a NN the training set is organised into batches. For each epoch of the training, all
batches are used exactly one time to perform one step of inference (propagation) and one step of gradient
descent (backpropagation). Between the two steps, the loss function is computed. Here we report the
algorithms for computing the fairness cost factor for WDP, WDI and WEO metrics (continuous variants
are omitted as algorithms are identical). For the sake of simplicity, we choose as weights the frequencies
of the values of the sensitive attribute (note that this choice does not change the overall computational
cost).

Algorithm 1 Weighted demographic parity (returns 𝑤𝑑𝑝)

Require: ℎ the predictive model
Require: 𝐴 sensitive attribute
Require: 𝑏𝑎𝑡𝑐ℎ a batch of the dataset

1: 𝑤𝑑𝑝← 0
2: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑← E[ℎ(𝑏𝑎𝑡𝑐ℎ)]
3: for all 𝑎 in 𝐴 do
4: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑎← E[ℎ(𝑏𝑎𝑡𝑐ℎ) | 𝐴=𝑎]
5: 𝑝_𝑎← P[𝐴=𝑎]
6: 𝑤𝑑𝑝← 𝑤𝑑𝑝+ (‖𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑− 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑎‖ * 𝑝_𝑎)

Algorithm 1 describes the steps needed for computing the WDP metric within a single batch. The
computational cost for computing the estimated probability in line 2 is 𝑂(𝐵), where 𝐵 is the batch size.
Similarly, 𝑂(𝐵) is the cost for computing the values at lines 4 and 5, while line 6 has a constant cost
(we treat the operation of computing the output value of the model as having a constant cost). These
steps are repeated for every admissible value of 𝐴. Accordingly, the resulting computational cost of the
algorithm is 𝑂(𝐵) + 2𝑂(𝐵𝑁) +𝑂(𝑁) = 𝑂(𝐵𝑁), where 𝑁 is the number of different values of 𝐴.

Algorithm 2 Weighted disparity impact (returns 𝑤𝑑𝑖)

Require: ℎ, 𝐴, 𝑏𝑎𝑡𝑐ℎ like in Algorithm 1
1: 𝑤𝑑𝑖← 0
2: for all 𝑎 in 𝐴 do
3: 𝑒𝑠𝑡_𝑎← E[ℎ(𝑏𝑎𝑡𝑐ℎ) | 𝐴=𝑎]
4: 𝑒𝑠𝑡_𝑛𝑜𝑡_𝑎← E[ℎ(𝑏𝑎𝑡𝑐ℎ) | 𝐴 ̸=𝑎]
5: 𝑝_𝑎← P[𝐴=𝑎]
6: 𝑤𝑑𝑖← 𝑤𝑑𝑖+ (min{ 𝑒𝑠𝑡_𝑎

𝑒𝑠𝑡_𝑛𝑜𝑡_𝑎 ,
𝑒𝑠𝑡_𝑛𝑜𝑡_𝑎

𝑒𝑠𝑡_𝑎 } * 𝑝_𝑎)

Algorithm 2 elicits the steps for computing WDI. Values at lines 3, 4 and 5 have computational cost



𝑂(𝐵), whereas line 6 has a constant cost and each of them is repeated 𝑁 times. Overall, the resulting
cost of the algorithm is 3𝑂(𝐵𝑁) +𝑂(𝑁) = 𝑂(𝐵𝑁).

Algorithm 3 Weighted equalised odds (returns 𝑤𝑒𝑜)

Require: ℎ, 𝐴, 𝑏𝑎𝑡𝑐ℎ like in Algorithm 1, 𝑌 : ground truth
1: 𝑤𝑒𝑜← 0
2: 𝑒𝑠𝑡_𝑦_𝑖← E[ℎ(𝑏𝑎𝑡𝑐ℎ) | 𝑌=𝑖] ∀𝑖 ∈ {0, 1}
3: for all 𝑎 in 𝐴 do
4: 𝑒𝑠𝑡_𝑎_𝑦_𝑖← E[ℎ(𝑏𝑎𝑡𝑐ℎ) | 𝐴=𝑎, 𝑌=𝑖] ∀𝑖 ∈ {0, 1}
5: 𝑝_𝑎← P[𝐴=𝑎]
6: 𝑤𝑒𝑜_𝑖← ‖𝑒𝑠𝑡_𝑎_𝑦_𝑖− 𝑒𝑠𝑡_𝑦_𝑖‖ ∀𝑖 ∈ {0, 1}
7: 𝑤𝑒𝑜← 𝑤𝑒𝑜+ ((𝑤𝑒𝑜_0 + 𝑤𝑒𝑜_1) * 𝑝_𝑎)

Finally, Algorithm 3 shows the steps for WEO metric. As Equation (10) is designed for binary
classification tasks, there is no need to iterate over an undefined number of admissible classes; rather,
only two classes need to be considered. This simplifies the formulation of the algorithm and lowers
the resulting computational cost. Values computed at lines 2 and 3 cost 𝑂(𝐵). Inside the loop, the
computational cost of the values from lines 5-7 is also 𝑂(𝐵), for values from lines 8-10 is 𝑂(1). So, the
resulting cost of the algorithm is 2𝑂(𝐵) + 3𝑂(𝐵𝑁) + 3𝑂(𝑁) = 𝑂(𝐵𝑁).

All three algorithms have a computational cost that is linear both in the batch size (𝐵) and in the
number of possible values of 𝐴 (𝑁 ). Their continuous variants have similar steps. The main difference
is that instead of working with equalities and inequalities w.r.t. the values of 𝐴, we work with integrals.
The implementation used for the experiments is histogram-based, i.e., several non-overlapping intervals
of the same width. Then, the resulting computational cost depends on the number of intervals instead
of the number of possible values of 𝐴.

3.4. Intersectional Fairness Extension

We extend FaUCI to support the optimisation of fairness in an intersectional setting, i.e., when the
intersections of groups of protected attributes are considered (a.k.a., subgroups). FaUCI can support the
optimisation of fairness metrics involving multiple protected attributes in two ways.

The first one consists in creating, before computing the loss cost, a dummy protected attribute by
combining the original ones that the user wants to consider (i.e., computation of the subgroups). In
this scenario, FaUCI can be used as-is (see Equation (12)) to optimise the fairness of the intersection of
the original protected attributes. It is worth noticing that using the combination of multiple attributes
could easily become intractable due to the computational cost of the underlying fairness metric (see
Section 3.3). For this reason, we propose an alternative approach.

The second method consists in combining multiple loss factors, each one penalising the violation of
the fairness of a single protected attribute.

ℒℎ,�̄�(𝑋,𝑌 ) = 𝐸(ℎ(𝑋), 𝑌 ) + 𝜆1𝐹ℎ,𝐴1(𝑋) + · · ·+ 𝜆𝑛𝐹ℎ,𝐴𝑛(𝑋)

where �̄� is a set of protected attributes 𝐴1, . . . , 𝐴𝑛. In this way, multiple fairness metrics can be
simultaneously optimised for the same sensitive feature by keeping the computational cost of the
fairness metric tractable (i.e., the cost of computing the fairness metric is linear in the number of
protected attributes and not exponential). This approach is a trade-off between the computational cost
and the complexity of the fairness metric. Further details and empirical results about FaUCI in the
context of intersectional fairness will be presented in another work.

4. Experiments

We validate FaUCI on a well-known and widely-used real-world dataset for fairness algorithms: the
UCI Adult dataset [17]. The dataset is already divided into two sets – training and test – with 32, 561



and 16, 281 records respectively. There are 14 independent features of different types (i.e., boolean,
categorical and continuous) and one dependent variable. Each record represents one individual and the
task consists of classifying whether the individual earns more than 50, 000 USD per year or less/equal
to that amount. Adult is a standard de facto in the fairness community, mostly because it inherits the
biases of the real world. Despite its limitations [18], it is still a valid benchmark for our purposes.

4.1. Setup

We endeavor to maintain a consistent setup with other works [10, 8] whenever possible. We use k-fold
cross-validation with 𝑘=5 for each experiment. We first combine the two datasets into one single set of
48, 842 records. Then we standardise it and apply the 80-20 rule to partition it into two new datasets.
The second (9, 768 records) is used as test set, while the first one (39, 074 records) is used for generating
the 5 folds. Conversely, for each configuration we run 5 experiments – the validation fold changes each
time – and we report the mean values.

The model that we train is a feed-forward fully connected NN with 2 hidden layers of 100 and 50
neurons respectively. The number of epochs is up to 5, 000 and the batch size is set to 500. We include
two early stop conditions: the first one happens when both accuracy and the fairness metric reach
a predefined target, while the second is triggered if there is no improvement for a specified amount
of epochs (patience). In detail, we set the target accuracy to 0.9, and the thresholds for the fairness
metrics to 0.01, 0.99, 0.01 for DP, DI, and EO respectively (we remind that the final value of DI metrics
is expressed as 1−𝐷𝐼 to be compliant to the definition from the literature). The patience for the second
condition is 100. These two conditions are evaluated at the end of each epoch on the validation fold.
We additionally include in the experiments the evaluation of the NN without any fairness constraint,
denoted as the “vanilla model”, serving as our baseline.

We conduct experiments with our method using WDP, GDP, WDI, GDI, WEO and GEO fairness
metrics on three different sensitive attributes: sex (binary), ethnicity (categorical) and age (continuous).
We decide to assign for the W* metrics the same weight to each value of the protected attribute, i.e.,
𝑤𝑎 = 1

𝑁 for all 𝑎 ∈ 𝐴 where 𝑁 is the number of unique values of 𝐴. This choice is motivated by the
fact that we want to give the same importance to each group of 𝐴 since the attributes we want to
protect are unbalanced (i.e., sex and ethnicity). Instead, for the G* metrics we use the density of the
continuous attribute (i.e., age) as weight since it is far less unbalanced than the other two attributes.
We want to underline that the user can choose arbitrary weights as long as they fulfill the properties in
Section 3.1.

We are also able to fully reproduce and reuse the code of two state-of-the-art methods—Cho, Jiang.
Unfortunately, we are unable to replicate the same procedure for the other two approaches—FNNC,
Wagner. However, due to the similarity of their original setups with ours, we still report their results
for discussion purposes.

FaUCI shares with Cho and Jiang one hyper-parameter – lambda (𝜆) – that weights the contribution
of the fairness metric. All experiments are conducted by varying the value of 𝜆. The other hyper-
parameters of Cho and Jiang are the same used in their papers. The source code of the experiments is
available at https://anonymous.4open.science/r/FaUCI-aequitas-2024.

4.2. Demographic Parity Results

Figure 1 shows the accuracy-demographic parity trade-off between FaUCI, Cho and Jiang methods
(also FNNC and Wagner when using “sex” as sensitive attribute). Figure 1a reports the experiments
using “sex” as a binary protected feature. FaUCI and Jiang have similar behaviour, while Cho is worse.
FNNC and Wagner results are included, noting that only one accuracy-fairness metric result is reported
by the authors, hence represented by a single dot in the plot. The accuracies are 84% and 87.7%
respectively. FaUCI reaches an accuracy of 85.27% with 𝐷𝑃 ≤ 0.01. While the result for FNNC could
be coherent with the experiment setup, the one for Wagner is more uncertain. The authors reported
that the accuracy of the model using their method is 87.7%, which is far more than the vanilla model

https://anonymous.4open.science/r/FaUCI-aequitas-2024


Figure 1: Experiments comparing FaUCI to related works, using different (variants of) the DP, DI, and EO
fairness metrics. Each row corresponds to a different fairness metric (DP, DI, and EO). Each column corresponds
to a different variant of the fairness metric (normal, for binary attributes, weighted for categorical attributes, and
generalised for continuous attributes). Each dot of each chart is the average of 5 runs (5-folds cross-validation).
In each chart, red stars represent FaUCI, blue diamonds Cho’s method, green dots Jiang’s method and the
black cross the vanilla neural network (i.e., the NN without fairness constraints). For FNNC and Wagner we
were not able to reproduce experiments (due to issues in their code), so we report the results as reported by the
authors—which implies only one dot per chart.
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(86.7%) that is trained without any fairness constraint. Figure 1b shows the experiments with “ethnicity”
as categorical sensitive feature. We observe that FaUCI outperforms the other methods. Jiang has
similar performances until DP is above 0.04, while Cho is always worse. We motivate this behaviour
because the categorical sensitive feature “ethnicity” has 5 different groups, and they are unbalanced.
Also “sex” is slightly unbalanced, but it has just 2 groups. Finally, Figure 1c reports the experiments for
the continuous protected features “age”. In this scenario, our method and Jiang’s method have similar
performance but ours is generally better. Cho’s method performs always worse than the others. Overall,
our approach performs better than the others when optimising both accuracy and demographic parity
for all kinds of sensitive attributes.

4.3. Disparate Impact Results

Figure 1 shows the trade-off between accuracy and disparate impact with FaUCI method. Here a
comparison with other approaches can be done only with FNNC and Wagner when using a binary
sensitive attribute and with the vanilla NN. Figure 1d describes the results with “sex” as protected



feature. The vanilla NN has an accuracy of 86.7% with 𝐷𝐼 = 0.34. FaUCI can reach 𝐷𝐼 ≥ 0.8 – which
is a commonly agreed threshold in the literature for DI – preserving an accuracy of 85.6%. Authors
of FNNC say that their method with 𝐷𝐼 ≥ 0.8 reaches 82.2%, under the same DI condition Wagner
method can reach 87.7% of accuracy. We emphasize that the results of FNNC and Wagner presented
here are reported by the original authors, and we are unable to independently reproduce them. For
this reason, and because Wagner’s method reaches a higher accuracy than the vanilla NN (87.7% and
86.7% respectively), there is a possibility that the comparison is not straightforward. Figure 1e shows
the performance of FaUCI when using the categorical sensitive attribute “ethnicity”. The vanilla NN
has a DI of 0.47 and its accuracy is 86.8%. Our method can preserve the accuracy of the vanilla model
with a satisfactory DI ≥ 0.8. Finally, in Figure 1f there are the results of the experiments with “age” as
continuous protected feature. The vanilla NN reaches an accuracy of 86.4% with 𝐷𝐼 = 0.47. FaUCI
cannot achieve the desired value of 0.8 for DI. However, it improves the metric until 𝐷𝐼 = 0.58 with
an accuracy of 85.5%. Overall, experiments show that FaUCI can significantly improve DI metric while
preserving high accuracy.

4.4. Equalised Odds Results

Figure 1 reports the trade-off between accuracy and equalised odds using FaUCI and Cho (also FNNC
when using “sex” as sensitive attribute). Figure 1g shows the results of the methods with “sex” as
binary sensitive feature. We observe that FaUCI performs generally better than Cho, and it is able to
maintain high accuracy (≥ 85.9%) with an 𝐸𝑂 ≤ 0.02. FNNC scores a reasonably good accuracy value
(83.9%) while having an 𝐸𝑂 ≤ 0.02. Figure 1h shows a peculiar behaviour of the performance of
the two methods when using “ethnicity” as protected attribute. FaUCI maintains high accuracy while
reducing the EO value, instead Cho drops its accuracy. One possible reason for this behaviour is that
the underlying Q-function of Cho’s method might not adequately approximate the distributions of
the categorical values. Indeed, also in Figure 1b there is a similar – yet less accentuated – behaviour.
Another possible reason is that the method is vulnerable to unbalanced datasets. Experiments with the
continuous sensitive attribute “age” are reported in Figure 1i. We observe that FaUCI outperforms Cho’s
method in terms of accuracy and EO. Once again, we speculate that the behavior could be attributed
to the Q-function. In this case, for continuous values, the approximation of distributions is better
than our approach. Overall, the results with EO constraints show that FaUCI can improve the fairness
metric while preserving a high accuracy-metric trade-off. Cho’s method can optimise the EO value for
attributes “sex” and “age” but it fails to do so with “ethnicity”.

5. Conclusion

In this work we present FaUCI, a general purpose method to enforce fairness constraints in NN. The
main features of this approach are the ability to work with different fairness metrics, the possibility to
use it on any data type of sensitive attribute, the resilience to unbalanced datasets, and the ability to
work with multiple sensitive attributes. We introduce a new formulation of some fairness metrics used
by FaUCI enabling the utilization of these metrics with continuous sensitive attributes and enhancing
resilience to unbalanced datasets. We validate our method on a real-world dataset and compare it
with other state-of-the-art methods. Results show that FaUCI is able to improve the fairness metrics
while preserving a high accuracy-metric trade-off. Future works will be devoted to investigating the
potential application of FaUCI to enhance fairness in cases involving multiple sensitive attributes within
the context of intersectionality. Another interesting direction is to compare FaUCI, and in general
in-processing techniques, with post-processing methods.
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