
On Balancing Energy Consumption in Multi-Interface
Networks (short paper)⋆

Alessandro Aloisio1,*,†

1University of International Studies of Rome, Via Cristoforo Colombo, 200 – 00147, Roma, Italy

Abstract
In heterogeneous networks, devices can communicate using multiple interfaces. By selectively activating
interfaces on each device, various connections can be established. A connection is formed when the
devices at its endpoints share at least one active interface. Each interface activation incurs a cost,
representing the percentage of energy consumed. This paper focuses on scenarios where each device can
activate at most a fixed number, 𝑞, of its interfaces. Specifically, we address the Coverage problem in a
network 𝐺 = (𝑉,𝐸), where nodes in 𝑉 represent devices and edges in 𝐸 represent potential connections.
The goal is to activate up to 𝑞 interfaces per node to establish all connections in 𝐸 while minimizing the
total cost. The parameter 𝑞 ensures balanced energy consumption across devices, preventing any single
device from being overburdened. Additionally, we consider a model where each interface has both a
cost and a profit associated with it, with the establishment of a connection yielding a profit. This paper
presents two negative results and several positive findings related to these scenarios.
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1. Introduction

As technology advances, powerful devices have become increasingly accessible, enabling seam-
less communication among heterogeneous devices through various protocols and interfaces.
This paper explores networks composed of diverse devices that utilize different communi-
cation interfaces to establish connections. While many devices are equipped with multiple
interfaces—such as Bluetooth, Wi-Fi, 4G, and 5G—their full potential is often underutilized.
Optimal interface selection depends on factors like availability, communication bandwidth,
energy consumption, and the device’s environment. For example, an experimental study in [1]
investigates the choice between Bluetooth and Wi-Fi based on energy consumption for data
transmission among smartphones. Given the portable nature of these devices, managing energy
consumption is crucial for extending network lifespan and preventing device failures due to
battery depletion.

This optimization problem is particularly relevant in networks composed of diverse devices,
where each device possesses multiple interfaces, and connections rely on shared active interfaces
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between links. Activating an interface consumes energy but enables communication with
neighboring devices that also have that interface active.

Formally, a network of devices is represented by a graph 𝐺 = (𝑉,𝐸), where 𝑉 is the set of
devices and 𝐸 represents potential connections based on device proximity and shared interfaces.
Each device 𝑢 ∈ 𝑉 has a set of available interfaces 𝑊 (𝑢). The total set of interfaces in the
network is denoted by

⋃︀
𝑢∈𝑉 𝑊 (𝑢), represented as {1, . . . , 𝑘}. A connection is established

when the endpoints of an edge share at least one active interface. Activating an interface 𝑖 at
node 𝑢 incurs an energy cost 𝑐(𝑖), enabling communication with all neighbors that also have
interface 𝑖 active.

This paper focuses on two well-known versions of the Coverage problem. The first version
aims to establish all connections in the graph 𝐺 at the lowest cost, ensuring a common active
interface at the endpoints of each edge while minimizing the overall activation cost in the
network [2, 3, 4, 5, 6, 7]. This model also includes a constraint on the number of active interfaces
per device, limited to 𝑞, to manage energy consumption and optimize costs under specific
limitations [2]. We refer to this model as CMI(q).

The second version, denoted as CMI(𝑞,𝑏), combines the Coverage problem with constraints
on both the overall cost budget 𝑏 and the maximum number 𝑞 of interfaces that each device
can activate. Additionally, each interface is associated with a profit, introducing an incentive
for interface activation. This models an environment where users are motivated to activate
interfaces not only to access services but also to earn profits from establishing connections.
Specifically, if a connection is established, another profit function reflects the gains from this
connection [8, 9, 10, 11].

In recent years, significant research has been conducted on multi-interface networks, empha-
sizing the benefits of using multiple interfaces per device across various applications. This
research addresses core challenges in network optimization, particularly in routing and network
connectivity (e.g., [12, 13, 14]). The exploration of combinatorial problems in multi-interface
wireless networks dates back to early studies, such as those in [15]. A version of the multi-
interface problem related to the maximum subgraph edge-colorable problem [16, 17, 18], but
with distance differences, was studied in [19]. Subsequent investigations have explored vari-
ants of the Coverage problem, as evidenced by studies in papers like [6, 20, 21]. Additionally,
the cheapest path problem, a reinterpretation of the classical shortest path problem within
multi-interface networks, was analyzed in [22]. These studies have potential applications in
various fields, including tactical military operations [23], where they can be used to implement
emergency networks.

2. Preliminaries and models definitions

For a graph 𝐺, let 𝑉 denote its node set and 𝐸 its edge set. Unless specified otherwise, the
graph 𝐺 = (𝑉,𝐸) representing the network is assumed to be undirected, connected, and free
of multiple edges and loops. For any positive integer 𝑘, we define [𝑘] = {1, . . . , 𝑘}. When
discussing the network graph 𝐺, we refer to the number of nodes as 𝑛 and the number of edges
as 𝑚. The global assignment of interfaces to the nodes in 𝑉 is specified by an appropriate
interface function 𝑊 , as detailed below.



Definition 1. A function 𝑊 : 𝑉 → 2[𝑘] is said to cover graph 𝐺 if 𝑊 (𝑢) ∩𝑊 (𝑣) ̸= ∅, for each
{𝑢, 𝑣} ∈ 𝐸.

The cost of activating an interface for a node is assumed to be identical for all nodes and given
by a cost function 𝑐 : [𝑘] → R>0, i.e., the cost of interface 𝑖 is denoted as 𝑐(𝑖). The considered
CMI(q) optimization problem is formulated as follows.

CMI(q): Coverage in Multi-Interface Networks

Input: A graph 𝐺 = (𝑉,𝐸), an allocation of available interfaces 𝑊 : 𝑉 → 2[𝑘] covering
graph 𝐺, an interface cost function 𝑐 : [𝑘] → R>0, and an integer 𝑞 ≥ 1.

Solution: An allocation of active interfaces 𝑊𝐴 : 𝑉 → 2[𝑘] covering 𝐺 such that for all 𝑢 ∈ 𝑉 ,
𝑊𝐴(𝑢) ⊆ 𝑊 (𝑢) and |𝑊𝐴(𝑢)| ≤ 𝑞.

Goal: Minimize the total cost of the active interfaces, 𝑐(𝑊𝐴) =
∑︀

𝑢∈𝑉
∑︀

𝑖∈𝑊𝐴(𝑢) 𝑐(𝑖).

It is worth noting that we can explore two variations of the aforementioned problem: the cost
function 𝑐 may range over R>0, or 𝑐(𝑖) = 1, for every 𝑖 ∈ [𝑘] (unit cost case). In both instances,
we presume 𝑘 ≥ 2, as the case 𝑘 = 1 has a straightforward and unique solution (all nodes must
activate their sole interface).

In [2], we demonstrated that CMI(𝑞) is a specific instance of the broader CMI(∞) problem
(refer to [14, 24]), where each node is limited to activating at most 𝑞 interfaces. Notably, the basic
variant with 𝑞 = 2 proves to be generally more challenging than CMI(∞). However, certain
graph classes exhibit more manageable characteristics. For instance, in trees and complete
graphs, CMI(∞) has been established as APX-hard and not approximable within 𝑂(log 𝑛),
respectively, while CMI(2) is solvable in polynomial time.

The considered CMI(𝑞,𝑏) optimization problem is formulated as follows.

CMI(𝑞,𝑏): Coverage in Multi-Interface Networks

Input: A graph 𝐺 = (𝑉,𝐸), an allocation of available interfaces 𝑊 : 𝑉 → 2[𝑘] covering
graph 𝐺, an interface cost function 𝑐 : [𝑘] → N>0, two integers 𝑞, 𝑏 ≥ 1, two profit
functions 𝑝 : [𝑘] → N≥0 and 𝑝 : [𝑘]2 → N≥0 .

Solution: An allocation of active interfaces 𝑊𝐴 : 𝑉 → 2[𝑘] covering 𝐺 such that for all 𝑢 ∈ 𝑉 ,
𝑊𝐴(𝑢) ⊆ 𝑊 (𝑢) and |𝑊𝐴(𝑢)| ≤ 𝑞; with 𝑐(𝑊𝐴) =

∑︀
𝑢∈𝑉

∑︀
𝑖∈𝑊𝐴(𝑢) 𝑐(𝑖) ≤ 𝑏.

Goal: Maximize the total profit 𝑝(𝑊𝐴) =
∑︀

𝑢∈𝑉
∑︀

𝑖∈𝑊𝐴(𝑢) 𝑝(𝑖) +∑︀
{𝑢,𝑣}∈𝐸

∑︀
𝑖∈(𝑊𝐴(𝑢)∩𝑊𝐴(𝑣)) 𝑝(𝑖, 𝑖).

As for CMI(𝑞), there are two variations to consider: firstly, the cost function 𝑐 may vary over
N>0, or alternatively, 𝑐(𝑖) equals 1 for each 𝑖 in the set [𝑘], (unitary cost case). In both scenarios,
we assume 𝑘 ≥ 2, as the case 𝑘 = 1 is straightforward. This version is difficult even when
feasibility is guaranteed, as we showed it to be NP-hard, even when the input instance admits a
feasible solution and 𝑞 = 2 [10, 9].

3. Our results

In this section, we will report the main results that we achieved for CMI(2) and CMI(2,𝑏).



Table 1
Main results for CMI(2)

Graph class Costs Complexity of CMI(2) Reference
Graphs with ∆ ≥ 4 Unitary NP-complete (feasibility) [2, 4]
Series–Parallel graphs Arbitrary Optimally solvable in 𝑂(𝑘6 · 𝑛) [3, 4]
Complete Bipartite
graphs

Arbitrary Optimally solvable in 𝑂(𝑘4 · 𝑛) [2, 4]

Complete graphs Arbitrary Optimally solvable in 𝑂(𝑘3 · 𝑛) [2, 4]
Rings Arbitrary Optimally solvable in 𝑂(𝑘3 · 𝑛) [2, 4]
Paths Arbitrary Optimally solvable in 𝑂(𝑘 · 𝑛) [2, 4]
Trees Arbitrary Optimally solvable in 𝑂(∆ · 𝑘2 · 𝑛) [2, 4]
Carvingwidth ℎ Arbitrary Optimally solvable in 𝑂(𝑘4ℎ · 𝑛) [5]
Pathwidth ℎ Arbitrary Optimally solvable in 𝑂(𝑘2(ℎ+1) · 𝑛) [5]

Branchwidth ℎ Arbitrary Optimally solvable in 𝑂

(︂(︁
𝑘2

2 ·
)︁2ℎ

· ℎ ·𝑚
)︂

[6]

Treewidth ℎ Arbitrary Optimally solvable in 𝑂

(︂(︁
𝑘2

2 ·
)︁4(ℎ+1)

· ℎ ·𝑚
)︂

[6]

3.1. CMI(2)

Table 1 contains the results we obtained for the first coverage problem, CMI(2). We provided
the following negative result by a polynomial time reduction of the well-known 3-SAT problem
with bounded occurrences.

Theorem 1 ([2, 4]). Finding a feasible solution for CMI(2) is NP-complete for graphs with ∆ ≥ 4,
even for the unitary cost case and bipartite graphs.

Then we analyzed the complexity of CMI(2) for several classes of graphs, describing ad-hoc
deterministic algorithms. In particular, we tackled series-parallel graphs, complete bipartite
graphs, complete graphs, paths, rings, trees, and graphs with bounded carvingwidth, pathwidth,
branchwidth, and treewidth. Please note that the results given in the table can also be seen as
fixed-parameter tractability (FPT) [25] results by choosing appropriate parameters.

3.2. CMI(2,b)

First, we proved the following theorem.

Theorem 2 ([9, 10]). CMI(𝑞,𝑏) is NP-hard, even when the input admits a feasible solution and
𝑞 = 2.

We then presented seven positive results for three specific classes of graphs: series-parallel
graphs, graphs with bounded carvingwidth, and graphs with bounded pathwidth. For series-
parallel graphs, we developed two deterministic algorithms: one focusing on the maximum total
cost 𝑏, and the other on an upper bound 𝜇 for the maximum profit. Additionally, we introduced
a fully polynomial-time approximation scheme (FPTAS) by scaling the profits down sufficiently
so that all the objects’ profits become polynomially bounded in 𝑛. Furthermore, we proposed
two optimal algorithms for graphs with bounded carvingwidth and pathwidth, addressing both



Table 2
Main results for CMI(2,𝑏)

Graph class Costs Complexity of CMI(2) Reference
Graphs that allow for
a feasible solution.

Unitary NP-hard [10, 9]

Series–Parallel graphs Arbitrary Optimally solvable in 𝑂(𝑏2 · 𝑘6 · 𝑛) [10, 9]
Series–Parallel graphs Arbitrary Optimally solvable in 𝑂(𝜇2 · 𝑘6 · 𝑛) [10, 9]
Series–Parallel graphs Arbitrary in FPTAS [10, 9]
Carvingwidth ℎ Arbitrary Optimally solvable in 𝑂

(︀
𝑏2 · 𝑘4ℎ · 𝑛

)︀
[8, 10]

Carvingwidth ℎ Arbitrary Optimally solvable in 𝑂
(︀
𝜇2 · 𝑘4ℎ · 𝑛

)︀
[8, 10]

Pathwidth ℎ Arbitrary Optimally solvable in 𝑂

(︂
𝑏 · ℎ ·

(︁
𝑘2

2

)︁ℎ+1

· 𝑛
)︂

[11, 26]

Pathwidth ℎ Arbitrary Optimally solvable in 𝑂

(︂
𝜇 · ℎ ·

(︁
𝑘2

2

)︁ℎ+1

· 𝑛
)︂

[11, 26]

𝑏 and 𝜇. These results are summarized in Table 2. As mentioned in Section 3.1, the results in
Table 2 can be interpreted as FPT results with appropriate parameters [25].

4. Conclusion and future works

In this study, we explored two variants of the well-known Coverage problem within the context
of multi-interface networks.

The first variant, CMI(𝑞), focuses on identifying the most cost-effective way to establish all
connections defined by an input graph. This is achieved by activating appropriate subsets of
interfaces at the network nodes. Unlike the original Coverage model, this variant introduces an
additional constraint, limiting each node to activating no more than 𝑞 interfaces, with particular
attention to the case where 𝑞 = 2. Although this problem is NP-hard, we developed several
optimal algorithms for specific classes of graphs.

The second variant, CMI(𝑞,𝑏), aims to find the most profitable way to establish all connections
in the graph while keeping the overall cost within a given budget.

Future research could explore CMI(q) and CMI(𝑞,𝑏) in relation to other parameters, such as
local treewidth and cliquewidth, to derive both positive and negative results. Additionally, while
NP-hardness has been established for general graphs with a maximum degree of 4, and the
problem is solvable in polynomial time for graphs with a maximum degree of 2, the case of
graphs with a maximum degree of 3 remains unexplored.

Another promising research direction involves analyzing the multi-interface coverage prob-
lem through the lens of game theory. In this approach, the problem becomes decentralized, with
each device functioning as an agent aiming to maximize its utility (e.g., connections) while man-
aging overall energy consumption. This perspective could model the problem as a type of classic
polymatrix game [27, 28] or more recent general and specific versions [29, 30, 31, 32, 33, 34].



Acknowledgments

This work is partially supported by the project ‘Soluzioni innovative per il problema della
copertura nelle multi-interfacce e relative varianti’, UNINT, and by the Italian National Group
for Scientific Computation (GNCS-INdAM).

References

[1] R. Friedman, A. Kogan, Y. Krivolapov, On power and throughput tradeoffs of wifi and
bluetooth in smartphones, in: Proc. 30th Int’l Conf. on Computer Communications
(INFOCOM), IEEE, 2011, pp. 900–908.

[2] A. Aloisio, A. Navarra, Balancing energy consumption for the establishment of multi-
interface networks, in: Proc. 41st Int’l Conf. on Current Trends in Theory and Practice of
Computer Science, (SOFSEM-2015), volume 8939, 2015, pp. 102–114.

[3] A. Aloisio, A. Navarra, L. Mostarda, Distributing energy consumption in multi-interface
series-parallel networks, in: Proc. 33rd Int.’l Conf. on Advanced Information Networking
and Applications, (AINA Workshops), volume 927 of Advances in Intelligent Systems and
Computing, Springer, 2019, pp. 734–744.

[4] A. Aloisio, A. Navarra, L. Mostarda, Energy consumption balancing in multi-interface
networks, J. Ambient Intell. Humaniz. Comput. 11 (2020) 3209–3219.

[5] A. Aloisio, A. Navarra, Constrained connectivity in bounded X-width multi-interface
networks, Algorithms 13 (2020) 31.

[6] A. Aloisio, Algorithmic aspects of distributing energy consumption in multi-interface
networks, in: Conf. Advanced Information Networking and Applications (AINA), volume
204, Springer, 2024, pp. 114–123.

[7] A. Aloisio, D. Cacciagrano, Distributing energy consumption in multi-interface networks:
dimension of the cycle space, in: Proc. of the 19th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC-2024), San Benedetto, Italy, 13-15
November 2024, volume To appear, Springer, 2024.

[8] A. Aloisio, Coverage subject to a budget on multi-interface networks with bounded carving-
width, in: Web, Artificial Intelligence and Network Applications - Proceedings of the
Workshops of the 34th International Conference on Advanced Information Networking
and Applications, AINA Workshops 2020, Caserta, Italy, 15-17 April, volume 1150 of
Advances in Intelligent Systems and Computing, Springer, 2020, pp. 937–946.

[9] A. Aloisio, A. Navarra, Budgeted constrained coverage on series-parallel multi-interface
networks, in: WAINA, Advances in Intelligent Systems and Computing, volume 1151,
Springer, 2020, pp. 458–469.

[10] A. Aloisio, A. Navarra, Budgeted constrained coverage on bounded carving-width and
series-parallel multi-interface networks, Internet of Things. 11 (2020) 100259.

[11] A. Aloisio, A. Navarra, On coverage in multi-interface networks with bounded path-
width, in: Conf. Advanced Information Networking and Applications (AINA), volume 204,
Springer, 2024, pp. 96–105.

[12] G. D’Angelo, G. Di Stefano, A. Navarra, Minimizing the Maximum Duty for Connectivity in



Multi-Interface Networks, in: Proc. 4th Annual Int’l Conf. on Combinatorial Optimization
and Applications (COCOA), volume 6509 Part II of LNCS, Springer, 2010, pp. 254–267.

[13] G. D’Angelo, G. D. Stefano, A. Navarra, Minimize the maximum duty in multi-interface
networks, Algorithmica 63 (2012) 274–295.

[14] G. D’Angelo, G. Di Stefano, A. Navarra, Multi-interface wireless networks: Complexity
and algorithms, in: S. R. Ibrahiem M. M. El Emary (Ed.), Wireless Sensor Networks: From
Theory to Applications, CRC Press, Taylor & Francis Group, 2013, pp. 119–155.

[15] M. Caporuscio, D. Charlet, V. Issarny, A. Navarra, Energetic Performance of Service-
oriented Multi-radio Networks: Issues and Perspectives., in: Proc. 6th Int’l Workshop on
Software and Performance (WOSP), ACM, 2007, pp. 42–45.

[16] A. Aloisio, V. Mkrtchyan, Algorithmic aspects of the maximum 2-edge-colorable subgraph
problem, in: Conf. Advanced Information Networking and Applications (AINA), volume
227, Springer, 2021, pp. 232–241.

[17] A. Aloisio, Fixed-parameter tractability for branchwidth of the maximum-weight edge-
colored subgraph problem, in: Conf. Advanced Information Networking and Applications
(AINA), volume 204, Springer, 2024, pp. 86–95.

[18] V. Mkrtchyan, The maximum 2-edge-colorable subgraph problem and its fixed-parameter
tractability, J. Graph Algorithms Appl. 28 (2024) 129–147.

[19] A. Kosowski, A. Navarra, D. Pajak, C. Pinotti, Maximum matching in multi-interface
networks, Theoretical Computer Science 507 (2013) 52–60.

[20] A. Aloisio, Min-max coverage in multi-interface networks: pathwidth, in: Proc. of
the 19th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC-2024), San Benedetto, Italy, 13-15 November 2024, volume To appear, Springer,
2024.

[21] A. Aloisio, F. Piselli, Min-max coverage in multi-interface networks: series-parallel graphs,
in: Proc. of the 19th International Conference on Broad-Band and Wireless Computing,
Communication and Applications (BWCCA-2024), San Benedetto, Italy, 13-15 November
2024, volume In press., Springer, 2024.

[22] A. Kosowski, A. Navarra, M. Pinotti, Exploiting Multi-Interface Networks: Connectivity
and Cheapest Paths, Wireless Networks 16 (2010) 1063–1073.

[23] A. Perucci, M. Autili, M. Tivoli, A. Aloisio, P. Inverardi, Distributed composition of highly-
collaborative services and sensors in tactical domains, in: Proc. of 6th Int. Conference
in Software Engineering for Defence Applications (SEDA), volume 925 of Advances in
Intelligent Systems and Computing, Springer, 2019, pp. 232–244.

[24] R. Klasing, A. Kosowski, A. Navarra, Cost minimization in wireless networks with a
bounded and unbounded number of interfaces, Networks 53 (2009) 266–275.

[25] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer, 2006.
[26] A. Aloisio, A. Navarra, Parameterized complexity of coverage in multi-interface iot

networks: Pathwidth, Internet of Things 28 (2024) 101353.
[27] J. Howson, Equilibria of polymatrix games, Management Sci. 18 (1972) 312–318.
[28] B. C. Eaves, Polymatrix games with joint constraints, SIAM Journal on Applied Mathe-

matics 24 (1973) 418–423.
[29] A. Aloisio, Distance hypergraph polymatrix coordination games, in: Proc. 22nd Conf.

Autonomous Agents and Multi-Agent Systems (AAMAS), 2023, pp. 2679–2681.



[30] A. Aloisio, M. Flammini, B. Kodric, C. Vinci, Distance polymatrix coordination games, in:
Proc. 30th Intl. Joint Conf. Artif. Intell. (IJCAI), 2021, pp. 3–9.

[31] A. Aloisio, M. Flammini, B. Kodric, C. Vinci, Distance polymatrix coordination games
(short paper), in: SPIRIT co-located with 22nd International Conf. AIxIA 2023, November
7-9th, 2023, Rome, Italy, volume 3585, 2023.

[32] A. Aloisio, M. Flammini, C. Vinci, The Impact of Selfishness in Hypergraph Hedonic
Games, in: Proc. 34th Conf. Artificial Intelligence (AAAI), 2020, pp. 1766–1773.

[33] A. Aloisio, M. Flammini, C. Vinci, Generalized distance polymatrix games, in: Proc. 49th
Intl. Conf. Current Trends in Theory & Practice of Comput. Sci. (SOFSEM), Springer, 2024,
pp. 25–39.

[34] A. Aloisio, M. Flammini, C. Vinci, Generalized distance polymatrix games (short paper),
in: Proc. of the 26th Italian Conference on Theoretical Computer Science, Torino, Italy,
September 11-13, 2024, volume In press., Springer, 2024.


	1 Introduction
	2 Preliminaries and models definitions
	3 Our results
	3.1 CMI(2)
	3.2 CMI(2,b)

	4 Conclusion and future works

