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Abstract
The tempo estimation task has been traditionally performed on musical compositions mostly
represented as audio or MIDI. Recent methods obtain near-perfect results. Nevertheless, the
same methods applied to symbolic representations, such as textual chord annotations, result in
inaccurate estimations. This hampers the harmonisation of heterogeneous datasets composed
of symbolic annotations since a conversion step towards a common representation is needed.
In this paper, we propose a novel method to obtain accurate tempo estimation on musical
compositions encoded using textual symbolic annotations, relying on relevant cognitive and
musicological theories. All the code is available at https://github.com/n28div/TEwPF.
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1. Introduction

Estimating the tempo of music compositions is a well-researched area driven by real-world
applications, from recommender systems to similarity measures [1]. For instance, Gouyon
and Dixon [2] perform genre classification using only tempo information. The results are
comparable to the performances of the same algorithm when using audio representations.
Indeed, the tempo of a composition has a great influence on the cognitive perception of
listeners and composers [3] as well as computational applications [1]. Faster compositions
tend to be perceived as happier while slower compositions as sadder. Moreover, it has
been observed that neural activity modulates in the presence of music with a faster tempo
[4], enhancing performances in reactive tasks.

The tempo estimation task is defined as the identification of the frequency that humans
tap to a musical composition [5]. It is characterized by two sub-tasks: global and
local tempo estimation. The global estimation assumes that a constant tempo can be
observed throughout the whole musical composition [1] while local estimation relaxes
such constraint and takes into account time fluctuations [6]. Global tempo estimation is a
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subset of local tempo estimation, since it can be extracted from a set of local estimations,
for instance by taking the median of the local estimations [1].

Audio representation is the most used input representation for the tempo estimation
task. Despite the large number of datasets proposed, obtaining high-quality recordings
represents the main issue in optimising and measuring Music Information Retrieval (MIR)
methods [1]. This is mainly due to copyright issues. It is not possible to directly share
high-quality audio samples and it is often impossible to obtain the same exact recording
version and reproduce results.

This has led to a growing interest in the use of symbolic annotations, which can
be openly shared and have been shown to outperform audio-based methods in chord
recognition [7] and music generation [8, 9] tasks. In order to effectively exploit symbolic
data, however, annotations need to be provided in a coherent form. Symbolic datasets
annotated by experts (e.g. [10, 11]) are often difficult to combine. Among the many
open challenges, a prominent issue is that annotations are mostly provided using absolute
timing (in seconds) rather than the corresponding symbolic notation.

To the best of our knowledge, there are no previous attempts to perform tempo
estimation based on symbolic annotations that use absolute timing. This hampers the
harmonisation of heterogeneous symbolic datasets, such as ChoCo [12], since it is not
directly possible to normalise all the annotations to rhythmic notation. This poses a
limit on the development of methods that can benefit from symbolic representations. An
accurate tempo estimations method enables the estimation of the meter of a composition
[13, 14] which trivially allows the inference of the rhythmic notation. Alongside the
enhancement of other MIR methods, it would also enable experts to analyse large music
corpora, such as done by De Clercq and Temperley [15].

In this paper, we propose a novel method that estimates the tempo of a musical
composition from its symbolic annotation expressed in absolute timing. Our method
is based on works that model tempo from a cognitive [16, 17] or musicological [18, 19]
perspective. The core intuition is to formulate a set of hypotheses and identify the
one that best fits an annotation, similarly to the work of Grosche and Müller [20]. By
exploiting techniques from the Computer Vision field, we estimate the local tempo of
each annotation and extract a global estimation from them. Our method outperforms all
the related works in this task, reaching an accuracy of 71%.

The rest of this paper is organised as follows: in Section 2 we analyse the most
relevant related works; in Section 3 we describe our model; in Section 4 we introduce
the experimental setting and in Section 5 we show the obtained results and how they
compare to existing methods. Finally, in Section 6 we summarise the proposed work and
highlight possible extensions in future works.

2. Related Works

The task of tempo estimation is a prolific research area in the Music Information Retrieval
(MIR) field, driven by multiple real-world applications [1] that can be grouped in perfor-
mance analysis, perceptual modelling, audio analysis, and performance synchronization



[5, 1].
Most of the existing literature focuses on the use of audio representations. Proposed

methods conceptually consist in a pipeline involving two steps: the first step processes
audio to produce a representation that is then fed to the second step, which extracts the
final tempo estimation. Given our focus on symbolic annotations, we only address the
most relevant and recent methods, focusing on how tempo extraction (i.e. the second
step) is implemented.

A common approach is to use a bank of resonating comb filters to extract the periodicity
from the input signal [21, 22, 23, 24] Informally, a resonating comb filter detects the
presence of a specific frequency in a signal by summing the signal with a scaled and shifted
version of that signal. In this way, the filter is able to resonate at different multiples of
the target frequency, thus resulting in a promising method to extract periodicities from a
signal. Multiple filters that are tuned to different frequencies, i.e. a bank of filters, is
used to detect the most prominent periodicity.

A similar approach is to use autocorrelation with a shifted version of the original signal
[25], where the autocorrelation operator computes a self-similarity between all the input
time steps. This results in a signal whose peaks correspond to the period of prominent
rhythmic groups [25].

Both approaches are effective in identifying frequencies that are repeated within
the piece, but encounter difficulties in capturing the near-periodic information that
characterises a whole composition,i.e. they neglect the fact that a stable pulse should
be assumed for the whole composition. To overcome this issue, the Predominant Local
Pulse (PLP) was introduced in Grosche and Müller [20]. A PLP is obtained by sliding
sinusoidal kernels all over the signal and accumulating the result. Through the use of
kernels with varying frequencies, a mid-level representation that captures local periodic
information is obtained. This allows noisy signals that display near-periodic characteristics
to be captured by the model. The original PLP proposal [20] uses a short-time Fourier
transform to identify periodicities. This makes the method less suited when symbolic
annotations are used: the distribution of annotations is uneven time-wise, i.e. some time
regions might be very dense of annotations while other regions are much less crowded.
Furthermore, it is difficult to identify an optimal trade-off between time and frequency
resolution when symbolic annotations are used as input. Our method overcomes the
limitation of PLP on symbolic annotations by avoiding the use of the Fourier transform.

Recent solutions implement either the feature extraction step [23, 26, 27, 24] or provide
the whole tempo estimation [28, 29, 30, 31] using neural networks.

Despite the accuracy obtained by recent methods [1], they suffer from octave errors
[28] (described in Section 4). Extending the time estimation step by using ML algorithms
[25] or additional data, such as style [32], has proven to be effective to prevent these
errors.

Despite an initial interest in the extraction of tempo estimations from symbolic
representations from early methods [5, 33], little interest has been devoted to this task in
recent years. This may be due to the representation format itself, since the most popular
ones (e.g. MIDI or MusicXML) are designed to represent tempo explicitly. Recent
proposals focus on the extraction of more sophisticated rhythmic structures instead, such



as meter detection [14, 34], where global tempo information is assumed to exist.

3. Methodology

We focus on tempo estimation of a musical composition, based on symbolic annotations
provided by experts. The underlying assumption in our model is that the tempo of a
composition tends to be locally consistent - i.e. neighbouring annotations have a similar
tempo. Regardless of tempo fluctuations, we assume that it is possible to identify an
over-arching tempo that approximates the neighbourhood of each annotation, similarly
to [20].

We test how well each tempo hypothesis explains the annotations by computing the
value of a periodic function 𝑓 at each timestamp, where 𝑓 is defined as a linear combination
of cosine functions ̂𝑓. The frequency of each cosine function ̂𝑓 is set such that each peak
matches the frequency of the hypothesised beats per minute (BPM) or a multiple of it.
In practice, we convert a BPM 𝑏 into 𝑟𝑎𝑑/𝑠 using the equation

�̂� =
2𝜋𝜙𝑏
60

(1)

where 𝜙 ∈ ℕ and �̂� is 𝑏 in 𝑟𝑎𝑑/𝑠.
Since textual symbolic annotations are most commonly used for chords and sections

(e.g. [10, 11]), they require a low rhythmic resolution, such as whole notes, quarter
notes or eighth notes. We assume that the tatum - “the smallest time interval between
successive notes in a rhythmic phrase” [35] - corresponds to eighth notes. Depending on
the application at hand, other rhythmic figure might be more appropriate to be used
as tatum, such as sixteenth [35] or thirty-second notes [34]. We compute 𝑓 as the linear
combination of three cosine functions with 𝜙 ∈ [1/2, 1, 2] where 𝜙 = 1 corresponds to
quarter notes, 𝜙 = 1/2 to half notes and 𝜙 = 2 to eighth notes.

The fitness function 𝑓 is hence defined as

𝑓 (𝑡) = 𝛼 cos4(𝑡𝑏1) + 𝛽 cos4(𝑡𝑏2) + 𝛾 cos4(𝑡𝑏 1
2
) (2)

where 𝑏𝜙 is the timing hypothesis converted using Equation (1) and 𝛼, 𝛽, 𝛾 are the
coefficients for the linear combination. This approach corresponds to the event rule in
the Generative Theory of Tonal Music (GTTM) [18, 19], which states that beats that
align with event onsets should be preferred over other beats. Here the peaks of 𝑓 are the
beats and the time of each annotation are the event onsets.

Figure 1 depicts the function 𝑓 computed for 𝑏 = 120 BPM. The onsets occurring at
correct beat positions have higher values when compared to neighbouring positions.

3.1. Estimating tempo

It is possible to optimise 𝑓 by maximising the sum of 𝑓 computed at each time step.
This requires an additional assumption that reduces the generality of the method: a
global BPM must exist for each composition. This method would struggle in those



Figure 1: 𝑓 computed at 120 BPM for different combinations of 𝛼, 𝛽, 𝛾. The dotted lines represent onset
positions while the solid line represents the fitness score of each onset.

cases in which tempo changes throughout the whole piece (e.g. live performances). A
straightforward solution is to optimise over sliding windows of a composition. Empirically
we observe that this process is too sensitive to the initial tempo hypothesis. While it
is possible to obtain an initial hypothesis using a data-driven approach, for instance by
using the composition’s genre [32], the result would be heavily influenced by the tempo
bias on the training data [1].

To estimate local tempo, we identify a search space composed of a finite number of
hypotheses 𝐻 ⊆ [𝑚𝑏𝑝𝑚, 𝑀𝑏𝑝𝑚] where |𝐻 | ∈ ℕ and 𝑚𝑏𝑝𝑚 and 𝑀𝑏𝑝𝑚 are the bounds of the

search space. We identify an hypothesis resolution Δ𝑡 and sample
𝑀𝑏𝑝𝑚−𝑚𝑏𝑝𝑚

Δ𝑡 equally
distant points in the search space 𝐻. The choice of Δ𝑡 depends on the trade-off between
computational complexity and precision of the solution, since it influences the dimension
of the search space. Intuitively, lower values of Δ𝑡 produce higher resolution results while
higher values of Δ𝑡 result in lower complexity of the search procedure. We investigate the
influence of the parameters 𝑚𝑏𝑝𝑚, 𝑀𝑏𝑝𝑚, and Δ𝑡, in Section 4.

For each annotation 𝑎 we compute the fitness 𝑓 of each hypothesis ℎ ∈ 𝐻. The result
is a matrix 𝑆 ∈ ℛ|𝐻 |×|𝑎| where |𝑎| is the number of annotated timestamps in 𝑎. 𝑆 can



be interpreted as an image describing the fitness of each hypothesis at each available
timestamp. So far, the described method is similar to PLP [20].

3.2. Local tempo coherency

Differently from PLP and according to our initial assumption, we update 𝑆 such that
neighbouring annotations and neighbouring BPMs influence each other. We use two
Gaussian filters [36] over 𝑆, one along the rows and one along the columns. A Gaussian
filter is obtained by computing the convolution of an image, in our case 𝑆, with a Gaussian
kernel. Informally, each element 𝑠 ∈ 𝑆 is updated by computing a weighted mean of the
neighbouring elements, where the weights are a 2𝐷 Gaussian distribution centred at 𝑠.
The standard deviation of the Gaussian distribution, 𝜎, is used to compute the size of the
neighbourhood, roughly 3𝜎. This approach overcomes the limit of the PLP method when
applied to symbolic annotations. The application of two distinct filters results in two
additional parameters: 𝜎𝑏𝑝𝑚 and 𝜎𝑡. The first (𝜎𝑏𝑝𝑚) is used to compute the dimension of
the kernel along the timing dimension, and the second (𝜎𝑡) takes into account the BPM
resolution Δ𝑡: 𝜎𝑏𝑝𝑚 = 𝜎𝑏𝑝𝑚/Δ𝑡.

(a) Standard 𝑆
(b) 𝑆 with Gaussian filter applied with 𝜎𝑏𝑝𝑚 =

1 and 𝜎𝑡 = 3.

Figure 2: Matrix 𝑆 computed for Helter Skelter by The Beatles, with Δ𝑡 = 0.1, 𝑚𝑏𝑝𝑚 = 30,𝑀𝑏𝑝𝑚 = 300. In
both figures, the correct BPM has been highlighted with a dashed red line while the detected local BPMs
are represented with yellow dots. In Figure b it is easier to visually identify high-scoring hypotheses
when compared to Figure a. In both images the global BPM is correctly identified, however, the local
predictions depicted in Figure b are more stable across annotations.

In Figure 2 a visual comparison between an unfiltered 𝑆 (a) and a filtered 𝑆 (b) is
shown.

We obtain a local tempo estimation from 𝑆 by computing the cumulative sum over
each column and taking the maximum for each row. Formally, this is defined as

𝑠𝑐𝑜𝑟𝑒(𝑡) = argmax
𝑗

|𝐻 |
∑
𝑖=1

𝑆𝑖,𝑗 (3)

with 𝑡 the annotations in a composition and 𝑗 the annotations preceding 𝑡. We compute the
global tempo by taking either the median value of the local estimations or the peak from



Schema Definition
Uniform 𝑤(𝑏𝑝𝑚) = 1
Gaussian 𝑤(𝑏𝑝𝑚) = 1

𝜎√2𝜋
⋅ exp(− (𝑏𝑝𝑚−𝜇)2

2𝜎 2
)

Parncutt [16] 𝑤(𝑏𝑝𝑚) = exp(− 1
2
( 1
𝜎
log10(

𝑏𝑝𝑚
𝜇
))2)

van Noorden et. al [17] 𝑤(𝑏𝑝𝑚) = 1

√
(( 60

𝑏𝑝𝑚
)2−( 60

𝑒𝑥𝑡
)2)2−𝛽⋅( 60

𝑒𝑥𝑡
)2

Table 1
Implemented weighting schemas 𝑤 as function of an input BPM 𝑏𝑝𝑚. 𝜎, 𝜇, 𝑒𝑥𝑡 are parameters that need
to be tuned.

the histogram of the local estimations, as suggested in [1]. In Section 4 we experiment
with both methods.

3.3. Perceptionally-based weight for BPM hypothesis

A common issue among all tempo estimation methods is the octave error, i.e. the
estimation of a multiple of the actual BPM. An example can be seen on Figure 2b: the
local estimations are coherent only until the 50th annotation, where a BPM twice the
correct one is detected.

Octave errors are intrinsic to the tempo estimation task: for example the piece in Figure
2b, Helter Skelter by The Beatles, has a final section which is faster and more upbeat
when compared to the previous sections. This can results in a denser time distribution of
the annotations that leads to the detection of a faster tempo.

To overcome this problem we update the fitness function 𝑓 to weight specific hypothesis
differently. We experiment with 4 different weighting schemas: a uniform distribution, a
Gaussian distribution, the model proposed by Parncutt [16] and the model proposed by
van Noorden & Moelants1 [17]. The fitness function 𝑓 is hence updated to

𝑓𝑤(𝑡) = 𝑓 (𝑡) ⋅ 𝑤(𝑏𝑝𝑚) (4)

where 𝑤(𝑏𝑝𝑚) represents the weighting schema, normalised in the range [0, 1] using
Laplace smoothing [37].

The implemented weighting schemas are described in 1. In Section 4 we experiment
with different combinations of parameter values.

3.4. Metric preferences

In the GTTM, Lerdahl and Jackendoff define a rule for rhythmic grouping: longer onsets
should align with strong beats [18, 19]. The definition of strong beats depends on the
meter of a composition - defined as the hierarchical organisation of beats at different
time scales [3]. We take in consideration this rule by extending Equation (4) as follows:

f𝑤𝑔(𝑡, 𝑑) = [ 𝑓𝑤(𝑡) + cos2(𝑡𝑏𝑔) ⋅ 𝑑 , ⋯ ] (5)

1Our implementation is slightly different from the original proposal. See 1 for more details.



where f𝑤𝑔(𝑡, 𝑑) is a vector whose elements are hypotheses specialised to a metric preference
𝑔; 𝑑 is the length of the annotation at time 𝑡, and 𝑏𝑔 is the BPM hypothesis converted
using Equation (1) with 𝜙 = 𝑔. In the experiment presented in Section 4 we set 𝑔 ∈ [3, 4]
to represent ternary and binary meters respectively, but it is trivial to support additional
groupings as well. To detect the meter that best fits the composition we maximise 𝑔 in
Equation (5). Formally, this is defined as follows

argmax
𝑔

|𝑎|
∑
𝑡=0

f𝑤𝑔(𝑡) + cos2(𝑡𝑏1) ⋅ 𝑑 (6)

4. Experimental Setup

In this section, we experiment with the different combinations of methods and parameters,
described in Section 3. We perform an extensive set of experiments relying on Bayesian
Search [38] to find the best combination of parameters in a complete and efficient way.
The global tempo estimation methods described in Section 3.1 and the weighting schemas
of Section 3.3 are treated as parameters of the model.

Component Search space

𝑓 (𝑡)

Δ𝑡 ∈ [0.1, 1]
𝑚𝑏𝑝𝑚 ∈ [10, 50]

𝑀𝑏𝑝𝑚 ∈ [180, 300]
𝛼, 𝛽, 𝛾 ∈ [0, 1]

Smoothing 𝜎 ∈ [0.5, 10]

Gaussian weight
𝜇 ∈ [50, 250]
𝜎 ∈ [1, 1000]

Parncutt [16]
𝜇 ∈ [10, 300]
𝜎 ∈ [0.1, 10]

van Noorden et al. [17]
𝑒𝑥𝑡 ∈ [50, 250]
𝛽 ∈ [0.1, 10]

Table 2
Search space for the proposed model

2, provides an overview of the identified search spaces.
We compare our model with the optimisation methods sketched in Section 3. We

use the Nelder-Mead algorithm [39] (based on gradients) with the initial solution set to
0.5 ∗ (𝑀𝑏𝑝𝑚 − 𝑚𝑏𝑝𝑚), and the Particle Swarm Optimisation (PSO, free from gradients)
method [40] to minimise the objective function. To provide a fair comparison, we search
for the best parameter (𝑚𝑏𝑝𝑚 ∈ [10, 50], 𝑀𝑏𝑝𝑚 ∈ [180, 300] and Δ𝑤 ∈ [1, 10], with Δ𝑤
the sliding window size) on the PSO model as well, including the hyper-parameters
(𝛼, 𝛽, 𝛾 ∈ [0, 1]) in the search space as well.

Finally, we compare our results with other publicly available methods: Böck et al.
[23], Böck et al. [41], and Grosche et al. [20]. They use, respectively, comb filters,



autocorrelation and PLP. Each method is either implemented using the madmom [42] or
essentia [43] libraries. All the related methods expect a signal representation as input.
Given our setting, we construct a signal with sampling rate 𝑓𝑠 = 200𝐻𝑧 and manually add
peaks at the samples corresponding to each annotation.

Each result is compared using the standard measures of Accuracy and Formal Octave
Errors (FOE). Accuracy is divided into two measures, Accuracy 1 and 2, defined as:

0.96 ⋅ 𝛼 ⋅ 𝑒𝑠𝑡 < 𝑏𝑝𝑚 < 1.04 ⋅ 𝛼 ⋅ 𝑒𝑠𝑡 (7)

where 𝑏𝑝𝑚 is the correct BPM, 𝑒𝑠𝑡 the estimation, and 𝛼 = 1 for Accuracy 1 and
𝛼 ∈ [13 ,

1
2 , 1, 2, 3] for Accuracy 2. Both accuracy measures are binary measures: the

estimate is correct if it is within a 4% tolerance with respect to the true BPM. Differently
from Accuracy 1, Accuracy 2 considers octave errors as correct estimations. As pointed
out by Schreiber et al. in [1], Accuracy 1 and 2 are of difficult interpretation: important
information, such as the most common octave errors, are hidden by the binary result.
We address this issue by analysing the FOE measures:

𝑂𝐸1(𝑒𝑠𝑡 , 𝑏𝑝𝑚) = log2(
𝑒𝑠𝑡
𝑏𝑝𝑚

)

𝑂𝐸2(𝑒𝑠𝑡 , 𝑏𝑝𝑚) = argmin𝑂𝐸1(𝛼 ⋅ 𝑒𝑠𝑡 , 𝑏𝑝𝑚)
𝐴𝑂𝐸1(𝑒𝑠𝑡 , 𝑏𝑝𝑚) = |𝑂𝐸1(𝑒𝑠𝑡 , 𝑏𝑝𝑚)|
𝐴𝑂𝐸2(𝑒𝑠𝑡 , 𝑏𝑝𝑚) = |𝑂𝐸2(𝑒𝑠𝑡 , 𝑏𝑝𝑚)|

where 𝛼 is the same as the one for Accuracy 2. FOE measures are complementary to
Accuracy 1 and 2 and are easier to be visually interpreted. The search procedure optimises
Accuracy 1 over a subset of the Beatles [10] and RWC Pop [11] datasets provided by
the mir_data library [44]. We use 3-fold cross-validation on a subset of the data (80%)
randomly sampled and use the remaining data to evaluate the method in Section 5.

5. Results

In Table 3 the best results obtained from the experiments described in Section 4 are
described. Our method outperforms existing techniques on Accuracy 1, providing
estimations that are less flawed by octave errors. We obtain our best results by estimating
global tempo using the median operator. This provides additional evidence that this
operator is best suited to estimate global tempo from a list of local tempos, as also
argued by others [1]. Interestingly, when it comes to Accuracy 2, the approach from
Böck et al. [23] (comb filter-based) achieves good results, outperforming some of our
experiments. The lower Accuracy 1 score, however, indicates that it is not a reliable
method for symbolic annotations. Using a weighting schema, as described in Section
3.3, correctly biases the method towards octave-correct estimations, as in the case of
Gaussian weighting, which largely improves Accuracy 2 results. When using the work



Weighting schema 𝛼 𝛽 𝛾 𝑚𝑏𝑝𝑚 𝑀𝑏𝑝𝑚 Δ𝑡 𝜎𝑏𝑝𝑚 𝜎𝑡 A1 A2
H
is
to
gr
am

Nelder-MeadΔ𝑡=7 0.18 0.56 0.48 10 271 0.17 0.23
PSOΔ𝑡=4,𝑐1=0.69,𝑐2=0.45,𝑤=0.63 0.93 0.27 0.58 14 184 0.02 0.08
Gaussian𝜇=103,𝜎=168.44 0.17 0.82 0.64 27 241 0.11 7.87 0.66 0.67 0.85
Parncutt𝜇=93,𝜎=4.12 0.40 0.25 0.55 31 279 0.12 6.39 1.57 0.63 0.83
Resonance𝛽=8.76,𝑒𝑥𝑡=86 0.56 0.46 0.29 50 276 0.15 1.56 6.19 0.60 0.75
Uniform 0.47 0.35 0.91 48 240 0.13 9.27 9.67 0.48 0.88

M
ed
ia
n

Nelder-MeadΔ𝑡=6 0.13 0.85 0.58 21 277 0.13 0.15
PSOΔ𝑡=3,𝑐1=0.97,𝑐2=0.5,𝑤=0.41 0.14 0.89 0.79 47 184 0.06 0.06
Gaussian𝜇=99,𝜎=890.26 0.86 0.43 1 40 242 0.12 9.79 2.32 0.67 0.90
Parncutt𝜇=109,𝜎=7.83 0.21 0.54 0.56 41 297 0.10 6.31 6.88 0.71 0.85
Resonance𝛽=0.34,𝑒𝑥𝑡=96 0.70 0.34 0.82 50 296 0.21 1.32 1.83 0.67 0.79
Uniform 0.01 0.76 0.58 39 240 0.29 8.51 4.75 0.40 0.88

B
as
el
in
e Böck et al. [41] (autocorrelation) 0.11 0.67

Böck et al. [23] (comb filters) 0.09 0.88
Grosche et al. [20] (PLP ) 0.11 0.46

Table 3
Results of the proposed methods and their best parameters found. Results from related works are
also reported. The best results for each global BPM estimation method (histogram and median) are
represented in bold. The best results overall are also underlined. A1 and A2 are used to refer to Accuracy
1 and Accuracy 2. Parncutt weighting schema refers to the work of Parncutt [16] while Resonance to the
work of van Noorden et al. [17].

from van Noorden et al. [17] and Parncutt [16], Accuracy 1 improvements over a uniform
distribution also result in a degraded Accuracy 2 score. This might happen because
these methods bias the tested hypotheses in a more aggressive way. A possible approach
to overcome this issue is to dampen the amount of added bias through an additional
parameter.

In general, we consider the method that uses Parncutt weighting and the median
operator to be our best-performing experiment, given the Accuracy 1 result of 0.71. We
remark that regardless of the use of a numerical method (Nelder-Mead) or a meta-heuristic
one (PSO), the use of optimisation methods show worse performance in comparison to
other approaches.

In Figure 3 the measures describing octave errors are reported. The distribution of
𝑂𝐸1 in the best model is centred towards 0 when compared to other models. Analogously
in 𝑂𝐸2, the distribution is more accurate when octave errors are also considered correct.
From the 𝑂𝐸1 graph, it can be seen that related works are completely skewed towards
octave errors since the plot distribution is distributed along all the x-axis, while all of our
models are more prone to estimate BPMs that are 1/2 of the target BPM, since denser
clusters can be identified around the point −1 [1].

In Figure 4 the accuracy of our best methods, represented in Table 3, is plotted as a
function of the tolerance (4% in Equation Equation 7). The median approach converges
much quicker to the best results, providing further evidence that it is best suited to



Figure 3: Octave errors from the experiments on the proposed method in Table 3, visualised using
Kernel Density Estimation. The best result is highlighted using a star. Each model is in a different row,
labelled as E𝑊 where E is the global tempo estimation method (M for median and H for histogram) and
W is the weighting schema (G for Gaussian, U for Uniform, P for the Parncutt model and R for the van
Noorden et al. model).

extract a global tempo estimation.

6. Conclusion

We propose a novel method for tempo estimation of music composition, based on symbolic
text annotations, as input. The core idea is to exploit the linear combination of periodic
functions and techniques from the computer vision field, to find a BPM that best explains
the annotations. By relying on existing works from computational musicology and
cognitive perception of music, we devise a methodology that reaches an accuracy of 71%,
outperforming all existing approaches, applicable to this task.

In Section 3 we propose a variation of our method using optimisation techniques to
obtain a tempo estimation. Even though the results are not comparable with our other
approaches, we argue that framing the tempo estimation task as an optimisation and
carefully designing an objective function can lead to robust and accurate methods.

Regardless of the method used to obtain local tempo estimations, our results provide
additional evidence that the median operator is the best way to estimate global tempo
from a list of local estimations. The histogram method, however, can still be incorporated
into our approach when estimating local tempo. Instead of solving the maximisation
problem formulated in Equation (6), the histogram operator can be used to retrieve a list
of top-k candidates for each time step. We will investigate this option in future works.



Figure 4: Plot of Accuracy 1 with varying tolerance ∈ [0, 0.1]. Model names are the same of Figure 3

Finally, given the promising results from Böck et al. [23] in Table 3, an interesting
approach to explore is the combination of comb filters with our proposed method, to
enhance the performance on audio-representation as well.
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