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Abstract
The significant expansion of data-driven technologies in the past decade has highlighted the crucial role of

structured data, given the more relevant and meaningful informative content that they can provide to artificial

intelligence (AI) applications. Nonetheless, there are domains based on inherently unstructured data, such as the

audio domain. In those cases, the possibility of relying on an automated system capable of extracting structured

features from raw data could serve as a pivotal element in enhancing and strengthening the capabilities of an AI

system. In this work, we propose an automated feature extractor which leverages machine and deep learning

methodologies to retrieve two higher-level musical attributes from short MIDI samples, namely the harmonic

content of the sample – through its chords progression – and the role that such sample could have within a

multi-track composition – i.e., melody, bass, or accompaniment. We perform our tests on a dataset containing

ground truth information to assess quantitative results and later integrate our models within the state-of-the-art

framework for combinatorial music generation MusiComb to check for harmonic and melodic consonance on the

downstream generative task.
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1. Introduction

Computer-aided music generation combines computer science, machine learning, and music theory to

compose, produce, or assist in creating music. This interdisciplinary field poses a significant challenge

due to the complex mix of creativity, emotion, and technical requirements involved, making it one of

the most demanding tasks for AI to undertake. MusiComb, originally conceived as an implementation

of the work theorized by Hyun et al. in the paper [1], emerges as a framework for combinatorial music

generation. It employs Constraint Programming to generate the final piece, while utilizing deep learning

and machine learning techniques for data preparation and generation. Through the fusion of short MIDI

samples, this system excels at crafting well-structured compositions and empowers users by allowing

them to shape the creative process through the customization of various music-related parameters.

As well summarized in the related paper [2]: it represents a novel music generation approach aimed
at overcoming generative model limitations, by properly combining a set of samples under user-defined
constraints.

MusiComb, alongside ComMU, the MIDI sample dataset introduced in [1] and primarily utilized

during the initial development of the framework, has established a standardized set of significant

features of harmonic and structural attributes of each sample within the dataset. These features serve

as fundamental components utilized by the framework for sample combination and music generation.

While ComMU serves as an exemplary dataset for the tasks, the imperative for new datasets has become

evident. This necessity arises not only to incorporate fresh samples but also to furnish MusiComb with

a broader array of potential features, such as music genre, enabling users to explore a wider spectrum of

potential outcomes. This, coupled with the challenge of locating MIDI datasets labeled consistently

with ComMU, underscored the necessity for an automated feature extractor. Our primary focus lies in
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estimating a subset of features that are not readily accessible or discernible through the MIDI protocol.

These features, such as track roles and chord progressions, pose greater complexity in estimation due to

their indirect nature. They hold significant relationships with the harmonic and structural attributes

of the samples. Establishing correlations between known properties or elements of the sample and

these desired features necessitates the use of machine learning and deep learning systems. Moreover,

evaluating the results, particularly in the chord progression domain, presents challenges as existing

systems often rely on human intervention.

The concluding phase will focus primarily on the modifications and additions implemented within

the MusiComb framework, aiming to address various aspects and limitations inherent in the system

itself. A key addition involves an automatic sample extraction algorithm designed to extract small,

repetitive sequences (samples) from complex and lengthy MIDI files, facilitating the integration of new

datasets. Additionally, to enhance the flexibility of sample selection mechanisms and mitigate their

inherent rigidity based on user-selected parameters, minor adjustments have been incorporated into

the pipeline. The introduction of new MIDI datasets, coupled with these modifications, is intended to

render the framework more adaptable and operate more flexibly.

This approach enables a broader range of possible combinations, thereby reducing the deterministic

nature of the overall process relative to the initial set of user parameters. Further elaboration on the

rationale for those approaches will be provided in subsequent discussions, specifically: Section 2 will

offer a comprehensive overview of relevant existing works and the main rationale behind this work;

Section 3 will delve deeply into the challenges and complexities associated with feature extraction and

the main problematic aspects and difficulties encountered in addressing these challenges; Section 4

will introduce the primary integrations and modifications made to the MusiComb framework, offering

a detailed explanation of the sample extraction algorithm and the key advantages resulting from the

adjustments to the sample selection pipeline, particularly in relaxing selection criteria. Some of the

compositions generated by Expert-MusiComb can be heard at the following link: https://soundcloud.

com/lorenzo-tribuiani/sets/musicomb.

2. Background and Motivation

The field of computer-aided music generation has recently experienced a significant advancement

in the use of end-to-end neural systems. Transformer-based models such as Music Transformer [3]

paved the way to more successful projects like MusicLM [4], Jukebox [5], Noise2Music [6], and even

professional tools like Suno. However, the adoption of these models introduces several drawbacks.

Among all, these systems are still subject to abrupt timbre changes and noisy outputs, which restrict

their professional use as well as offering very limited user control and requiring high computational

demands, thus preventing them from real-time use [7]. On top of that, the inherently opaque nature

of neural architectures has been proven to lead to unintended plagiarism, with a consequent lack of

recognition of the human artists whose compositions have been used to train the models.

Driven by the goal of addressing these challenges, there is renewed interest in symbolic-based

generative models within the research community. Traditionally, Probabilistic and Hidden Markov

Models (HMMs) have been widely used for both chord and melody generation. For example, [8] uses

an HMM for Bach-inspired chorale harmonies, [9] involves pattern recognition and recombination

techniques to create compositions that replicate th style of various classical composers while [10]

and [11] apply complex graphical models to melody harmonization. More recently, systems such as

Morpheus [12] and GEDMAS [13] employed explicit rules and probabilistic methods to generate melodies

or entire tracks according to certain constraints, while Pachet et al. [14] combined symbolic models with

neural architectures to exploit the power of both frameworks. Our former work, MusiComb [2], aligns

as well within this research area, as it employs a combinatorial approach to music generation although

it focuses on the arrangement of predefined segments of notes (samples) rather than generating music

on a note-by-note basis.

The main strength of sample-based music composition comes from its higher compatibility with
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contemporary pop music compositional and production standards since, over the past thirty years, the

introduction of samplers and Digital Audio Workstations (DAWs) has significantly shifted the music

industry’s workflow towards extensive use of sample libraries [15]. However, given that the arranged

samples must meet specific properties and constraints to harmonically integrate into longer sequences,

the challenge of correctly locating them rapidly became problematic and task-intensive, especially as

the size of the databases started to expand [16]. Current sample libraries often provide some metadata

such as key signature and tempo, along with additional high-level labelling that can be used to create

filters, but information about chord progressions, instrument type, and track role is most of the time

lacking, hence preventing a fully automated procedure. Similarly, research in sample-based music

generation is restricted by technical limitations, as major datasets for synthetic music generation such

as the Lakh MIDI Dataset [17] or MuseDB18 [18] lack this critical information. For this reason, our aim

is to build an automated pipeline that could work as well with larger datasets by employing machine

learning models to extract this kind of metadata whenever it is missing.

3. MIDI Feature Estimation

The core challenge of this work revolved around MIDI feature estimation. As previously mentioned,

MusiComb established a standardized set of features for each sample, essential for the proper functioning

of the framework. Specifically, eight distinct features were identified: Beats Per Minute (BPM), number
of measures, key signature, genre, track role, chord progression, time signature, and rhythm. These eight

features have been categorized into two main groups for clarity:

Direct features including BPM, number of measures, key signature, genre, time signature, and rhythm,

refer to those characteristics whose values are either explicitly written or easily extractable from

the MIDI data itself. Key signature can indeed present a minor obstacle in estimation, as it may not

always be explicitly encoded within the MIDI data. However, there are existing algorithms capable

of estimating the key signature with a reasonable level of confidence, such as the Krumhansl-

Schmuckler algorithm utilized in this study. Also, is commonly assumed that genre can be

implicitly inferred from the properties of the dataset itself.

Indirect features such as track-role and chord progression, are attributes that are unlikely to be explic-

itly encoded within the MIDI protocol of the sample.

The primary challenge in this study is to handle indirect features. While track-role estimation can

be addressed using classical classification techniques (i.e. SVM), chord progression estimation differs

fundamentally. This calls for alternative methods, such as using GRU layers typically employed for

Natural Language Processing tasks, and different evaluation metrics to effectively tackle these tasks.

3.1. Track Role Estimation

The track role (i.e., the function of a sample within a music piece) is challenging to estimate due to its

contextual nature. Defining track roles often relies on human interpretation and overall musical context,

posing challenges in establishing clear class boundaries without nuanced distinctions. Another challenge

arises from the similarity between track roles, with MusiComb standardizing six distinct classes: main
melody, sub melody, riff, accompaniment, pad, and bass. Some roles, like main and sub-melody, share

similar concepts and structures, making the classification process harder. The six-track role classes

can be grouped into three primary macro-groups: Melody, Accompaniment, and Bass, as shown in

Table 1. This grouping highlights structural similarities within each macro-group, complicating their

differentiation. Additionally, the riff class exhibits similarities with both melody and accompaniment,

as illustrated in Fig. (1).

In our study, significant effort was devoted to identifying a feature set suitable for training a Support
Vector Machine, due to a preliminary empirical evaluation we made of different ML algorithms, for

classifying six distinct MusiComb track roles. We focus on structural musical elements that vary across

classes while maintaining consistency or similarity within each class. The feature set for classification



Main melody
Melody Sub melody

Riff

Accompaniment Accompaniment
Pad

Bass Bass

Table 1
Track role classes. Elements within the same macro-group (melody, accompaniment, and bass) exhibit similarities.

(a) Chord related features (b) Notes related features (c) Octave related features

Figure 1: In the feature space related to chords, as shown in Figure 1a, there is a clear boundary separating
Accompaniment and Melody-like tracks. However, no distinct boundary can be observed for Riffs. Conversely,
Figure 1b demonstrates that note-related features exhibit a less pronounced but more discernible separation
among the three classes. Lastly, Figure 1c illustrates that octave-related features provide a good distinction
between Accompaniment-like and Melody-like tracks, yet they do not offer a clear differentiation between
Melody and Riff.

was selected from those directly accessible from the MIDI protocol or modified versions thereof, ensuring

their availability in external datasets. Since track role definition is independent of harmonic properties,

only structural features were used for classification. In a data-informed approach, using personal

domain knowledge, and based on the primary characteristics of each group, a set of eleven independent

features was chosen for classification.

1-2. Mean chords number & Mean notes number: The number of chords and individual notes is

crucial for the track role. We normalize them to mitigate the impact of sample length differences,

ensuring a consistent representation of chord and note densities across samples.

𝑚𝑒𝑎𝑛_𝑐ℎ𝑜𝑟𝑑𝑠_𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑐ℎ𝑜𝑟𝑑𝑠_𝑛𝑢𝑚𝑏𝑒𝑟

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠_𝑛𝑢𝑚𝑏𝑒𝑟

𝑚𝑒𝑎𝑛_𝑛𝑜𝑡𝑒𝑠_𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑛𝑜𝑡𝑒𝑠_𝑛𝑢𝑚𝑏𝑒𝑟

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠_𝑛𝑢𝑚𝑏𝑒𝑟

3-4. Chords duration & notes duration: Longer durations indicate greater importance in the score,

potentially influencing classification. To maintain consistency across samples of different lengths,

durations are normalized based on the number of measures.

5. Chords note distance: Not all simultaneous note sets adhere to conventional chord definitions
1
.

Hence, we consider the distances between notes within these groups, leveraging the consistent

1

Some instances, like those with fewer than three notes, serve to reinforce a melody or enrich harmony.



ratios between note distances in chord modes well-known in music theory. We use a modulo

12 representation for note distances, disregarding octave information, to maintain consistent

distance measurements across octaves.

6. Notes distance: In accompaniments, chords can be played individually or as arpeggios, complicating

classification. To address this, we use the mean distance between individual notes. This metric,

expressed modulo 12, helps differentiate chord arpeggios based on their mean distances.

7. Number of chord’s note: A single chord provides insights into the sample’s role. While traditionally

three notes define a chord, fewer may indicate bicords, and three or more suggest various structural

elements. This value is represented as the mean number of notes per chord.

8-9-10. Minimum octave, maximum octave and mean octave: Minimum and maximum octaves

set pitch variability boundaries within the track. The mean octave offers a central reference,

emphasizing the most relevant octave in the piece. Recognizing these boundaries aids in excluding

certain track roles based on expected octave characteristics.

11. Instrument: Instrument features are included to account for their association with specific track

roles or octave ranges.

3.1.1. Preprocessing

The ComMU dataset, the only dataset including all the metadata needed for the functioning of MusiComb,

was used for training. Preprocessing involved extracting the 11 relevant features and making adjustments

for robustness against minor variations. All data vectors were scaled using the z-score equation
2

to

standardize the range, preventing larger-ranged data points from disproportionately influencing the

SVM model.

3.1.2. Training and results

The SVM model was trained on the ComMU dataset and fine-tuned using Grid Search with cross-
validation to identify the best hyperparameters. Grid search was performed on three kernel types:

RBF, polynomial, and linear, with five C values (0.5, 1, 5, 10, 100) and two tolerance values (0.01 and

0.001). The dataset was split into five subsets for cross-validation. Table 2 shows the top 5 SVM models,

including their parameters and performance on each dataset subdivision, together with a K-Nearest

Neighbours baseline.

Model Kernel C Tolerance TAS1* TAS2 TAS3 TAS4 TAS5 Mean test score Mean F1 score

SVM RBF 10 0.001 0.81 0.81 0.81 0.81 0.82 81.1% 78.6%
SVM RBF 10 0.01 0.81 0.81 0.82 0.81 0.81 81.08% 78.6%
SVM RBF 5 0.001 0.79 0.8 0.81 0.81 0.81 80.53% 77.9%
SVM RBF 5 0.01 0.79 0.8 0.81 0.81 0.81 80.53% 77.6%
SVM Poly 10 0.001 0.8 0.79 0.81 0.79 0.81 79.89% 76.8%

KNN 57% 50%

* Test Accuracy Score for the given dataset subdivision

Table 2
Results from dataset splits and averages for the top 5 scoring results and KNN baseline.

The SVM model outperformed the KNN baseline, achieving an overall accuracy of 81.1% and an F1

score of 78.9%. The analysis of the confusion matrix indicates that the lower F1 score is mainly due to

the sub-melody and riff classes. Discriminating the riff class is challenging, especially in distinguishing

2𝑧 = 𝑋−𝜇
𝜎

, where 𝑋 is the current data point, 𝜇 is the mean and 𝜎 the standard deviation.



it from the main melody and accompaniment. The sub-melody class is frequently misclassified as the

main melody, while the main melody is sometimes incorrectly classified as sub-melody. This unexpected

behaviour could be influenced by the class distribution in the training set. Figure 2 illustrates that the

(a) Train (b) Test (c) Test predictions

Figure 2: Distribution of classes in the training set, test set, and SVM predictions on the test set.

main melody is more prevalent in the training dataset (2a), and the model has replicated this distribution

in its predictions (2c) on the test set
3
.

3.2. Chord Progression Estimation

Chord progression estimation involves finding the ordered sequence of chords that accompany a melody.

It relies heavily on harmonic elements such as notes and pitches, leading to variations based on the

sample type.

1. Chord progressions can be non-unique, influenced by the track role of a sample. Melody-like

samples present challenges as a single melody can harmonically match multiple chord progres-

sions, each producing a unique sound. In contrast, accompaniment and bass-like samples are

typically based on specific chord progressions, requiring a stricter classification approach. For

chord progression estimation, the macro groups from Table 1 will be used to define the three

primary classification domains.

2. The classification task has an extensive solution space defined by the unique possible chord names,

resulting in thousands of potential chord combinations based on harmonic rules. Balancing the

retention of harmonic information by simplifying the space is essential for ease of classification.

3. A harmonic metric tailored for chord progression estimation in melody samples is missing from

the literature. While classification accuracy is important, ensuring harmonic soundness in the

final results is crucial. A metric emphasizing harmonic aspects over mere accuracy is required.

Point 1 suggests training a unique model for each of the three macro groups (Melody, Accompaniment,

and Bass) using a Shared Model Split Weights approach. Although there are significant differences

between track roles, the estimation tasks are similar. Respectively, points 2 and 3 lead to a simplification

of the labels based on their names described in Section 3.2.1 and the adoption of a metric emphasizing

harmonic soundness, inspired by the work on Mathematical Harmony Analysis [19]. Moreover, under-

standing the temporal or positional context of the sample representation is crucial. Both samples and

chord progressions can be viewed as time series and a time-aware representation is crucial. Building

on the work of Hyungui et al. [20], recurrent neural networks based on GRU layers combined with an

autoregressive pipeline have been selected to address this task.

3.2.1. Preprocessing

We adopted a modified version of the Pitch Class Vector (PCV) representation from [20] for feature

preprocessing in our study. The PCV consists of 12 bins representing the 12 possible notes; we scale

these values using normalized Velocity
4

to reintroduce accent information by emphasizing notes played

3

The dataset split is the same adopted for ComMU and indicated in the dataset’s metadata.

4

Velocity is a MIDI parameter that indicates the force applied when pressing a key on a MIDI keyboard. Normalized velocity

is a scaled representation in the [0,1] range.



with greater force. Fig. 3 illustrates the modified PCV for a MIDI sample.

Figure 3: Modified PCV of a MIDI sample.

original simplification

major major

minor minor

diminished /
*

augmented major

alterations (7th, 8th, ...) major/minor

*
Due to their dissonant nature, diminished

chords have been excluded from the dataset.

Table 3: Chords name simplification rules.

Conversely, a classical approach using one-hot encoding has been employed for representing chord

names. As illustrated in table 3 all chord names present in the ComMU dataset have been mapped to just

two categories: Major and Minor chords. This reduction narrows down the solution space to 24 possible

elements. Finally, data augmentation was applied to the dataset by transposing samples and their

corresponding chord progressions across various note intervals, resulting in 11 additional entries for

each sample. This technique has been fundamental in developing the chord progression estimator. This

is primarily because transpositions of the same sample should result in corresponding transpositions of

the chord progression output, enhancing the system’s robustness. Injecting this knowledge is neither

direct nor easy; it is something the model must learn during training. This approach offers a dual

benefit: it increases the dataset size by augmenting the existing samples, a technique known to improve

generalization, and it incorporates transposition invariance into the model during training.

3.2.2. Model Architecture

The model architecture uses an Autoregressive approach with GRU layers to capture temporal patterns.

For a sample with 𝑁 measures, each measure is analyzed independently to reconstruct temporal

information focusing on chords. The input structure is as follows: Initial conditions, representing the

encoding of the three previous chords at time steps 𝑡− 1, 𝑡− 2, and 𝑡− 3 where all values are set to

zero for the first measure (START token), measure n, the Pitch Class Vector (PCV) for the considered

feature and measure n+1, the features of the next measure to provide information on the harmonic

direction. Individual learned embeddings are used for each feature, and the final model input is a tensor

obtained by concatenating these embeddings, resulting in a shape of (5, 64).

(a) (b)

Figure 4: Visual representation of model inputs (4a) and the model’s autoregressive pipeline (4b).

The main model architecture features a modular design, with each module consisting of a BiGRU



layer with 128 cells and hyperbolic tangent activation, followed by Layer Normalization and Dropout
with a probability of 0.3. In this specific application, two modules were utilized with a final classification

head included in the model. Figure 4b illustrates the model’s autoregressive pipeline. The one-hot

encoding of each chord is added to the initial conditions as the window shifts forward, allowing the

model to use current and past chord information.

3.2.3. Training & Results

The model predicts chords for each 4-sized window of samples. The ComMU dataset was augmented

and split into three datasets based on track-role macro groups: melody, accompaniment, and bass. The

model was trained thrice on each dataset with consistent hyperparameters
5
. Table 4 presents the results

of the best model weights evaluated on the corresponding test set for the specific task.

Test Accuracy Test F1 Score

Accompaniment Model 0.7511 0.7243
Melody Model 0.6297 0.6134

Bass Model 0.7514 0.7252

Table 4
Optimal results for the chord progression estimation task.

The accompaniment and bass models performed better than the melody model, which still achieved

a solid 63% accuracy and 61% F1 score. The confusion matrix highlighted frequent misclassifications,

especially between minor and specific major chord sequences, known as relative minors. This emphasizes

the importance of a metric focusing on harmonic aspects. In [19], a general rule describing the

pleasantness of a note interval is introduced: two notes played together sound harmonious (consonant)
when their frequency ratio uses small whole numbers. Building upon this concept, we developed a more

robust metric by examining the distribution of frequency ratio values across the entire dataset for both

labels and predictions. Particularly, being 𝑛 the number of measures in a sample, 𝑛𝑜𝑡𝑒𝑠(𝑛) the set of

frequencies of notes in that measure and 𝑐ℎ𝑜𝑟𝑑(𝑛) the set of frequencies of notes of the chord of that

measure, we define the set of frequency ratios for a measure as:

𝑟𝑎𝑡𝑖𝑜𝑠(𝑖) =
{︁
∼ 𝑎

𝑏
| ∀ 𝑎 ∈ 𝑛𝑜𝑡𝑒𝑠(𝑖), ∀ 𝑏 ∈ 𝑐ℎ𝑜𝑟𝑑(𝑖)

}︁
𝑓𝑜𝑟 𝑖 ∈ [0, . . . , 𝑛]

These two distributions, represented as matrices of numerator-denominator values, were then evaluated

in terms of Cosine Similarity.

(a) (b)

Figure 5: Example of frequencies-ratio distribution in matrix representation (Melody class) for both labels (5a)
and predictions (5b).

Figure 5 displays the Frequency Ratio Distribution (FRD) matrices for both labels and predictions,

while Table 5 presents the cosine similarities between these distributions for all individual tasks. As

5Initial LR: 10−3
, minimum LR: 10−7

, LR scheduler: OnPlateau, Optimizer: AdamW, Epochs: 100, Batch size: 1024.



FRDs Cosine Similarity

Accompaniment Model 0.994
Melody Model 0.986

Bass Model 0.99

Table 5
FRDs Cosine similarity for each model’s weights in the specific classification task.

observed, the model has adjusted its weights to closely replicate the frequency ratio distribution of the

original labels. Given the assumption that the chord progressions labelled in the dataset sound good,

mimicking this distribution indicates the quality of the model’s predictions which is, thus, as good as

the labelled one.

4. Expert-MusiComb

All the technologies discussed in Section 3 were applied to extend MusiComb, especially for dataset
expansion. Additionally, new features were incorporated for automatic sample extraction and flexible
data querying, enhancing the framework’s original functionalities in the newly established Expert-
Musicomb.

4.1. Automatic Sample Extraction

The automated sample extraction algorithm employs a maximization strategy to identify the longest

uninterrupted sequences of silence in the composition after replacing all detected samples with empty

elements. Given the function:

Function __inner__(sequence, min_ws, max_ws, initial_index):
if 𝑚𝑖𝑛_𝑤𝑠 > ⌈𝑙𝑒𝑛(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)/2⌉ then

return [], 0

else
𝑠𝑢𝑏𝑠𝑒𝑞 ← [];
for 𝑤𝑠 in 𝑚𝑖𝑛_𝑤𝑠, . . . ,𝑚𝑎𝑥_𝑤𝑠 do

𝑗 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑖𝑛𝑑𝑒𝑥;

while 𝑗 < 𝑙𝑒𝑛(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)− 𝑤𝑠 do
if 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑗 : 𝑗 + 𝑤𝑠] == 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑗 + 𝑤𝑠 : 𝑗 + 2𝑤𝑠] then

append 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑗 : 𝑗 + 𝑤𝑠] to 𝑠𝑢𝑏𝑠𝑒𝑞;

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑗 : 𝑗 + 2𝑤𝑠]← ∅;
𝑗 ← 𝑗 + 2𝑤𝑠

else
𝑗 ← 𝑗 + 1

end
end

end
return subseq, silence_length

end
end

where, min_ws and max_ws represent the size range of potential samples, and initial_index denotes

the starting position for sliding windows within the sequence. By varying initial_index, different sample

collections are generated based on their initial positions. The goal is to identify the collection of samples

specified by initial_index such that the following statement is satisfied:



for 𝑖 in 0, . . . ,𝑚𝑎𝑥_𝑤𝑠 do
𝑠𝑢𝑏𝑠𝑒𝑞, 𝑚𝑎𝑥_𝑠𝑖𝑙𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ← __inner__(samples, min_ws, max_ws, i);

return 𝑠𝑢𝑏𝑠𝑒𝑞 if 𝑚𝑎𝑥_𝑠𝑖𝑙𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ == 𝑙𝑒𝑛(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) ∨𝑚𝑎𝑥_𝑠𝑖𝑙𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ is

MAX;

end

Indeed, if the minimum and maximum sample sizes remain constant, as is typically the case since

excessively long samples are avoided, the algorithm operates in linear time.

4.2. Dataset Enlargement

Expanding the dataset is crucial for advancing MusiComb. Integrating additional datasets into the

framework enhances its capacity by augmenting the sample pool. This, in turn, broadens the spectrum

of potential outcomes during generation. Moreover, it introduces fresh values for user-selectable

parameters, such as a wider array of genres and an extended range of chord progressions. The dataset

expansion employed two primary approaches:

• Incorporating additional MIDI datasets and extracting the required features using the methods

previously described in Section 3.

• Creating multiple chord progressions for each melody sample by adjusting the initial conditions

of the chord estimation model.

Introducing multiple chord progressions for the same melody sample offers a significant advantage. This

approach expands the dataset without the need for additional samples. Simultaneously, it empowers

the framework to merge the same melody sample with various chord progressions, fostering a higher

level of music generation. Because of the recurrent nature of the chord progression estimation model,

a slight alteration in the initial condition beyond the START token results in different outputs for the

same input sample. To implement this effectively in the final approach, a set of varied initial conditions

that guarantee distinctiveness and harmonic consistency in predictions needs to be identified. To

ensure harmonic consistency, the initial conditions are chosen from a subset of possible conditions

encountered by the model during training. Leveraging the RFDs Similarity discussed in Section 3 we can

trust that the model has familiarity with these initial conditions. To reduce the likelihood of repetitions,

a small subset, chosen as the nine most common initial conditions present in the training set, is selected.

sample initial conditions* estimated Chord Progression

commu00001.mid [] F-C-Dm-A#-F-C-Em-D
commu00001.mid vi-IV-V Dm-Am-Dm-A#-Gm-C-Am-D
commu00001.mid V-vi-IV Am-F-C-F-Am-C-Em-D
commu00001.mid I-IV-V Am-C-Dm-F-A#-C-Dm-D
commu00001.mid V-IV-III Am-G-Dm-F-A#-C-Dm-D
commu00001.mid vi-iii-IV F-Am-Em-F-F-Am-Em-D
commu00001.mid ii-V-I Am-Am-G-F-F-C-Em-D
commu00001.mid I-VIIb-I Dm-Am-A#-A#-Dm-Am-A#-D
commu00001.mid IV-I-V Am-F-C-F-Am-C-Em-D

* Initial conditions are represented in terms of Roman Literals

Table 6
Different predictions for Chord Progression over the same melody sample with different initial conditions.
Highlighted in red is the only repeating element.

Table 6 presents an example of multiple chord progression estimations for the same MIDI sample

together with the set of chosen initial conditions. This method enables the framework to effectively

capture the relationship between a melody and potential chord progressions. Consequently, each



melody sample can be paired with various chord progressions, enhancing the truthfulness of the overall

music generation process without limiting each sample to a single chord progression.

4.3. Non-strict Data Query

In each generation cycle, once the user has specified their desired parameters, the framework seeks

out samples that match the specified parameters and then employs a subset of these samples for music

generation. Following dataset enlargement, the subsequent step to enhance the framework’s capabilities

involves loosening the criteria used for sample selection. The goal is to increase the number of selected

samples for a given set of user-defined parameters (BPMs, genre, time signature, chord progression and

key) while maintaining the harmonic and structural consistency ensured by strict selection rules. Due

to the nature of the parameter, not all selection rules can be made less strict, but certain modifications

are possible, details will be provided in the following subsections.

4.3.1. BPMs

The BPM parameter allows for a more flexible selection approach. Staying close to the desired BPM

value, rather than fixing a specific one, adjustments can be made without significantly altering the

sample’s structure while enlarging the set of eligible samples. For a desired BPM represented by 𝑥, the

sample’s BPM by 𝑏𝑝𝑚(𝑛), and a selection indicator 𝑐ℎ𝑜𝑜𝑠𝑒(𝑛), the selection rule becomes less strict to

accommodate minor BPM variations by changing from (1) to (2).

𝑐ℎ𝑜𝑜𝑠𝑒(𝑛) ⇐⇒ 𝑏𝑝𝑚(𝑛) = 𝑥 (1)

𝑐ℎ𝑜𝑜𝑠𝑒(𝑛) ⇐⇒ 𝑥− 𝛼𝐾 ≤ 𝑏𝑝𝑚(𝑛) ≤ 𝑥+ 𝛼𝐾 (2)

where, 𝐾 represents half of the maximum interval for the neighborhood, and 𝛼 is a user-selectable

parameter ranging from 0 to 1. Table 7 demonstrates that neighbourhood selection rules enable a

Mean samples per BPM value

rigid selection 506
neighborhood selection 2204*

* neighbourhood selection parameters: 𝐾 = 20 and 𝛼 = 0.5

Table 7
Mean number of samples for BPM values in the ComMU dataset with different selection rules.

broader range of samples to be included for the same BPM value. To prevent the neighbourhood interval

from becoming excessively large and causing matching issues with the samples, the parameter 𝐾
remains constant. Additionally, with the neighbourhood selection rule, BPM values that are not present

in the dataset can be chosen as long as they fall within the interval of an existing BPM value. This

marks another advancement compared to MusiComb, where only BPM values existing in the dataset

were available for selection.

4.3.2. Harmonic Key

While the harmonic key is typically considered a less flexible parameter since Samples with different

keys may not sound harmonious together, it is still possible to transpose a music piece to the desired

harmonic key. We maintain consistency in the dataset by transposing all samples to the same harmonic

key (A minor/C major) during the feature extraction process. The user can then freely choose the desired

harmonic key. This ensures that most samples in the dataset can be selected, contingent on whether

the user’s chosen key is minor or major. Subsequently, a straightforward transposition to the desired

key is performed after generating the final music piece.



Harmonic Key Rigid selection (ComMU) transposition (ComMU)

A minor 4729 4729
C major 6415 6415

other minor keys /* 4729
other major keys /* 6415

* original ComMU dataset only contains A minor and C major keys.

Table 8
Number of samples that can be chosen for a given harmonic key for both rigid selection and selection with
transposition.

4.3.3. Chord Progression & Time Signature

We also study how chord progression and time signature can be treated less strictly. The incorporation of

multiple chord progressions for each melody sample, as described Section 4.2, relaxes the selection rule

for chord progressions. This expands the range of possible combinations, enabling a single melody to

harmonize with various chord progressions. Moreover, while two samples with different time signatures

cannot be seamlessly layered together, users can be allowed to choose between multiple time signature

selections; this leads to music samples with time signature changes.

5. Conclusions

In our efforts to expand and enhance the existing MusiComb framework, we introduced a series of

methodologies and techniques that are crucial for its future development. Specifically, we presented

two models for Track Role and Chord Progression estimation, along with a set of new rules for the sample

selection process, which significantly bolster the framework’s capabilities, and an automatic sample

extraction algorithm. Our work underscores the importance of data quality in modern Generative AI

systems, demonstrating that it plays a pivotal role alongside the capabilities of the framework itself.

Combinatorial systems, such as MusiComb, heavily depend on the quality of the information available

about the involved elements. It’s evident that even a state-of-the-art framework, when operating under

incorrect preconditions (such as inaccurate sample information), may produce low-quality outputs.

Conversely, datasets annotated by humans may be limited in size and require substantial time to expand.

Striking a balance between data quality and the time needed to acquire it is therefore crucial for a

continually growing and evolving framework like MusiComb. Our systems have demonstrated robust

consistency with the data labels, serving not merely as tools for feature extraction but also introducing

new degrees of freedom. Even by solely utilizing the original ComMU dataset, we can explore new and

diverse generations while maintaining a high level of reliability in the quality of output.

Furthermore, there is ample opportunity for new introductions and future advancements. As previ-

ously mentioned, MusiComb is an ever-expanding framework capable of further expression beyond its

current capabilities. Among the potential areas for research, significant developments may involve: (1)

modifying the combinatorial backbone to enable the framework to integrate various chord progressions

and time signatures within the same musical piece. (2) Utilizing the Transformer XL, as presented in [1],

to generate missing samples or roles for specific generations. This approach allows the framework to

seamlessly incorporate both dataset and generated samples within the same piece.
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