
A Process Algebraic Framework for Multi-Agent
Dynamic Epistemic Systems
Alessandro Aldini1,*

1University of Urbino Carlo Bo, Piazza della Repubblica 13, 61029, Urbino, Italy

Abstract
This paper combines the classical model of labeled transition systems with the epistemic model for
reasoning about knowledge. The result is a unifying framework for modeling and analyzing multi-agent,
knowledge-based, dynamic systems. On the modeling side, we propose a process algebraic, agent-
oriented specification language that makes such a framework easy to use for practical purposes. On the
verification side, we define a modal logic encompassing temporal and epistemic operators.

Keywords
Labeled transition system, Kripke model, epistemic model, modal logic, process algebra

1. Introduction

The formal modeling of agent-based systems and the knowledge transfer enabled by the related
interactions is a research field common to several areas, ranging from concurrency theory to
epistemic logic.

In the former setting, two basic models are mainly adopted to describe the dynamics of
systems: (𝑖)Kripke structures are graphs where the nodes are annotated with atomic propositions
stating what is true in the system state associated with the node, and (𝑖𝑖) labeled transition
systems (LTSs) are graphs where the arcs are annotated with actions representing the events
causing a change of system state. Both paradigms are equipped with temporal logics for the
description of properties, like, e.g., Computation Tree Logic (CTL) for state-based structures [1]
and Hennessy-Milner Logic (HML) for action-based systems [2].

In the latter setting, the focus is on reasoning about knowledge from the viewpoint of non-
omniscient agents in terms of their capability of distinguishing different scenarios [3]. The
standard way to model epistemic notions is through a state-based epistemic model called Kripke
model. Every state (called possible world) is characterized by the propositional statements that
hold in it, as in Kripke structures. At the same time, an accessibility relation determines, from
the viewpoint of the agent under consideration, which worlds are compatible (indistinguishable)
with her knowledge in the current world. In this setting, epistemic logic introduces a knowledge
modality for reasoning about what agents know or can deduce from the information at their
disposal and, possibly, for tracking the information flow among agents.

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy
*Corresponding author.
$ alessandro.aldini@uniurb.it (A. Aldini)
� https://www.uniurb.it/persone/alessandro-aldini (A. Aldini)
� 0000-0002-7250-5011 (A. Aldini)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:alessandro.aldini@uniurb.it
https://www.uniurb.it/persone/alessandro-aldini
https://orcid.org/0000-0002-7250-5011
https://creativecommons.org/licenses/by/4.0

The connections between the two strands of research are evident and, in some cases, the
mutual foundational influence between traditional concurrency models and epistemic models
is investigated (see, e.g., [4, 5, 6, 7]). Specific examples of cross-fertilization can be found in
the formal analysis of security protocols; see [8] for a survey and, in particular, [9, 10, 11, 12],
where logical formalizations of knowledge are integrated into modeling frameworks based on
pi-calculus in order to characterize the intruder’s capability of breaking security properties.

The main goal of the paper is to combine the advantages of the two approaches by merging
in a novel framework the capability of the LTS-based semantics of modeling dynamic, temporal
behaviors with the capability of the epistemic models of representing what agents know or do
not know. The rough idea behind the combination is associating a Kripke model with each state
of an LTS. As additional contributions, this novel framework is enriched with a logic including
dynamic and epistemic modalities and a high-level, process-algebraic specification language.

In the following, we introduce the model of Kripke labeled transition systems (Section 2) as
a combination of epistemic models and LTSs. We define a logic for describing properties for
such a model and establish the equivalence relation that is characterized by the logic. Then,
we propose a process algebraic language for modeling agent-oriented concurrent systems with
semantics based on Kripke labeled transition systems (Section 3). To emphasize the usability of
this language, we describe a case study based on a popular, classical board game (Section 4).
Finally, we discuss related work and potential future directions (Section 5).

2. Kripke labeled transition systems

Let 𝒜 be a set of agents (ranging over 𝑖, 𝑗, . . .), 𝐴𝑐𝑡 a set of actions (ranging over 𝜋, 𝜋′, . . .), and
𝐴𝑡 a set of atomic propositions (ranging over 𝑝, 𝑞, . . .); we will use𝑋,𝑌, . . . to denote subsets of
𝐴𝑡. First of all, we recall the definitions of labeled transition system and multi-agent epistemic
model.

Definition 1. A labeled transition system (LTS) is a tuple (𝑆, 𝑇, 𝑠0) where 𝑆 is a non-empty set
of states (with 𝑠0 the initial state) and 𝑇 ⊆ 𝑆 ×𝐴𝑐𝑡× 𝑆 is the action-labeled transition relation.

In the setting of computation modeling, LTSs describe the evolving behavior of discrete sys-
tems, where the actions labeling the transitions represent events leading from one configuration
of the system to another.

Definition 2. A multi-agent epistemic model (called Kripke model) is a tuple (𝑆, {𝑅𝑖 | 𝑖 ∈ 𝒜}, 𝑣),
where 𝑆 is a non-empty set of states; for every 𝑖 ∈ 𝒜, 𝑅𝑖 ∈ 2𝑆×𝑆 is a binary (accessibility) relation
over 𝑆; 𝑣 : 𝑆 → 2𝐴𝑡 is a valuation function assigning to each state the set of propositions that hold
in the state.

A pointed (resp., rooted) Kripke model is a pair ((𝑆, {𝑅𝑖 | 𝑖 ∈ 𝒜}, 𝑣), 𝑠), where 𝑠 ∈ 𝑆 is the
current (resp., initial) state. Kripke models serve as the basis of the semantics for various modal
logics and, in the case of epistemic languages, allow us to reason about knowledge in terms of
information accessibility.

For our purposes, combining the dynamic action-based nature of LTSs with the possible
worlds description of Kripke models results in action-based systems, the states of which are
associated with accessibility relations and valuations.

Definition 3. A Kripke labeled transition system (KLTS) is a tuple (𝑆, 𝑇, {𝑟𝑖 | 𝑖 ∈ 𝒜}, 𝑣), where
𝑆 is a non-empty set of states; 𝑇 ⊆ 𝑆 × 𝐴𝑐𝑡 × 𝑆 is a transition relation; for every 𝑖 ∈ 𝒜,
𝑟𝑖 : 𝑆 → 22

𝐴𝑡×2𝐴𝑡
is a function mapping each state to a binary (accessibility) relation over 2𝐴𝑡;

𝑣 : 𝑆 → 2𝐴𝑡 is a valuation function.

Pointed and rooted KLTSs are defined as expected. Firstly, states should not be considered
dependent on atomic propositions. They are primitive semantic objects so that the set of
propositions satisfied by a state does not uniquely identify the state. Secondly, each accessibility
relation 𝑟𝑖(𝑠) relates elements of 2𝐴𝑡 and expresses the actual observational power of agent 𝑖 in
state 𝑠 with respect to the truth of the propositions in 𝐴𝑡. In other words, 𝑟𝑖(𝑠) describes the
distinguishing power of agent 𝑖 in 𝑠, intended as her capability of distinguishing the possible
worlds identified by the values of the propositions. Under the indistinguishability interpretation
of epistemic logic, 𝑟𝑖(𝑠) expresses informational indistinguishability between possible worlds.
More precisely, (𝑋,𝑌) ∈ 𝑟𝑖(𝑠) means that in 𝑠 the agent 𝑖 has insufficient information to
establish whether we are in a state in which all and only the propositions of 𝑋 hold or in a state
in which all and only the propositions of 𝑌 hold. Hence, both 𝑋 and 𝑌 are compatible with the
knowledge of the agent 𝑖 in 𝑠. By virtue of this interpretation, in the following we assume that
the accessibility relations are equivalence relations. Thirdly, the transition relation 𝑇 and the
valuation function 𝑣 are interpreted as usual.

Example 1. If ({𝑝} ∪𝑋, {𝑝} ∪ 𝑌) belongs to 𝑟𝑖(𝑠) for any choice of 𝑋,𝑌 ∈ 2𝐴𝑡, then, in 𝑠, all
the possible worlds in which 𝑝 holds are mutually indistinguishable from the viewpoint of agent 𝑖.
If we also have that ({𝑝} ∪𝑋,𝑌) ̸∈ 𝑟𝑖(𝑠) whenever 𝑝 ̸∈ 𝑌 , we conclude that agent 𝑖 distinguishes
all and only the pairs of worlds differing for the valuation of 𝑝. Later, we will realize that this
means that, in 𝑠, agent 𝑖 knows the truth value of 𝑝 and is ignorant of any other proposition.

Remark 1. From a rooted KLTS, an LTS can be derived. In particular, if we omit from a rooted
KLTS ((𝑆, 𝑇, _, _), 𝑠0) the accessibility relations and the valuation function, we obtain an LTS.
Moreover, the KLTS (2𝐴𝑡, ∅, {𝑟𝑖 | 𝑖 ∈ 𝒜}, id) – where each state represents a subset of 𝐴𝑡, id is
the identity function, and 𝑟𝑖(𝑠) = 𝑟𝑖(𝑠

′) for all 𝑖 ∈ 𝒜 and for any 𝑠, 𝑠′ ∈ 2𝐴𝑡 – is a Kripke model.

LTSs and Kripke models provide the semantics for interpreting properties expressed in various
modal logics. Inspired by temporal logics and epistemic logics, we propose a modal logic that
naturally combines temporal and epistemic ingredients, called Kripke Temporal (KT) logic.

Definition 4 (KT Logic). The language ℒ𝐾𝑇 of the KT logic is defined by the following two-
layers grammar:

𝜑 → ⊤ | 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨𝜋⟩𝜑 | 𝜓
𝜓 → ⊤ | 𝑝 | ¬𝜓 | 𝜓 ∧ 𝜓 | 𝐾𝑖𝜓

The 𝜓 formulas are called epistemic formulas. Note that the KT logic results from the
combination and encompasses both HML [2] and Epistemic Logic [3].

Definition 5. Given a KLTS 𝑀 := (𝑆, 𝑇, {𝑟𝑖 | 𝑖 ∈ 𝒜}, 𝑣) and denoted 𝑀𝑠 := (2𝐴𝑡, {𝑟𝑖(𝑠) |
𝑖 ∈ 𝒜}, 𝑖𝑑), with 𝑠 ∈ 𝑆, the truth of 𝜙 ∈ ℒ𝐾𝑇 at 𝑠 ∈ 𝑆, written 𝑀, 𝑠 |= 𝜙, is defined as follows:

1. 𝑀, 𝑠 |= ⊤
2. 𝑀, 𝑠 |= 𝑝 iff 𝑝 ∈ 𝑣(𝑠)
3. 𝑀, 𝑠 |= ¬𝜙 iff 𝑀, 𝑠 ̸|= 𝜙
4. 𝑀, 𝑠 |= 𝜙1 ∧ 𝜙2 iff 𝑀, 𝑠 |= 𝜙1 and 𝑀, 𝑠 |= 𝜙2

5. 𝑀, 𝑠 |= ⟨𝜋⟩𝜑 iff ∃𝑠′. (𝑠, 𝜋, 𝑠′) ∈ 𝑇 and 𝑀, 𝑠′ |= 𝜑
6. 𝑀, 𝑠 |= 𝐾𝑖𝜓 iff 𝑀𝑠, 𝑣(𝑠) |=K 𝐾𝑖𝜓, where the relation |=K is defined as:
(𝑎)𝑀𝑠, 𝑋 |=K ⊤
(𝑏)𝑀𝑠, 𝑋 |=K 𝑝 iff 𝑝 ∈ 𝑋
(𝑐)𝑀𝑠, 𝑋 |=K ¬𝜓 iff 𝑀𝑠, 𝑋 ̸|=K 𝜓
(𝑑)𝑀𝑠, 𝑋 |=K 𝜓1 ∧ 𝜓2 iff 𝑀𝑠, 𝑋 |=K 𝜓1 and 𝑀𝑠, 𝑋 |=K 𝜓2

(𝑒)𝑀𝑠, 𝑋 |=K 𝐾𝑖𝜓 iff ∀𝑌. (𝑋,𝑌) ∈ 𝑟𝑖(𝑠) :𝑀𝑠, 𝑌 |=K 𝜓

Note that the formula 𝐾𝑖𝜓 is evaluated in 𝑠 ∈ 𝑆 with respect to the accessibility relations
associated with 𝑠, thus emphasizing the view of the KLTS as an LTS where each state 𝑠 is
equipped with a Kripke model 𝑀𝑠 := (2𝐴𝑡, {𝑟𝑖(𝑠) | 𝑖 ∈ 𝒜}, 𝑖𝑑) 1. Hence, the semantics of
an epistemic formula evaluated in 𝑠 depends on such a Kripke model (|=K is the classical
satisfiability relation for Kripke models). By virtue of the indistinguishability interpretation we
adopted, since we are assuming to work with accessibility relations that are reflexive, symmetric,
and transitive, the reference system for the knowledge modality is S5 [13].

Based on the semantics above, two states 𝑠 and 𝑠′ are modal equivalent, written 𝑠 ≡ 𝑠′, if
and only if they satisfy the same formulas. The KT logic characterizes the following notion of
behavioral equivalence.

Definition 6. Let (𝑆, 𝑇, {𝑟𝑖 | 𝑖 ∈ 𝒜}, 𝑣) be a KLTS. A binary equivalence relation 𝐵 on 𝑆 is a
bisimulation iff whenever (𝑠, 𝑡) ∈ 𝐵 then:

1. 𝑣(𝑠) = 𝑣(𝑡);
2. if (𝑠, 𝑎, 𝑠′) ∈ 𝑇 then ∃𝑡′. (𝑡, 𝑎, 𝑡′) ∈ 𝑇 and (𝑠′, 𝑡′) ∈ 𝐵;
3. there exists a binary equivalence relation ℬ𝑠𝑡 between the worlds of the Kripke models

(2𝐴𝑡, {𝑟𝑖(𝑠) | 𝑖 ∈ 𝒜}, id) pointed at 𝑣(𝑠) and (2𝐴𝑡, {𝑟𝑖(𝑡) | 𝑖 ∈ 𝒜}, 𝑖𝑑) pointed at 𝑣(𝑡),
such that (𝑣(𝑠), 𝑣(𝑡)) ∈ ℬ𝑠𝑡 and for any 𝑋,𝑌 ∈ 2𝐴𝑡, whenever (𝑋,𝑌) ∈ ℬ𝑠𝑡 then:

• 𝑋 = 𝑌 ;
• if (𝑋,𝑋 ′) ∈ 𝑟𝑖(𝑠) for 𝑖 ∈ 𝒜, then ∃𝑌 ′. (𝑌, 𝑌 ′) ∈ 𝑟𝑖(𝑡) and (𝑋 ′, 𝑌 ′) ∈ ℬ𝑠𝑡.

Note that conditions 1. and 3. resemble the definition of modal bisimulation for Kripke
models [13], while condition 2. characterizes the strong bisimulation for LTSs [2]. Two states
𝑠 and 𝑠′ are bisimilar, written 𝑠 ∼ 𝑠′, if and only if there exists a bisimulation 𝐵 such that
(𝑠, 𝑠′) ∈ 𝐵. The correspondence theorem relates bisimilar states and equivalent states whenever
the KLTS is image-finite, i.e., for all states and actions, the image of 𝑠 (under any accessibility
relation) and the image of 𝑠, 𝜋 (under the transition relation) are finite.
1Each state of 𝑀𝑠 represents a subset of 𝐴𝑡 denoting the propositions that are true in the state (note that the
valuation function is the identity function), while the accessibility relations of 𝑀𝑠 are those associated with 𝑠.

Theorem 1. For any image-finite KLTS, ∼ coincides with ≡.

As a consequence of the grammar structure and the semantics of the KT logic, decidability
and verification algorithms are inherited from the results related to epistemic logic and HML.

3. A language for Kripke labeled transition systems

In this section, we define a process-algebraic, agent-oriented language with value passing, the
semantics of which is given in terms of KLTSs. We start by defining a basic calculus (see, e.g.,
[14, 15]) with value passing (see, e.g., [16, 17]) for the description of sequential process terms.
Let 𝐴 be a set of action names (ranging over 𝑎, 𝑏, . . .) including the special action names 𝜏 and
set. To model value passing, we will use variables (𝑥, 𝑦, . . . , 𝑓, 𝑔, . . .), values (𝑣, 𝑣′, . . .) from
fixed domains, and expressions (𝑒, 𝑒′, . . .) that usually represent simple values.

Definition 7. The set ℒ of process terms of the calculus for sequential processes is generated
through the following syntax:

𝑃 → 0 |
∑︀

𝑘∈𝐼 𝜋𝑘 . 𝑃𝑘 | 𝐶(𝑒1, . . . , 𝑒𝑛)
𝜋 → 𝑏 | 𝑎(𝑦, 𝑓) | �̄�(𝑖, 𝜓) | set(𝑝, 𝑤)

where 𝑏 ∈ 𝐴∖{set}, 𝑎 ∈ 𝐴∖{𝜏, set}, 𝐼 is any finite indexing set, 𝑤 is a boolean value, 𝐶 is a
constant name with the natural 𝑛 ≥ 0 being the arity of 𝐶 .

The constant 0 stands for the inactive, halted process. The summation operator represents a
nondeterministic choice enacting one of the guarded process terms 𝜋𝑘.𝑃𝑘 , which executes action
𝜋𝑘 and then behaves as process term 𝑃𝑘 (we will use 𝐸 to denote a non-empty summation).
The constant 𝐶 is used to express recursive processes with 𝑛 ≥ 0 parameters, and must be
associated with a defining equation of the form 𝐶(𝑥1, . . . , 𝑥𝑛) := 𝑃 . The notation 𝜋 stands for
any action, which can be an internal action 𝑏 (including the unobservable action 𝜏), an input
action 𝑎(𝑦, 𝑓), an output action �̄�(𝑖, 𝜓), or an assignment action set(𝑝, 𝑤).

An assignment action has the effect of setting the proposition 𝑝 to the boolean value 𝑤.
An output action communicates an epistemic formula 𝜓 to the agent 𝑖, while an input action
receives a formula assigned to the variable 𝑓 from an agent assigned to the variable 𝑦.

As usual in calculi with value passing, each occurrence of any variable in a process term
𝑃 is bound by either an input action or a constant definition. For instance, 𝑥 is bound in
𝐶(𝑥) := �̄�(𝑥, 𝑝 ∧ 𝑞) . 𝐶(𝑥+ 1) and in 𝑎(𝑥, 𝑓) . �̄�(𝑥,⊤) . 0, but not in �̄�(𝑥, 𝑝 ∧ 𝑞) . 0. Moreover,
we write 𝑖/𝑥 and 𝜓/𝑓 for substitutions of values for variables, and denote by 𝑃 [𝑖/𝑥, 𝜓/𝑓] the
result of substituting 𝑖 (resp., 𝜓) for all free (not bound) occurrences of 𝑥 (resp., 𝑓) in 𝑃 .

Formally, the behavior of a process term 𝑄 is described in structural operational semantics
style as the LTS rooted at 𝑄 and defined by the transition relation 𝑇 ⊆ ℒ × Act × ℒ that
is the least transition relation generated by the axioms and the rules in Table 1. All the pre-
and post-conditions associated with knowledge-based behaviors (i.e., communications and
assignments) will be defined when introducing the parallel composition of process terms and
the knowledge structures.

Table 1
Semantics rules for sequential processes

(prefix) 𝑏 . 𝑃
𝑏

−−→𝑃 set(𝑝, 𝑤) . 𝑃
set(𝑝,𝑤)
−−→ 𝑃 �̄�(𝑖, 𝜓) . 𝑃

�̄�(𝑖,𝜓)
−−→ 𝑃

(input) 𝑎(𝑦, 𝑓) . 𝑃
𝑎(𝑖,𝜓)
−−→ 𝑃 [𝑖/𝑦, 𝜓/𝑓] for any 𝑖 ∈ 𝒜 and epistemic formula 𝜓

(sum)
𝜋 . 𝑃

𝜋
−−→𝑃

𝜋 . 𝑃 + 𝐸
𝜋

−−→𝑃

(recursion)
𝑃 [𝑣1/𝑥1, . . . , 𝑣𝑛/𝑥𝑛]

𝜋
−−→𝑃 ′

𝐶(𝑒1, . . . , 𝑒𝑛)
𝜋

−−→𝑃 ′
𝐶(𝑥1, . . . , 𝑥𝑛) := 𝑃 and
each 𝑒𝑖 evaluates to 𝑣𝑖

Example 2. The process term Agent := receive(𝑦, 𝑓).send(𝑦+1, 𝑓).Agent represents an agent
without parameters that is available to receive as input a formula from an agent 𝑦, and then forwards
such a formula as an output to agent 𝑦 + 1 (here, we assume that agent identities are naturals).

3.1. Agents and pool of agents

Process terms represent behavioral patterns of agents, while an agent is an instance of a process
term with a unique identity. Several agents may communicate with each other to form a network
of agents. Hence, we need to formalize the notion of agent and how agents interact in a so-called
pool of agents. A dynamic knowledge structure will be added to regulate such interactions.

Agents are described by tuples of the form ⟨𝑖 ∈ 𝒜, 𝑃 ∈ ℒ⟩ and are ranged over by ℐ,𝒥 ,
The semantics of ⟨𝑖, 𝑃 ⟩ is given by the LTS expressing the behavior of 𝑃 , up to the renaming of
the actions as defined by the semantic rule:

(agent)
𝑃

𝜋
−−→𝑃 ′

⟨𝑖, 𝑃 ⟩
𝑖.𝜋

−−→⟨𝑖, 𝑃 ′⟩

So far, we abstracted from the interaction among agents and the underlying knowledge base.
Now, we combine the behavior of several agents by integrating the notion of knowledge, which
will allow us to specify how they can interact.

Definition 8. A pool of agents is a tuple (∪𝑖ℐ𝑖,∪𝑖𝑅𝑖, 𝑋), where, for 𝑖 ranging over 𝒜:

• ∪𝑖ℐ𝑖 denotes a finite set of agents;
• ∪𝑖𝑅𝑖 denotes a finite set of binary accessibility relations over 2𝐴𝑡;
• 𝑋 ⊆ 𝐴𝑡 is the set of true propositions.

The behavior of the set ∪𝑖ℐ𝑖 depends on the behavior of each ℐ𝑖 and is defined as an element
of the cartesian product (𝒜× ℒ)𝑛, where 𝑛 denotes the cardinality (i.e., the number of agents)
of the pool. Then, for each agent 𝑖, the accessibility relation 𝑅𝑖 expresses the capability of 𝑖 to

Table 2
Semantics rules for a pool of agents

(pool)
𝒥

𝑗.𝑏
−−→𝒥 ′

(∪𝑖 ̸=𝑗ℐ𝑖 ∪ 𝒥 , 𝑅,𝑋)
𝑗.𝑏

−−→ (∪𝑖 ̸=𝑗ℐ𝑖 ∪ 𝒥 ′, 𝑅,𝑋)

(set)
𝒥
𝑗.set(p,w)
−−→ 𝒥 ′

(∪�̸�=𝑗ℐ𝑖 ∪ 𝒥 ,∪�̸�=𝑗𝑅𝑖 ∪𝑅𝑗 , 𝑋)
𝜏

−−→ (∪�̸�=𝑗ℐ𝑖 ∪ 𝒥 ′,∪𝑖 ̸=𝑗𝑅′
𝑖 ∪𝑅′

𝑗 , 𝑋
′)

where 𝑋 ′ =

{︂
𝑋∖{𝑝} if 𝑤 = 0
𝑋 ∪ {𝑝} if 𝑤 = 1

and, for 𝑁 := (2𝐴𝑡,∪𝑖 ̸=𝑗𝑅𝑖 ∪𝑅𝑗 , 𝑖𝑑) :

− 𝑅′
𝑗 = 𝑅𝑗∖{(𝑌, 𝑌 ′) | diff (𝑁,𝑌, 𝑌 ′, 𝑝)}

− 𝑅′
𝑖 = closure(𝑅𝑖 ∪ {({𝑝} ∪ 𝑌, 𝑌) | 𝑝 ̸∈ 𝑌 } ∪ {(𝑌, {𝑝} ∪ 𝑌) | 𝑝 ̸∈ 𝑌 })

(com)
(∪𝑘 ̸=𝑖,𝑗ℐ𝑘 ∪ ℐ ∪ 𝒥 ,∪𝑘 ̸=𝑗𝑅𝑘 ∪𝑅𝑗 , 𝑋) |= 𝐾𝑖𝜓 ℐ

𝑖.ā(j ,𝜓)
−−→ ℐ ′ 𝒥

𝑗.a(i,𝜓)
−−→ 𝒥 ′ 𝑖 ̸= 𝑗

(∪𝑘 ̸=𝑖,𝑗ℐ𝑘 ∪ ℐ ∪ 𝒥 ,∪𝑘 ̸=𝑗𝑅𝑘 ∪𝑅𝑗 , 𝑋)
𝜏

−−→ (∪𝑘 ̸=𝑖,𝑗ℐ𝑘 ∪ ℐ ′ ∪ 𝒥 ′,∪𝑘 ̸=𝑗𝑅𝑘 ∪𝑅′
𝑗 , 𝑋)

where, for 𝑁 := (2𝐴𝑡,∪𝑘 ̸=𝑗𝑅𝑘 ∪𝑅𝑗 , 𝑖𝑑) : 𝑅′
𝑗 = 𝑅𝑗∖{(𝑌, 𝑌 ′) | diff (𝑁,𝑌, 𝑌 ′, 𝜓)}

diff (𝑁,𝑋, 𝑌, 𝜓) := (𝑁,𝑋 |=K 𝜓 ∧𝑁,𝑌 ̸|=K 𝜓) ∨ (𝑁,𝑋 ̸|=K 𝜓 ∧𝑁,𝑌 |=K 𝜓)

closure(𝑅𝑘) := 𝑅𝑘 ∪ {(𝑋,𝑌) | ∃𝑍. (𝑋,𝑍) ∈ 𝑅𝑘 ∧ (𝑍, 𝑌) ∈ 𝑅𝑘}

distinguish the possible worlds based on the values that can be attributed to the propositions of
At . Finally, set 𝑋 denotes the current truth assignment for the propositions of At .

The agents of a pool can perform actions, either synchronously or autonomously, thus making
the system dynamic. On the one hand, the internal actions that are not related to knowledge and
the assignment actions represent the autonomous actions of agents. On the other hand, input
and output actions represent synchronous communications that express knowledge transfer
between agents.

Formally, such a joint knowledge-based and action-based behavior is represented by a KLTS
describing the evolution of the pool of agents.

Definition 9. Let 𝒫 := (∪𝑖ℐ𝑖,∪𝑖𝑅𝑖, 𝑋) be a pool of agents of cardinality 𝑛. The semantics of 𝒫
is given by the KLTS ((𝑆, 𝑇,∪𝑖𝑟𝑖, 𝑣),𝒫) rooted at 𝒫 , which is built as follows:

• the states in 𝑆 are pool tuples, where 𝒫 ∈ 𝑆 is the initial state;
• 𝑇 is the least transition relation generated by the rules of Table 2;
• for each 𝑠 ∈ 𝑆 of the form (_,∪𝑖𝑅𝑖, 𝑋), it holds that 𝑟𝑖(𝑠) = 𝑅𝑖 for each 𝑖 ∈ 𝒜 and
𝑣(𝑠) = 𝑋 .

We now illustrate the rules of Table 2. The rule (pool) describes the asynchronous execution
of autonomous actions of the form 𝑏 ∈ 𝐴∖{set} by any agent of the pool. Note that such actions
do not change the knowledge structure, which is modeled by the set 𝑅 of accessibility relations
and by the truth assignment 𝑋 .

The rule (set) describes the asynchronous execution of autonomous actions of the form
set(𝑝, 𝑤) by any agent 𝑗, whose side effect is that the truth assignment 𝑋 associated with the
current tuple is updated according to the assignment 𝑝 = 𝑤 (see the definition of 𝑋 ′). The
accessibility relations are also updated accordingly. On the one hand, the agent 𝑗 performing
the assignment acquires knowledge (if not yet possessed) of 𝑝. Hence, in 𝑅𝑗 , all the possible
worlds differing for the valuation of 𝑝 (see function diff) cannot be mutually accessible anymore,
as they are distinguishable by the value of 𝑝. Note that, as we will show, such suppression of
connections ensures that the accessibility relation remains an equivalence. On the other hand,
all the other agents 𝑖 ̸= 𝑗 lose knowledge (if previously possessed) of 𝑝, as the assignment is
not considered public (as emphasized by the fact that the resulting action is a silent action 𝜏).
Therefore, in each accessibility relation of those agents, all the possible worlds differing only for
the valuation of 𝑝 must become mutually accessible, as they cannot be distinguished anymore.
Note that such addition of connections considers the symmetric pairs and, through the closure
operation, the transitive relations, thus ensuring, as we will show, that the accessibility relation
remains an equivalence.

The most interesting rule is (com), which expresses a communication from an output to a
corresponding input (the two actions refer to the same action name 𝑎). The agent 𝑖 performing
the output and the agent 𝑗 performing the corresponding input synchronize, i.e., they both
advance simultaneously. However, the resulting synchronization is enabled only if the epistemic
formula 𝜓 communicated from 𝑖 to 𝑗 is known by 𝑖. If this is the case, 𝑗 acquires knowledge
of 𝜓, and the accessibility relation 𝑅𝑗 is updated accordingly. In fact, agent 𝑗 becomes able
to distinguish those possible worlds that differ from each other for the evaluation of 𝜓. The
communication is private (the synchronization result is a silent action 𝜏), i.e., the knowledge
transfer involves only the agent 𝑗 and no one else.

Lemma 1. The KLTS modeling the behavior of a pool of agents is image-finite.

This result immediately derives by Definition 9 and the semantics of Table 2. As anticipated,
another important result is that the semantics of Table 2 preserves the indistinguishability
interpretation of the accessibility relations.

Theorem 2. Let 𝒫 := (∪𝑖ℐ𝑖,∪𝑖𝑅𝑖, 𝑋) be a pool of agents such that each 𝑅𝑖, with 𝑖 ∈ 𝒜, is a
P-relation (for P in {reflexive, symmetric, transitive}) and ((𝑆, 𝑇,∪𝑖𝑟𝑖, 𝑣),𝒫) be the semantics of
𝒫 . Then, for each 𝑖 ∈ 𝒜 and for each 𝑠 ∈ 𝑆, it holds that 𝑟𝑖(𝑠) is a P-relation.

4. Use case: playing Cluedo

The present case study is designed to highlight the modeling features and analysis opportunities
of our framework. Despite its simplicity, this use case encompasses many of the features of
real-world applications, including strategic thinking, private and public communications, and

knowledge transfer. For the sake of brevity, instead of the full Cluedo game2 we model a
simplified version. Let us consider a game set with 3 players, a dealer, and 8 cards, numbered
from 1 to 8. At the beginning of the game, the dealer samples secretly and puts aside two cards,
shuffles the remaining cards together, making sure none of the cards are seen by any of the
players, and then deals two cards per player. Then, the game starts and proceeds by sequential
turns. On her turn, each player makes publicly a suggestion of the form: I suggest that the two
secret cards of the dealer are 𝑖 and 𝑗. There are no constraints about the specific choice of 𝑖 and
𝑗. Then, if the player on the right of the one making the suggestion has at least one of the cards
mentioned, she must show one of these cards secretly to her. Then, the inquiry passes to the
player on the left, with the same rule. At the end of her turn, the player wins the game if she
has learned and can correctly declare what the dealer’s cards are. Otherwise, the game proceeds
with the following turns until one of the players wins.

Formally, we model the game set through the propositions 𝑝𝑗𝑖 and 𝑞𝑖, for 0 ≤ 𝑗 ≤ 2 and
1 ≤ 𝑖 ≤ 8, where 𝑝𝑗𝑖 means that player 𝑗 has card 𝑖 and 𝑞𝑖 means that card 𝑖 is one of the two
secret cards of the dealer. The pool includes one dealer and three players and, initially, is defined
as the tuple: ({⟨Mr. Black,Dealer⟩, ⟨0,Player(0)⟩, ⟨1,Player(1)⟩, ⟨2,Player(2)⟩}, 𝑅,𝑋).
The three players have the same behavioral pattern, given by the process term Player , which is
fed with a parameter representing the player identity. Set 𝑋 is empty (the cards have yet to
be shuffled by the dealer Mr. Black - hence all the propositions are set to 0). The accessibility
relation of the dealer, 𝑅Mr .Black , contains only the reflexive pairs, i.e., each possible world is a
singleton. In fact, by assumption, the dealer is like an oracle and can distinguish any possible
scenario. As we will see, 𝑅Mr .Black is immutable. The accessibility relation for each player
𝑗, denoted 𝑅𝑗 , is such that two possible worlds are related if and only if they coincide for
the values of the propositions 𝑝𝑗𝑖 , 1 ≤ 𝑖 ≤ 8. The intuition is that, at least, a player is able
to distinguish two possible worlds differing in the values of the cards she receives. All such
accessibility relations are equivalence relations but are not immutable, as the knowledge of the
players will change as the game proceeds.

Initially, the dealer shuffles the cards and chooses nondeterministically the two secret cards
and the assignments for the players (see actions set):

Dealer :=
∑︀

𝑘1,𝑘2
set(𝑞𝑘1 , 1).set(𝑞𝑘2 , 1).Deal(𝑘1, 𝑘2)

Deal(𝑥, 𝑦) :=
∑︀

𝑖1,𝑖2 ̸∈{𝑥,𝑦} set(𝑝
0
𝑖1
, 1).set(𝑝0𝑖2 , 1).deal(0, 𝑝

0
𝑖1
∧ 𝑝0𝑖2).(∑︀

𝑖3,𝑖4 ̸∈{𝑖1,𝑖2,𝑥,𝑦} set(𝑝
1
𝑖3
, 1).set(𝑝1𝑖4 , 1).deal(1, 𝑝

1
𝑖3
∧ 𝑝1𝑖4).(∑︀

𝑖5,𝑖6 ̸∈{𝑖1,...,𝑖4,𝑥,𝑦} set(𝑝
2
𝑖5
, 1).set(𝑝2𝑖6 , 1).deal(2, 𝑝

2
𝑖5
∧ 𝑝2𝑖6).Play(0)))

Whenever clear from the context, the bounds of a summation are not specified (in general,
∑︀

𝑖,𝑗

expresses a choice over all the possible unordered pairs of different values (𝑖, 𝑗), each one ranging
from 1 to 8). Process term Dealer models the random sampling of the two secret cards, and
then the invocation of process term Deal(𝑘1, 𝑘2) describes the following behavior of the dealer
whenever 𝑘1 and 𝑘2 have been chosen. The sampling for each player is modeled analogously
through a pair of subsequent actions set . The output action deal is used to communicate the
assignments to the players. Then, the dealer coordinates the game rounds:

Play(x) := start_turn(𝑥,⊤).(end_turn(_, _).Play((x + 1)mod 3) + win(_, _).0)
2The reader interested in reviewing the rules of the game can refer to the official instructions by Hasbro.

https://instructions.hasbro.com/en-gb/instruction/clue-the-classic-mystery-game

by assigning each turn (through the output action start_turn) to a different player, sequentially.
Note that the output is sent to player 𝑥 to inform that her turn is starting, without the need to
communicate any other information (this justifies the choice of the truth constant ⊤). Then, the
dealer waits for a response: either the player turn terminates (input action end_turn) or the
player wins the game by learning the secret pair during her turn (input action win). For the sake
of convenience, whenever unnecessary, the arguments of an input action are left unspecified
(symbol _).

After receiving the cards through the input action deal , each player is available to start her
turn (input action start_turn) or to manage inputs from the other players. The process term
Player(𝑥) is defined as follows:

Player(𝑥) := deal(𝑦, _).
(start_turn(_, _).

∑︀
𝑖1,𝑖2

ask 𝑖1,𝑖2((𝑥+ 1)mod 3,⊤).show(_, _).
ask 𝑖1,𝑖2((𝑥+ 2)mod 3,⊤).show(_, _).

(end_turn(𝑦,¬𝜑𝑥).Player(𝑥) + win(𝑦, 𝜑𝑥).0))
+
∑︀

𝑖1,𝑖2
ask 𝑖1,𝑖2(𝑧, _).

(show(3− 𝑥− 𝑧, 𝑝𝑥𝑖1 ∨ 𝑝
𝑥
𝑖2
).(show(𝑧, 𝑝𝑥𝑖1).Player(𝑥)+

show(𝑧, 𝑝𝑥𝑖2).Player(𝑥))+

show(3− 𝑥− 𝑧,¬𝑝𝑥𝑖1 ∧ ¬𝑝𝑥𝑖2).show(𝑧,¬𝑝𝑥𝑖1 ∧ ¬𝑝𝑥𝑖2).Player(𝑥))
+show(_, _).Player(𝑥))

When initiating a new turn, the player chooses nondeterministically two cards to be asked to
each other player (output action ask) and then waits for the related answer (input action show).
At the end of the turn, either the player learns the secret and wins the game (output action win)
or passes the hand (output action end_turn). The winning condition for player 𝑥 determining
which output is executed is given by the knowledge of the formula 𝜑𝑥 =

⋁︀
(𝑘,𝑘′)𝐾𝑥(𝑞𝑘 ∧ 𝑞𝑘′),

i.e., the player knows the secret pair. Then, players respond to incoming requests through
the input action ask. If player 𝑥 receives from player 𝑧 a request about cards 𝑖1 and 𝑖2, then
we distinguish two cases. Firstly, 𝑥 may have at least one of the two cards (𝑝𝑥𝑖1 ∨ 𝑝

𝑥
𝑖2

). In this
case, 𝑥 reveals one of the possessed cards to 𝑧, by choosing the card nondeterministically if
necessary. Indirectly, even the third, silent player (identified by 3− 𝑥− 𝑧) learns something,
i.e., the fact that 𝑥 has one of the two cards. We model this indirect transfer of knowledge
through an explicit output directed to player 3− 𝑥− 𝑧. Secondly, 𝑥 may have none of the two
cards (¬𝑝𝑥𝑖1 ∧ ¬𝑝𝑥𝑖2). In this case, the information is shared with both the other players. Finally,
due to the outputs directed to player 3− 𝑥− 𝑧, players must also be available to learn some
information during the turns of the other players (through the input action show).

It is worth noting that the management of the knowledge base of the players is left to the
semantics of the underlying Kripke model. At the level of the specification, only the initial
setting and the communications are modeled explicitly. This is particularly significant from the
viewpoint of usability, as an analogous model based on, e.g., classical Kripke structures, would
be much more challenging. To appreciate this aspect, the same use case has been modeled in
the software tool NuSMV [18], the specifications of which result in finite state machines that
turn out to be Kripke structures.3 Since there are 2520 ways of dealing the 8 cards to the three
3The specification can be found on github.

https://github.com/aldinia/cluedo

players and the dealer – the computing formula is
(︀
8
2

)︀
·
(︀
6
2

)︀
·
(︀
4
2

)︀
– the NuSMV specification

refers to one of these, chosen deterministically through external parameters that initialize the
system configuration. Moreover, the NuSMV specification describes only a very simplistic
version of the players’ knowledge, in which each player does not deduce any information when
observing the interactions between the other two players. In fact, the additional information
needed to model the full deduction capabilities of the players should be represented explicitly
by the designer and would make the model much more complicated and error-prone. By the
way, despite these simplifications, the NuSMV specification is made out of about 200 code lines
and 58 variables.4

To show an example of properties that can be model checked, we consider the derived
eventually modality 𝐹 , such that 𝑀, 𝑠 |= 𝐹𝜑 if and only if 𝑀, 𝑠 |= 𝜑 or ∃𝜋.𝑀, 𝑠 |= ⟨𝜋⟩𝐹𝜑,
and the derived globally modality 𝐺, such that 𝑀, 𝑠 |= 𝐺𝜑 if and only if 𝑀, 𝑠 |= 𝜑 and
∃𝜋.𝑀, 𝑠 |= ⟨𝜋⟩𝐺𝜑. Then, the reachability property 𝐹 (

⋁︀
𝑥 𝜑𝑥) is satisfied, i.e., the winning state

is reachable by some players. However, even the unreachability property 𝐺(
⋀︀

𝑥 ¬𝜑𝑥) holds.
The reason is that the simple, nondeterministic strategy followed by the players when choosing
their suggestion does not guarantee that the game can always be won.

5. Related work and conclusions

A few approaches investigate the combination of LTS-based semantics and epistemic notions,
e.g., in the setting of epistemic 𝜇-calculus [7] and of concurrent constraint programming
paradigms [5, 6]. The framework proposed in [4] is the closest to our approach in principle, as
it integrates LTSs with accessibility relations stating the indistinguishability between states.
However, agents observe (do not control) the path of performed actions and, based on this
knowledge, deduce what the actual state is. Hence, the semantics of the formulas of the
underlying logic is given in terms of paths. Notably, such a logic, similarly to the KT logic, is
equipped with both temporal and epistemic modalities.

An important strand of research concerns dynamic extensions of Kripke models and epistemic
logic, where the dynamic dimension is related to the execution of actions over time; see, e.g.,
[19, 20, 21, 22, 23, 24, 25, 26, 27] and the references therein. However, all these approaches
differ in the way in which we encode the dynamics of epistemic models within the LTS-style
semantics. The main advantage of our encoding is that the obtained semantics facilitates the
definition of a high-level process-algebraic language for the description of multi-agent systems
and knowledge-based interactions. Moreover, a benefit of our LTS-based semantics is that we
inherit the model-checking techniques associated with discrete-time models and temporal logics
in HML style. As seen in the KT logic, these capabilities can be merged with the expressive
power of Epistemic Logic.

In the field of concurrency theory, some of the ideas presented in this paper can be found
in the study of temporal logics encompassing features from HML and modal 𝜇-calculus [28].
As an example, a variant of the temporal logic CTL is defined in [29] to check properties
over expressive models called L2TS. In these models, the idea is to combine transition labels
expressing the action-based dynamic behavior of a system with state-based labels expressing

4The underlying Kripke structure has about 220 states.

the knowledge possessed in each state of the system. With respect to our proposal, no epistemic
representation of derivable knowledge is given, so the study of the observational power of the
agents is limited to the verification of state-based propositional logic formulas and on the model
checking of temporal formulas.

Summarizing, by following suggestions deriving from works on dynamic and temporal
epistemic logics [30], we embedded a structure of pointed Kripke models into a labeled transition
system, the actions of which act as model-transforming operations from the viewpoint of the
Kripke models. These transitions naturally model the behavior of the system and the passage
of (discrete) time, while the Kripke models linked to the states visited during the temporal
evolution of the system represent the way in which the knowledge of every agent evolves over
time. The process algebraic language that we introduced emphasizes these effects and allows for
a compact and elegant description of multi-agent systems, where the details of the knowledge
evolution are left to the underlying epistemic model.

Starting from this point, several extensions can be envisioned. For instance, the semantics
of our communication mechanisms assumes that only known truth can be transferred. Hence,
we do not currently manage (possibly false) beliefs and the communication of information
that is inconsistent with an agent’s knowledge or belief. This would require the introduction
of the belief modality and the treatment of contradictions resulting from the communication
between agents. Moreover, this would also open to extensions in which it is possible to model
the behavior of malicious agents sharing false information and, therefore, a theory of fake news
[31, 32], trust, and reputation [33, 34, 35, 36]. Along the same lines, further modalities could be
added to the epistemic component of our model.

Dealing with inconsistencies is a problem to face even in the present model, without bringing
up the notion of belief. In particular, an unsuccessful formula is a formula that might become false
as soon as it is communicated, like, e.g., in the case of 𝑝∧¬𝐾𝑗𝑝whenever agent 𝑖 communicates
it to agent 𝑗 [37]. Several studies investigate the syntactic form of potential unsuccessful
formulas, in particular in the setting of public announcements for multi-agent systems [38].
Obviously, even in our framework such forms can be recognized and, in particular, are limited
to those cases in which a formula of the form ¬𝐾𝑗𝜓 is involved in a communication to agent
𝑗. This is because the satisfaction of ¬𝐾𝑗𝜓 before the communication could be contradicted
by sharing its knowledge with the agent suffering from such a kind of ignorance. The formal
investigation of these situations is left as future work.

Given the high generality of the proposed framework, it would also be interesting to investi-
gate the relation with other abstract models, such as coalgebraic modal logics [39], to better
guide the comparison with the literature. Finally, we also plan to define: (𝑖) an axiomatization
for the KT logic, (𝑖𝑖) quantitative extensions of the KLTS model, by adding continuous time
and probabilistic choices, and (𝑖𝑖𝑖) additional ingredients in the process-algebraic language, by
including internal actions guarded by knowledge-based requirements, if-then-else constructs
that are based on knowledge conditions, asynchronous communication and dynamic pools of
agents, broadcast communication in the style of [40].

References

[1] C. Baier, J.-P. Katoen, Principles of Model Checking (Representation and Mind Series), The
MIT Press, 2008.

[2] M. Hennessy, R. Milner, On observing nondeterminism and concurrency, in: J. de Bakker,
J. van Leeuwen (Eds.), Automata, Languages and Programming (ICALP 1980), volume 85
of LNCS, Springer, 1980, pp. 299–309.

[3] H. van Ditmarsch, J. Y. Halpern, W. van der Hoek, B. Kooi (Eds.), Handbook of Epistemic
Logic, College Publications, 2015.

[4] S. Knight, R. Mardare, P. Panangaden, Combining epistemic logic and Hennessy-Milner
logic, in: Logic and Program Semantics: Essays Dedicated to Dexter Kozen on the Occasion
of His 60th Birthday, Springer, 2012, p. 219–243.

[5] S. Knight, C. Palamidessi, P. Panangaden, F. D. Valencia, Spatial and epistemic modalities
in constraint-based process calculi, in: M. Koutny, I. Ulidowski (Eds.), CONCUR 2012 -
Concurrency Theory, Springer, 2012, pp. 317–332.

[6] M. Guzman, S. Haar, S. Perchy, C. Rueda, F. D. Valencia, Belief, knowledge, lies and other
utterances in an algebra for space and extrusion, Journal of Logical and Algebraic Methods
in Programming 86 (2017) 107–133.

[7] F. Dechesne, M. Mousavi, S. Orzan, Operational and epistemic approaches to protocol anal-
ysis: Bridging the gap, in: Logic for Programming, Artificial Intelligence, and Reasoning:
14th Int. Conf., LPAR 2007, Springer, 2007, p. 226–241.

[8] F. Dechesne, Y. Wang, To know or not to know: epistemic approaches to security protocol
verification, Synthese 177 (2010) 51–76.

[9] R. Chadha, S. Delaune, S. Kremer, Epistemic logic for the applied pi calculus, in: D. Lee,
A. Lopes, A. Poetzsch-Heffter (Eds.), Formal Techniques for Distributed Systems, Springer,
2009, pp. 182–197.

[10] M. Balliu, M. Dam, G. Le Guernic, Epistemic temporal logic for information flow security,
in: Procs. of the ACM SIGPLAN 6th Workshop on Programming Languages and Analysis
for Security, PLAS’11, ACM, 2011.

[11] K. Minami, Trace equivalence and epistemic logic to express security properties, in:
A. Gotsman, A. Sokolova (Eds.), Formal Techniques for Distributed Objects, Components,
and Systems, Springer, 2020, pp. 115–132.

[12] K. Bavendiek, S. Schupp, A process calculus for privacy-preserving protocols in location-
based service systems, Journal of Logical and Algebraic Methods in Programming 125
(2022).

[13] P. Blackburn, M. De Rijke, Y. Venema, Modal logic, volume 53 of Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 2002.

[14] W. Fokkink, Introduction to Process Algebra, Springer, 2007.
[15] R. Gorrieri, C. Versari, Introduction to Concurrency Theory - Transition Systems and CCS,

Springer, 2015.
[16] M. Hennessy, A proof system for communicating processes with value-passing, Formal

Aspects of Computing 3 (1991) 346–366.
[17] S. Huang, Y. Cao, H. Wang, W. Qu, Value-passing CCS with noisy channels, Theoretical

Computer Science 433 (2012) 43–59.

[18] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
A. Tacchella, NuSMV 2: An opensource tool for symbolic model checking, in: Procs. of
the 14th Int. Conf. on Computer Aided Verification, CAV’02, Springer, 2002, p. 359–364.

[19] A. Baltag, L. Moss, Logics for epistemic programs, Synthese 139 (2004) 165–224.
[20] S. van Otterloo, G. Jonker, On epistemic temporal strategic logic, Electronic Notes in

Theoretical Computer Science 126 (2005) 77–92. Procs. of the 2nd Workshop on Logic and
Communication in Multi-Agent Systems (2004).

[21] B. Kooi, B. Renne, Generalized arrow update logic, in: 13th Conference on Theoretical
Aspects of Rationality and Knowledge, TARK XIII, ACM, 2011, pp. 205–211.

[22] J. van Benthem, J. Gerbrandy, E. Pacuit, Merging frameworks for interaction: Del and
etl, in: Procs. of the 11th Conf. on Theoretical Aspects of Rationality and Knowledge,
TARK’07, ACM, 2007, p. 72–81.

[23] H. van Ditmarsch, Dynamic Epistemic Logic, Springer, 2007.
[24] P. Girard, J. Seligman, F. Liu, General dynamic dynamic logic, in: T. Bolander, T. Braüner,

S. Ghilardi, L. Moss (Eds.), Procs. of the 9th Conf. on Advances in Modal Logic, volume 9
of Advances in Modal Logic, College Publications, 2012, pp. 239–260.

[25] A. Baltag, L. S. Moss, S. Solecki, The logic of public announcements, common knowledge,
and private suspicions, in: H. Arló-Costa, V. F. Hendricks, J. van Benthem (Eds.), Readings
in Formal Epistemology: Sourcebook, Springer, 2016, pp. 773–812.

[26] B. Renne, J. Sack, A. Yap, Logics of temporal-epistemic actions, Synthese 193 (2016)
813–849.

[27] T. Bolander, A gentle introduction to epistemic planning: The DEL approach, Electronic
Proceedings in Theoretical Computer Science 243 (2017) 1–22.

[28] R. De Nicola, F. Vaandrager, Action versus state based logics for transition systems, in:
I. Guessarian (Ed.), Semantics of Systems of Concurrent Processes, Springer, 1990, pp.
407–419.

[29] M. H. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti, A state/event-based model-checking
approach for the analysis of abstract system properties, Science of Computer Programming
76 (2011) 119–135.

[30] R. Parikh, R. Ramanujam, A knowledge based semantics of messages, Journal of Logic,
Language and Information (2003) 453–467.

[31] M. R. Mousavi, M. Varshosaz, Telling lies in process algebra, in: 2018 Symposium on
Theoretical Aspects of Software Engineering (TASE), IEEE, 2018, pp. 116–123.

[32] A. Aldini, On the modeling and verification of the spread of fake news, algebraically,
Journal of Logic and Computation 32 (2022) 1272–1291.

[33] A. Aldini, M. Tagliaferri, Logics to reason formally about trust computation and manip-
ulation, in: A. Saracino, P. Mori (Eds.), Emerging Technologies for Authorization and
Authentication, volume 11967 of LNCS, Springer, 2020, pp. 1–15.

[34] M. Tagliaferri, A. Aldini, From belief to trust: A quantitative framework based on modal
logic, Journal of Logic and Computation 32 (2022) 1017–1047.

[35] A. Aldini, G. Curzi, P. Graziani, M. Tagliaferri, Trust evidence logic, in: J. Vejnarová,
N. Wilson (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty:
16th European Conference (ECSQARU 2021), volume 12897 of LNAI, Springer, 2021, pp.
575–589.

[36] A. Aldini, G. Curzi, P. Graziani, M. Tagliaferri, A probabilistic modal logic for context-
aware trust based on evidence, International Journal of Approximate Reasoning 169 (2024)
109167.

[37] H. Van Ditmarsch, B. Kooi, The secret of my success, Synthese 151 (2006) 201–232.
[38] S. Saraf, S. Sourabh, Characterizing successful formulas: the multi-agent case, CoRR

abs/1209.0935 (2012).
[39] C. Kupke, D. Pattinson, Coalgebraic semantics of modal logics: An overview, Theoretical

Computer Science 412 (2011) 5070–5094.
[40] A. Aldini, Design and verification of trusted collective adaptive systems, Transactions on

Modeling and Computer Simulation (TOMACS) 28 (2018).

	1 Introduction
	2 Kripke labeled transition systems
	3 A language for Kripke labeled transition systems
	3.1 Agents and pool of agents

	4 Use case: playing Cluedo
	5 Related work and conclusions

