
Collaborative Comic Generation: Integrating Visual
Narrative Theories with AI Models for Enhanced
Creativity
Yi-Chun Chen, Arnav Jhala

North Carolina State University, Computer Science, Raleigh, NC 27606, USA

Abstract
This study presents a theory-inspired visual narrative generative system that integrates conceptual
principles—comic authoring idioms—with generative and language models to enhance the comic creation
process. Our system combines human creativity with AI models to support parts of the generative process,
providing a collaborative platform for creating comic content. These comic-authoring idioms, derived
from prior human-created image sequences, serve as guidelines for crafting and refining storytelling.
The system translates these principles into system layers that facilitate the creation of comics through
sequential decision-making, addressing narrative elements such as panel composition, story tension
changes, and panel transitions. Key contributions include the integration of machine learning models
into the human-AI cooperative comic generation process, the deployment of abstract narrative theories
into AI-driven comic creation, and a customizable tool for narrative-driven image sequences. This
approach improves narrative elements in generated image sequences and brings engagement of human
creativity in an AI-generative process of comics. We open-source the code at https://github.com/Rim-
iChen/Collaborative_Comic_Generation.

Keywords
Generative AI System, Human-AI interaction, Comic Generation, Visual Narrative Theories

1. Introduction

Despite their various names, comics, manga, and visual stories represent a dominant form of
storytelling that spans cultures and age groups. Authors combine their creative storytelling ideas
with textual expressions and graphical representations to convey intricate narratives through
multi-modal panel sequences. Recently, generative AI, a trending topic in AI creativity, has
explored the automatic generation of narratives and their synthesis with visual representations,
simulating an activity traditionally rooted in human creativity. These studies lead to an exciting
research question: how can AI collaborate with human creativity to create image sequences,
such as comics and visual stories?

Nowadays, most generative AI models handle almost the entire process of creating image
sequences, leaving little room for human authors to modify the details during generation.
Traditionally, however, creating visual stories or comics relies heavily on authors’ familiarity

CREAI 2024: International Workshop on Artificial Intelligence and Creativity, ECAI, 2024, Santiago de Compostela, Spain
Envelope-Open ychen74@ncsu.edu (Y. Chen); ahjhala@ncsu.edu (A. Jhala)
GLOBE https://sites.google.com/ncsu.edu/rimichen/home (Y. Chen); https://www.csc.ncsu.edu/people/ahjhala (A. Jhala)
Orcid 0009-0003-4035-9894 (Y. Chen)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ychen74@ncsu.edu
mailto:ahjhala@ncsu.edu
https://sites.google.com/ncsu.edu/rimichen/home
https://www.csc.ncsu.edu/people/ahjhala
https://orcid.org/0009-0003-4035-9894
https://creativecommons.org/licenses/by/4.0


with narrative idioms [1], principles of visual storytelling [2], and their skills in translating
narrative content into visual representations [3].

We propose a solution that balances these approaches, allowing AI models to assist in
generating visual stories while also providing space for human creativity. Narrative theories
and idioms are important tools for authors, helping them convey stories with clarity and making
visual narratives more engaging for readers. These elements, derived from existing comics, serve
as underlying schemes. We aim to leverage these narrative elements by integrating them into
the generative process, enhancing the results. Current studies on generating image sequences
or visual storytelling include text-to-image synthesis [4], character consistency algorithms
[5], and narrative structuring models [6, 7]. Although most synthesis methods allow users to
provide some input as seeds, such as captions or base images, authors have limited flexibility in
the creative process. Furthermore, while narrative idioms like grammar and patterns of visual
storytelling are widely discussed in the analysis of image sequences, they are rarely incorporated
into AI-driven comic generation. Even in studies that integrated rule-based methodologies
to allow narrative theories to influence visual storytelling [8, 9, 10, 11], authors’ creativity
remained largely excluded from the generative process.

Building on prior studies, we propose a comic-generating system that integrates a human-
in-the-loop process, enabling authors to customize the generation by leveraging multiple AI
models. Our system combines AI-driven narrative development and art generation, reducing
the effort needed to create dynamic visuals. A sentiment analysis model also guides the story
arc, serving as a plotline framework.

Second, our system dynamically applies narrative idioms during the generation process.
The layer-wised customizations allow authors to edit the image sequence iteratively, selecting
different rules to refine the results. This human-in-the-loop process ensures that authors can
adjust based on the generated image sequences. Third, rather than treating the comic panel as
a single entity, we decompose it into multiple layers: background, foreground, compositional
layer, and symbol layer. This approach enables authors to customize specific details without
altering the entire panel.

Finally, our system provides a Graphical User Interface (GUI) and anApplication Programming
Interface (API). These interfaces allow authors to extend and customize the comic generation
process, creating engaging and varied content. Additionally, the system supports testing various
machine learning models in comic generation. This approach balances AI and human creativity,
making the comic creation process more flexible and efficient.

2. Methodology

The system is structured to a human-in-loop workflow as Figure 1.
The system comprises six modules: the graphical interface, a container of models, the pool of

visual sets and data, an image sequence model, a generator, and a renderer.

• Graphical Interface: This is the primary means of interaction for human authors. It
allows them to input base images, launch and apply ML models to the current image
sequence, import scripts for customized editing layers, and perform simple operations
like selection and dragging to modify images.



Figure 1: Overall system architecture and the author-in-loop workflow.

• Container ofModels: This module houses various MLmodels that can be applied during
generation.

• Pool of Visual Sets and Data: This repository contains visual elements and data sets
the system can draw upon to create the image sequences.

• Image Sequence Model: This model organizes the graph model for linking the elements
of the image sequence, including sequence information, panel transitions, panel content,
characters, and narrative elements.

• Generator: This component integrates the customized editing layers into a pipeline that
iteratively edits the image sequence by applying the narrative goals of each layer.

• Renderer: This module finalizes the visual representation of the generated sequences,
ensuring they are ready for presentation or further editing.

Due to the complexity of applying ML models, some customizations of the generating process
rely on scripts that deploy API functions across different system modules. The process typically
follows nine steps between these modules:

1. Register Models: After receiving user scripts as input, the Container of Models registers
all imported ML models and initializes them.

2. Register Editing Layers: This step links the interface buttons with class scripts, dynam-
ically imports user-defined classes, and executes them upon button click.

3. Retrieve Data: If user-customized scripts include functions to retrieve information, the
Generator communicates with the Pool of Visual Sets and Data to obtain necessary data.

4. Apply Editing: The customized editing results reflect the corresponding changes to the
data nodes in the Image Sequence Model.

5. Compose Visual Panels: After updating the Image Sequence Model with the desired
changes, the Renderer is triggered to start composing the visual results of comic panels.
The updated graph model will also be passed to the Renderer.

6. Map Semantic to Visual: The Renderer maps the data nodes to visual elements in the
Pool of Visual Sets and Data and forms the multi-layered panels. These layers include
background, foreground, composition, symbol, and any other user-customized layers.



Anger Quick
moving

Slow
moving

Anxious Collision Relieved Shock Big shock

Table 1
Examples of metaphor symbols of action and characters’ emotions from Manga109.AisazuNihaIrarenai©
Yoshimasako, AkkeraKanjinchou© Kobayashiyuki,Akuhamu© Araisatoshi

7. Render: The multi-layered image panel is passed to the interface to support user selection
and drag functions.

8. Modify Results: The interface inputs user interactions to update the Image Sequence
Model and repeats the rendering steps.

9. Get Result: The generated and modified image sequence is presented on the interface
for users to view.

2.1. Build-in and Extendable Elements:

To demonstrate the system’s capabilities, we incorporated a built-in model, the action causal
graph, and a visual symbol set as the default sources to support the plotline of the visual
representations. These components are extendable through the APIs of the Container of Models
and the Pool of Visual Sets and Data, respectively. Detailed documentation will be provided in
the API subsections.

2.1.1. Common Symbols

In human-created comics, authors often use abstract symbols to visualize ideas such as at-
mosphere, motion, and emotions, thereby exaggerating characters’ reactions. These symbols
include emojis to emphasize emotions, speed lines to show movement, explosion shapes to
represent collisions, cross shapes to denote anger, and many others. Table 1 presents examples
from the Manga109 dataset, a collection of 109 Japanese manga titles published in commercial
magazines [12, 13]. These examples serve as references for the symbols or emojis used in our
default set.

2.1.2. Action Causal Network

The Action Causal Graph is a directed graph model where each node represents an action that a
character might perform, and the links indicate the causal relationships between actions and
possible reactions. For example, ”Fall” links to ”Fly,” ”Jump,” and ”Run,” while ”Dizzy,” ”Collide,”
and ”Hit” link to ”Run.” Consecutive nodes form action pools for plot planning. The current
version of the default action set built into the system includes a small group of common daily



actions. The detailed method for expanding the graph and its scalability will be discussed in
subsequent subsections.

2.2. AI-Assisted Editing Layers and Narrative Theories:

We implement three ML-driven editing layers in the generator to demonstrate the system’s
image sequence pipeline. The first layer uses a stable diffusion model for modifying visual
elements, while the second layer combines the PAD emotion model with a semantic analysis
language model to guide plotline decisions.

2.2.1. Diffusion Model for Visual Elements

We employed a pre-trained stable diffusionmodel developed by the CompVis group to implement
one of the editing layers [14, 15]. This high-resolution image synthesis model transforms input
text descriptions into detailed and coherent images based on latent diffusion. The model allows
users to adjust visual elements like characters or scenes.

The generated panel sequences are rendered through our pipeline, where information is
first updated in the Image Sequence Model before being rendered. Any changes in the visual
representation of an entity will be reflected in its semantic nodes, ensuring character consis-
tency throughout the panel sequence. For example, if the diffusion model alters the visual
representation of character_x, this change will be mirrored in its semantic mapping. Similar
rules apply to other visual elements. Furthermore, our system supports multi-layer rendering,
dividing panel images into background, foreground, compositional, and symbol layers. This
feature enables partial redrawing of the generated panel, ensuring that changes applied to one
entity do not interfere with others.

2.2.2. Plotline and Narrative Theories

To form a simple plotline, we incorporate narrative idioms and theories. This editing layer aims
to generate content for the image sequence according to a specific narrative arc. We use Cohn’s
narrative grammar [16, 17, 18] to estimate the narrative arc, as the grammar categories indicate
plot changes throughout the comic sequence. After establishing the narrative arc, we target the
characters’ actions to predict story tension.

We use the arousal level concept from the PAD emotion model [19, 20, 21] and sentiment
labels from the language model to predict arousal scores for character actions, where higher
scores indicate greater story tension. Differences in arousal scores between consecutive actions
(based on our action causal graph) form a probability distribution for subsequent actions.
This mapping enables the editing layer to select actions probabilistically while maintaining
narrative arc alignment. Detailed explanations of each component are provided in the following
subsections.

Narrative Grammar

We formalize the plot generation of new comic sequences using Cohn’s Visual Narrative
Grammar (VNG). Starting with the narrative structure to determine the content’s global reason-



E I L P R

Table 2
Examples of a comic sequence that followed grammar categories.

ing, we adopt Cohn’s theory, which proposes that coherent image sequences follow a grammar,
organizing their global structure into five categories.

• Establisher(E): Sets the objects and scenes without involving any action.
• Initial(I): Marks the beginning of a story arc—the starting point of a sequence of actions
or events.

• Prolongation(L): Represents the middle state of the story arc, extending an action.
• Peak(P): Indicates the highest story tension—the climax of an action.
• Release(R): Releases the tension—the outcome or result of an action.

The five categories form basic phases through linear ordering:
Phase (Establisher) - Initial(Prolongation) - Peak - (Release)

The use of parentheses indicates that categories are optional when forming phases. The
categories have different levels of importance, ranked from highest to lowest as follows: Peak,
Initial, Release, Establisher, and Prolongation. Additionally, more complex combinatorial struc-
tures can be created through the conjunction of embeddings. Our editing layer generates the
narrative structure using center-embedding, expanding a new tree structure by replacing a
single category with a phase.

Table 2 provides an example of comic sequences (illustrated with simplified icons) following
this grammar structure. In the same scene, the circle character appears in the first panel and
then begins performing actions in the subsequent panels. In the fourth panel, a significant event
occurs, creating a small climax, which leads to the resolution in the final panel. This sequence
follows the narrative structure E-I-L-P-R.

The implementation follows the algorithm flow below:
The input is a comic sequence, either a generated result or an empty sequence with a certain

length. Then, the editing layer creates an object dictionary for grammar phases and then
expands the tree structure. The structure then decides the narrative arc of the comic sequence.
It assigned a grammar phase to a sequence, and we then formed the possible narrative arc based
on the structure.

Narrative Arc

The importance ranking of narrative grammar categories mirrors the narrative arc, reflecting
a story’s progression from a calm beginning through a peak of tension in the middle to conflict



Algorithm 1 Grammar Structure
1: procedure Grammer Structure Script
2: 𝑃 ← input the current panel sequence.
3: 𝑉𝑁𝐺 ← Create object list for VNG basic phases.
4: 𝑆 ← Expend a center-embedded tree with 𝑉𝑁𝐺, get the reference narrative structure.
5: if then𝐿𝑒𝑛𝑔𝑡ℎ(𝑃) ≠ 𝐿𝑒𝑛𝑔𝑡ℎ(𝑆)
6: Add or Subtract empty panels from 𝑃
7: end if
8: loop: Assign each phases in 𝑉𝑁𝐺 to 𝑃
9: return 𝑃

10: end procedure

resolution at the end. The editing layer projects these categories onto a curve that illustrates
changes in story tension.

Algorithm 2 Narrative Arc
1: procedure Mapping Narrative Arc with Narrative Structure
2: 𝑃 ← input the current panel sequence.
3: 𝑅𝐸𝐹 ← create value dictionary with VNG phases with assigned tension scores.
4: 𝑅𝐸𝐹 = {𝐸 ∶ 0𝐼 ∶ 2𝐿 ∶ 4𝑃 ∶ 6𝑅 ∶ 2}
5: if panels in 𝑃 have assigned grammar phase then
6: loop: over 𝑃, apply 𝑅𝐸𝐹 with the grammar phase
7: elseuse default narrative arc scores
8: end if
9: return 𝑃

10: end procedure

To capture the abstract concept of tension, we assigned each grammar phase a score between
one and ten based on its narrative function. For example, the Peak(P) phase has the highest
tension, while the Release(R) phase somewhat alleviates the tension. We begin by creating
a value dictionary for each grammar phase. The next step is to map these phases to their
respective scores and generate the curve of the narrative arc.

PAD Emotion State Model and Semantic Analysis

The PAD emotion state model, developed by Albert Mehrabian and James A. Russell, describes
emotions through three dimensions: Pleasure, Arousal, and Dominance. This model quantifies
emotional states, making it valuable in psychology, user experience design, and AI. Specifically,
the Arousal dimension measures how energized or calm one feels, reflecting the activation level
of an emotion. We adapt this concept to model narrative momentum—story tension.

Considering the image sequence-generating system’s future expansion and possible integra-
tion with a more extended narrative, we employed a sentiment analysis model for sentences–
Roberta base model for emotion classification, fine-tuned on the GoEmotions dataset [22]. We



then project the sentiment labels in the RoBERTa model to the PAD model’s emotion labels,
dividing the emotions into high, medium, and low arousal levels. By computing the feature
vectors through the BERT model [23] of the two label sets, we can measure the Euclidian
distance between the labels, estimating the possible arousal level scores for the sentiment labels.
The mapping process follows the flow below:

Algorithm 3 Mapping Sentiment Labels with Emotion Labels
1: procedure Estimating Arousal Levels
2: 𝐸 ← emotion labels from the PAD emotion state model, where [high, medium, low]

arousal level maps to [1, 0, -1].
3: 𝑆 ← sentiment class labels from the RoBERTa model.
4: 𝑆𝑑𝑖𝑠 ← Distance matrix for distance between labels in 𝑆 and labels in 𝐸.
5: loop: over 𝑆, compute the distance to each element in 𝐸, and get 𝑆𝑑𝑖𝑠
6: loop: over each row in 𝑆𝑑𝑖𝑠, flat the vector except the minimum two elements in the row.
7: loop: over each row in 𝑆𝑑𝑖𝑠, use 𝑆𝑑𝑖𝑠/𝑠𝑢𝑚(𝑆𝑑𝑖𝑠) as the weight multiply with 𝐸 to get

𝑆_𝑎𝑟𝑜𝑢𝑠𝑎𝑙.
8: normalize 𝑆_𝑎𝑟𝑜𝑢𝑠𝑎𝑙 to [−1, 1]
9: return 𝑆_𝑎𝑟𝑜𝑢𝑠𝑎𝑙

10: end procedure

Figure 2 shows the results, where the blue points represent the emotion labels from the PAD
model, and the orange points represent the sentiment classes in the language model.

Figure 2: The arousal level scores are estimated using label set mapping.

The sentiment analysis model predicts probabilities across various sentiment classes when
using a sentence or word as input. We use these probabilities as weights and then measure
the distance between the input action and the sentiment classes, predicting the possible score
of the input action. This score indicates the story’s tension. We further compute the slope
between two consecutive actions and divide it by the sum of slopes for all subsequent actions.
Finally, we normalize this value to determine the probability of the following action.

Action Mapping



Bymapping arousal scores with actions, the editing layer integrates the narrative arc and actions
by referencing these scores. Using the curve from the narrative arc, the layer calculates changes
along the curve and selects actions that best fit these changes. Additionally, it sets a likelihood
tolerance with the probability of actions, expanding potential narrative diversity. The process
is described below:

Algorithm 4 Narrative Arc Mapping
1: procedure Mapping Actions to Fit Narrative Arc
2: 𝑃 ← input the current panel sequence.
3: 𝑁𝐸𝑇 ← get the action causal graph network.
4: 𝐴𝐶𝑇 ← creates a value dictionary for actions according to the arousal scores.
5: 𝐴𝑅𝐶 ← get referenced Narrative Arc.
6: loop: over 𝑃, check the characters’ actions in the next panel and compute the score

difference, according to 𝐴𝑅𝐶
7: Select actions in likelihood from 𝐴𝐶𝑇 and 𝑁𝐸𝑇
8: loop: revise action selection other panels according to 𝑁𝐸𝑇
9: return 𝑃

10: end procedure

2.2.3. Panel Relations

Panel transitions refer to the changes in content between consecutive panels. McCloud proposed
six categories of transition types to model various aspects of content change[2], while Cohn
introduced conjunction schemes to capture more complex panel transitions [16]. Our system
combines these theories to modify the visual composition of comic panels—how elements are
arranged—and reflect content changes according to the transition types. The narrative goal of
this editing layer is to arrange the panel transitions in the generated comic sequence to create
dynamic viewport changes and increase tension.

Here is how we map the transitions with panel content changes:

• Action: McCloud’s action-to-action transition indicates changes in actions between
consecutive panels. We use this transition to guide the selection of different character
actions in the next panel.

• Scene: McCloud’s scene-to-scene transition indicates changes in scenes between consec-
utive panels. We use this transition to guide the change of location where the character’s
action occurs in the next panel.

• Object: The object-to-object transition indicates a shift in focus from one object to
another. We use this transition to guide the focus to different objects.

• Addition: Cohn’s additive conjunction involves panels that add information or detail to
the ongoing story. We use this transition to introduce new objects into the panels.

• Alternation: Cohn’s alternating conjunction presents alternative scenarios or actions,
offering possibilities within the narrative. Compared to scene transitions, we use this
transition to guide panels to alter most elements while maintaining consistent characters.



In our system’s current version, some complex transitions or conjunctions are not yet sup-
ported but can be added through customizations. For example, the Temporal Conjunction
depicts the progression of time, a rather abstract concept for visual representation. Another
example is the Contrasting Conjunction, which depicts opposing ideas, actions, and emotions;
achieving this requires deep semantic analysis of the narrative. However, we have integrated
causal conjunctions to some extent by using action causal graphs.

3. Usage Explanations and Showcases

This section introduces our system’s application programming interface (API), and graphical
user interface (GUI). The API functions are in Table 3. The system was constructed using several
core classes, with the Parameter, Layer, and AttributeNode classes being the most crucial. The
Parameter class manages all the registers of models and scripts. The AttributeNode class serves
as the fundamental component of the graph model, representing the entire sequence. The Layer
class is the parent class for all editing layer scripts. To execute modifications, the apply methods
within the Layer class must be overridden and then executed by the Generator module.

The GUI screenshot is Figure 3. The two columns on the left display the image inputs for the
character and scene of the comic sequence. Users can generate these images using the diffusion
model or import them from their work. The column on the right side contains buttons that link
to the imported scripts, triggering functions to apply modifications and generate results. The
large area in the middle shows the currently generated result and allows users to select comic
panels and the elements within them.

Figure 3: The graphical user interface of the generating system.

3.1. Showcases

Table 4 compares two sets of generated results, one before and one after applying the changes
implemented in the current version. The first set, generated with user-imported images and all
editing layers turned off, features content with default panel composition and randomly chosen
characters’ actions. After partial redrawing with the stable diffusion model, the second set
demonstrates the results, followed by an editing layer that uses the sentiment language model
to achieve narrative planning. It includes a partially redrawn icon and scene using a diffusion
model from an Einstein head icon and a WindowsXP desktop photo as inputs. In addition, based



Function Name Parameters Description Return Type

Parameter()

Basic parameter for GUI
settings

• win_w, win_h
• menu_w
• sequence_len

The class that registers and manages
all the modules.

None

addModel

Selected ML model class

• module_name
Register the ML models for use in the
generating process.

None

importModels() None Import all the registered models. None

Models() None
Initialize the Container of Models and
initialize all the registered models.

None

addModule()

Customized editing
layer class

• layer_name
Register script for a new editing layer. None

importModules() None Import all the registered editing layers. None

Sequence()

Initialized Parameter ob-
ject and attribute node
type

• attribute_type
• Parameter()

Inherit from the AttributeNode class
and initialize the root of the graph
model for the Image Sequence Model.

None

Generator() None Initialize the Generator Module. None

addVisuals()

Name of target visual set,
file path, or folder path
for image input

• set_name
• path

Expand or create the visual set with the
assigned name.

None

GUIInterface()

Initialized Parameter ob-
ject

• Parameter()
Initilize the GUI and the Renderer. None

Layer() None
The Parent class of all the editing lay-
ers.

None

Layer.apply()

The graph model of a
generated sequence

• Sequence()

Apply the modifications to the comic
sequence and return the results.

Sequence()

AttributeNode()

The attribute type and
the initialized Parameter
class

• attribute_type
• Parameter()

The Parent class of all the attribute
nodes, including Sequence, Panel,
Character, etc. It is the Node class for
the graphmodel in the Image Sequence
Model.

None

addAttribute()

The parent node’s name,
attribute type, and the
child node (self).

• parent_node
• attribute_type
• AttributeNode()

Add an attribute node to the graph
model as a child node of the assigned
parent node.

None

Table 3
API Functions



Set#

1

2

Table 4
Examples of before and after applying the changes.

on the action causal network, it shows a short narrative in which the two characters ate apples
and felt dizzy after eating, then shocked and finally rested in the garden.

3.2. Data Availability

The data and code used in this study are openly available in a GitHub repository. The repository
includes the raw data, processed data, and all scripts necessary to reproduce the analyses
presented in this paper. You can access the repository at https://github.com/RimiChen/Collabo-
rative_Comic_Generation. The repository is licensed under MIT License, allowing for reuse
and modification with appropriate attribution.

4. Conclusion and Future Work

This paper presents an extensible system for generating comic-style visual narratives, integrating
narrative theory with human-AI collaboration. We address challenges in visual modification
and plotline planning, balancing automation with user control for customization.

While the current system effectively integrates abstract narrative theories, it has limitations
in coordinating visual components and diversifying narratives. Separating visual layers, though
beneficial for user modifications, reduces scene and character interaction, limiting cohesive
artwork and rich actions. Additionally, using symbols to represent actions restricts narrative
diversity, requiring user customization to expand content. Integrating advanced language
models could enhance narrative richness

Future work will focus on refining the integration of narrative and visual components and
exploring advanced models to enhance the system’s capability to handle diverse narratives. We
also plan to conduct user studies to evaluate effectiveness and usability across different groups.
In conclusion, our work advances human-AI cooperative visual narrative generation, offering a
versatile platform for creating engaging experiences.



References

[1] N. Cohn, R. Jackendoff, P. J. Holcomb, G. R. Kuperberg, The grammar of visual nar-
rative: Neural evidence for constituent structure in sequential image comprehension,
Neuropsychologia 64 (2014) 63–70.

[2] S. McCloud, M. Martin, Understanding comics: The invisible art, volume 106, Kitchen sink
press Northampton, MA, 1993.

[3] C. Martens, N. EDU, R. E. Cardona-Rivera, U. EDU, The visual narrative engine: A compu-
tational model of the visual narrative parallel architecture, in: 8th Annual Conference on
Advances in Cognitive Systems, 2020.

[4] M. C. Team, Image sequence creation with microsoft copilot, https://microsoft.com/copilot,
2023. Accessed: 2024-05-25.

[5] Y. Zhou, D. Zhou, M. Cheng, J. Feng, Q. Hou, Storydiffusion: Consistent self-attention
for long-range image and video generation, arXiv preprint arXiv:2405.01434 (2024). URL:
https://arxiv.org/abs/2405.01434.

[6] G. Jing, Y. Hu, Y. Guo, Y. Yu, W. Wang, Content-aware video2comics with manga-style
layout, IEEE Transactions on Multimedia (TMM) 17 (2015) 2122–2133.

[7] P. P. Gunasekara, P. M. Perera, C. D. Adhihetty, D. D. Kollure, N. Kodagoda, A. Caldera,
Generate comic strips using ai, in: Proceedings of Conference on Transdisciplinary
Research in Engineering, volume 1, 2024.

[8] T. Alves, A. McMichael, A. Simões, M. Vala, A. Paiva, R. Aylett, Comics2d: Describing
and creating comics from story-based applications with autonomous characters, in:
Proceedings of the International Conference on Computer Animation and Social Agents
(CASA), Springer, 2007, pp. 67–74.

[9] C. Martens, R. E. Cardona-Rivera, Discourse-driven comic generation, in: Proc. Interna-
tional Conference on Computational Creativity, 2016.

[10] C. Martens, R. E. Cardona-Rivera, Generating abstract comics, in: International Conference
on Interactive Digital Storytelling, Springer, 2016, pp. 168–175.

[11] Y.-C. Chen, A. Jhala, A customizable generator for comic-style visual narrative, arXiv
preprint arXiv:2401.02863 (2023). URL: https://arxiv.org/abs/2401.02863.

[12] R. Narita, K. Tsubota, T. Yamasaki, K. Aizawa, Sketch-based manga retrieval using deep fea-
tures, in: 2017 14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), volume 3, IEEE, 2017, pp. 49–53.

[13] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, K. Aizawa, Sketch-based
manga retrieval using manga109 dataset, Multimedia Tools and Applications 76 (2017)
21811–21838.

[14] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis
with latent diffusion models, 2021. arXiv:2112.10752.

[15] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis
with latent diffusion models, https://github.com/CompVis/stable-diffusion, 2022. Accessed:
2024-05-24.

[16] N. Cohn, Visual narrative structure, Cognitive science 37 (2013) 413–452.
[17] N. Cohn, How to analyze visual narratives: A tutorial in visual narrative grammar, Online:

http://www. visuallanguagelab. com/P/VNG_Tutorial. pdf [last accessed: 1 March 2016]

https://microsoft.com/copilot
https://arxiv.org/abs/2405.01434
https://arxiv.org/abs/2401.02863
http://arxiv.org/abs/2112.10752
https://github.com/CompVis/stable-diffusion


(2015).
[18] M. I. N. COHN, From visual narrative grammar to filmic narrative grammar: The narrative

structure of static and moving images, in: Film Text Analysis, Routledge, 2016, pp. 106–129.
[19] A. Mehrabian, J. A. Russell, Basic dimensions for a general psychological theory: Im-

plications for personality, social, environmental, and developmental studies, Journal of
Comparative and Physiological Psychology 55 (1974) 439–449.

[20] J. A. Russell, L. M. Ward, G. Pratt, Affective quality attributed to environments: A factor
analytic study, Environment and behavior 13 (1981) 259–288.

[21] J. A. Russell, A circumplex model of affect, Journal of Personality and Social Psychology
39 (1980) 1161–1178.

[22] S. Lowe, Roberta base model fine-tuned on goemotions for emotion classification, <https:
//huggingface.co/SamLowe/roberta-base-go_emotions>, 2021. Accessed: 2024-05-25.

[23] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, in: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

<https://huggingface.co/SamLowe/roberta-base-go_emotions>
<https://huggingface.co/SamLowe/roberta-base-go_emotions>

	1 Introduction
	2 Methodology
	2.1 Build-in and Extendable Elements:
	2.1.1 Common Symbols
	2.1.2 Action Causal Network

	2.2 AI-Assisted Editing Layers and Narrative Theories:
	2.2.1 Diffusion Model for Visual Elements
	2.2.2 Plotline and Narrative Theories
	2.2.3 Panel Relations


	3 Usage Explanations and Showcases
	3.1 Showcases
	3.2 Data Availability

	4 Conclusion and Future Work

