
Simpson’s Proof Systems for Process Verification:
A Fine-tuning (short paper)
Cosimo Perini Brogi

1,*,†
, Rocco De Nicola

1,†
and Omar Inverso

2,†

1IMT School for Advanced Studies Lucca, Italy
2Gran Sasso Science Institute, Italy

Abstract
We refine Alex Simpson’s approach to formal verification of properties of concurrent systems via proof

systems. Our new sequent calculus G3HMLGSOS seamlessly harmonises the GSOS semantics for process

calculi (for system formalisation) with Hennessy-Milner logic (for formal property specification) in a

pure G3-style system, from which the cut-rule is effectively eliminated. We achieve this substantial

improvement by applying the geometrisation of formal theories introduced in the proof-theoretic

literature by Roy Dyckhoff and Sara Negri. We communicate here our design methodology to fine-tune

Simpson’s calculi, which we consider promising to cover, in the future, more expressive process algebra’s

specification formalisms and logics in a principled and uniform manner.

Keywords
Formal methods, Concurrent systems, Structural proof theory, Process algebras, Structural operational

semantics, Cut-elimination, Compositional verification.

1. Introduction

It is well-known that computational/behavioural equivalence of concurrent processes can

be logically characterised by (possibly variants and extensions of) Hennessy-Milner modal

systems [1, 2, 3],[4],[5, 6]. These results widened the process verification possibilities through

model-checking system properties expressed in the language of suited modal logics [7, 8, 9].

What about the other coin side of verification, i.e., proof development?

1.1. Proof systems for process verification

In his [10], Colin Stirling addressed the research question of finding “compositional, syntax-
directed proof systems” for verifying properties of concurrent systems expressed in the language

of modal logics. Compositional here means proving that process 𝑝 satisfies property 𝐴 only

involves subproofs for subprocesses of 𝑝 satisfying subformulas of 𝐴.

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy
*
Corresponding author.

†
These authors contributed equally.

$ cosimo.perinibrogi@imtlucca.it (C. Perini Brogi); rocco.denicola@imtlucca.it (R. De Nicola);

omar.inverso@gssi.it (O. Inverso)

� https://sysma.imtlucca.it/people/cosimo-perini-brogi (C. Perini Brogi);

https://sysma.imtlucca.it/people/rocco-de-nicola (R. De Nicola);

https://www.gssi.it/people/professors/lectures-computer-science/item/1018-inverso-omar (O. Inverso)

� 0000-0001-7883-5727 (C. Perini Brogi); 0000-0003-4691-7570 (R. De Nicola); 0000-0002-9348-1979 (O. Inverso)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:cosimo.perinibrogi@imtlucca.it
mailto:rocco.denicola@imtlucca.it
mailto:omar.inverso@gssi.it
https://sysma.imtlucca.it/people/cosimo-perini-brogi
https://sysma.imtlucca.it/people/rocco-de-nicola
https://www.gssi.it/people/professors/lectures-computer-science/item/1018-inverso-omar
https://orcid.org/0000-0001-7883-5727
https://orcid.org/0000-0003-4691-7570
https://orcid.org/0000-0002-9348-1979
https://creativecommons.org/licenses/by/4.0

Stirling partially achieved such a proof system for CCS at the price of breaking the analyticity

of the calculus in order to handle restriction and parallel composition operators. The methodol-

ogy proposed in that seminal paper thus generated calculi that are not structurally complete.

As a practical consequence, verification of process properties through proof-search cannot be

automated even for recursion-free CCS.

Years later, in [11, 12], Alex Simpson suggested to overcome this weakness by introducing

(what are now commonly called) labelled sequent calculi for Hennessy-Milner logic [1, 2] applied

to arbitrary GSOS processes [13].

In particular, the paper [12] identifies some minimal requirements for proof systems suitable

for process verification, namely: (1) soundness; (2) completion of ordinary verification tasks; (3)

parametrised verification; (4) natural implementation of compositional reasoning (as required

by Stirling); (5) semantic completeness (within the limits of the logic under consideration); (6)

structural completeness and proof analyticity; (7) terminating proof-search (whenever the logic

under consideration is decidable).

First, the availability of a cut rule is crucial for implementing a formal verification that

satisfies most of these desiderata and is also modular or compositional in the original sense first

envisaged by Stirling in [10]. Specifically, whenever we have a derivation of a parametrised

property 𝑥1 : 𝐴1, · · · , 𝑥𝑛 : 𝐴𝑛 ⇒ op(𝑥1, · · · , 𝑥𝑛) : 𝐵 (where op is a process operator) and

derivations of ⇒ 𝑝1 : 𝐴1, · · · ,⇒ 𝑝𝑛 : 𝐴𝑛, we can then apply substitution and cut to obtain

a derivation of ⇒ op(𝑝1, · · · , 𝑝𝑛) : 𝐵 (Requirement (4)). Concurrently, the admissibility of

the cut rule in the proof systems guarantees that we can, in principle, prove that a given

process satisfies a required property through goal-directed verification (Requirement (6)). This

capability entails a root-first proof search, guided solely by the structure of the process and the

formula expressing the desired property, which may eventually be mechanised to automate

the verification task (Requirement (7)). When successful, each derivation step can be directly

interpreted in the semantics for the process behaviour (Requirement (1)); in case of failure, it

might be possible to extract a countermodel to the checked process property from the aborted

proof-search (Requirement (5)).

1.2. Our contribution

In his original papers, Simpson provides a semantic proof of cut admissibility – i.e. he derives

the technical contents of Requirement (6) from Requirement (5) – in a labelled sequent calculus

for Hennessy-Milner logic specifying properties of GSOS processes.

We think we can obtain more general results – covering more general process formalisms

and more expressive modal logics for processes – by a more principled proof system design

methodology that refines Simpson’s calculi and builds on recent advances in structural proof

theory.

More precisely, we propose different sequent rules for process operators, based on the geometri-

sation methods discussed in detail by Roy Dyckhoff and Sara Negri [14]. We use them to define

a new G3-style labelled sequent calculus, that we named G3HML
GSOS

, targeting the same class of

processes and logic as Simpson’s work, i.e. Hennessy-Milner logic [1, 2] applied to arbitrary

GSOS processes [13].

Our main technical advancement in this proof-theoretic approach to process verification is

the constructive proof of structural completeness of the calculus. More relevantly, we provide a

cut-elimination algorithm for G3HML
GSOS

(Theorem 1), which is an essential first result towards

implementing the compositional verification initially discussed by Stirling in [10] and his later

work, such as [15, 16].

In other terms, by adopting our calculus design method, we provide a direct and constructive
proof of Requirement (4) (analyticity) without compromising Requirement (6) (compositional-

ity), still making Requirements (2-3) hold by design (ordinary and parametrised verification).

Requirement (1) (soundness) is then straightforward to prove,
1

and Requirements (5) and (7)

(semantic completeness, and termination of proof-search for the expected fragments of GSOS,

resp.) are proven by Tait-Schütte-Takeuti saturation method.
2

It is a first but relevant and promising fine-tuning of Simpson’s original answer to Stirling’s

research question. The results we communicate here may prelude to further extensions for

more expressive logics (such as those proposed in [3, 20]) and transition system specification

formats (aiming to capture in our proof system design the PANTH format [4] seamlessly),

by possibly considering recent proof-theoretic advances for e.g. temporal logics [21, 22] and

𝜇-calculi [16, 23, 24]. On the applicative side, they are central for a future development (on

the lines of [25, 26]) of certified theorem provers and countermodel constructors for process

verification based on our calculi.

In the following pages, we overview and discuss our design choices for G3HML
GSOS

, focusing

on the main difference from Simpson’s calculi – i.e. sequent rules for GSOS process – which

enables us to define a pure G3-style calculus using only rules that directly express the logi-

cal connectives and process operators, for which we can directly prove cut-elimination and

structural completeness.

2. Calculus design, structural analysis, and first results

We need first to fix the basic language of G3HML
GSOS

.

We borrow from the process algebra literature some notations and formal definitions concerning

signatures, process terms, labelled transition systems (LTS), and transition system
specifications (TSS): we refer the reader to e.g. [4] and [6] for that background material. In

particular, we denote by 𝒜𝜏 the set of actions, together with a “silent” action 𝜏 , that processes

can perform during execution. Hennessy-Milner logic consists of a multimodal version of

the minimal normal logic K, with modalities indexed by actions in 𝒜𝜏 . Finally, let us recall that

a transition is specified in the GSOS format if, and only if, it is defined in a transition system

specification via a rule having the following form:

(⋆)
{𝑥𝑖

𝜇𝑖𝑗→ 𝑦𝑖𝑗 | 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑖} ∪ {𝑥𝑖 ̸
𝜈𝑖𝑘→ | 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ ℓ𝑖}

𝑓(�⃗�)
𝜋→ 𝑝(�⃗�, �⃗�)

where the 𝑥𝑖’s and the 𝑦𝑖𝑗 ’s (1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚𝑖) are all distinct process variables; 𝑛,

𝑚𝑖 and ℓ𝑖 are natural numbers; 𝑝(�⃗�, �⃗�) is a process term with variables including at most the

1

See the proof techniques discussed in [17].

2

See [18] and [19].

𝑥𝑖’s and 𝑦𝑖𝑗 ’s; and the 𝜇𝑖𝑗 ’s, 𝜈𝑖𝑘’s and 𝜋 are actions from 𝒜𝜏 . We call any expression of the

form 𝑝
𝜇→ 𝑝′ a positive relational atom – formalising the fact that process 𝑝 evolves through

action 𝜇 into process 𝑝′ – and any expression of the form 𝑝 ̸ 𝜇→ a negative relational atom –

formalising the fact that process 𝑝 does not evolve into any process through action 𝜇 – where

𝑝, 𝑝′ are process terms.
3

We are ready to define the syntax of our proof system G3HML
GSOS

.

Definition 1. Structural atoms are positive relational atoms, negative relational atoms, or
atoms of shape 𝑝 ≡ 𝑞, where 𝜇 ∈ 𝒜𝜏 and ≡ denotes a given congruence relation (possibly, syntactic
equality) between process terms.
Labelled formulas are either structural atoms or formulas of shape 𝑝 : 𝐴 (read as “formula 𝐴 is
forced by process 𝑝”), where 𝐴 is a formula in Hennessy-Milner logic and 𝑝 is a process term. We
denote by 𝜙 a generic labelled formula.
Sequents of G3HMLGSOS are expressions Γ ⇒ Δ, where Γ,Δ are finite multisets of labelled
formulas, and structural atoms may occur only in Γ.

We shall now describe the rules defining our proof system.

Logical rules. The logical rules are the multimodal version of the standard rules for G3K
[17], based on the semantic clauses for local forcing relation of Hennessy-Milner formulas

on a given labelled transition system. We omit the standard rules for classical propositional

connectives, to recall only the modal rules:

𝑞 : 𝐴, 𝑝
𝜇→ 𝑞, 𝑝 : [𝜇]𝐴,Γ ⇒ Δ

𝐿□
𝑝

𝜇→ 𝑞, 𝑝 : [𝜇]𝐴,Γ ⇒ Δ

𝑝
𝜇→ 𝑦,Γ ⇒ Δ, 𝑦 : 𝐴

𝑅□(!𝑦)
Γ ⇒ Δ, 𝑝 : [𝜇]𝐴

The rule 𝑅□ corresponds to the right-to-left direction of the definition of local forcing for [𝜇]𝐴:

the side condition (!𝑦) denotes the requirement on 𝑦 not to occur in Γ,Δ; in this situation, 𝑦 is

said the eigenvariable of the rule. The rule 𝐿□ corresponds to the left-to-right direction of the

same definition of local forcing. Notice that this is a first difference from the system introduced

by Simpson, as, contrary to his system, we can handle modal operators keeping structural atoms

only on the left-hand side of sequents.

Compositional rules. For each process operator, we need to introduce in G3HML
GSOS

some

rules characterising it in terms of the associated GSOS specification. We notice first that each of

these rules can be translated into geometric formulas. In fact, any GSOS rule of shape (⋆) above

states at the meta-level that the following formulas (∘) and (∘∘) hold:

(∘)∀�⃗�, �⃗� :

[︃(︃ ⋀︀
1≤𝑖≤𝑛,1≤𝑗≤𝑚𝑖

(𝑥𝑖

𝜇𝑖𝑗→ 𝑦𝑖𝑗) &
⋀︀

1≤𝑖≤𝑛,1≤𝑘≤ℓ𝑖

(𝑥𝑖 ̸
𝜈𝑖𝑘→)

)︃
⊃ (𝑓(�⃗�)

𝜋→ 𝑝(�⃗�, �⃗�))

]︃

3

A GSOS specification system naturally defines an LTS over the closed terms of a signature by structural induction.

Refer to, e.g., [4].

(∘∘)∀�⃗�, �⃗�, 𝑧 :

[︃
(𝑓(�⃗�)

𝜋→ 𝑧) ⊃

(︃
∃�⃗� : 𝑝(�⃗�, �⃗�) ≡ 𝑧 &

⋀︀
1≤𝑖≤𝑛,1≤𝑗≤𝑚𝑖

(𝑟𝑖
𝜇𝑖𝑗→ 𝑦𝑖𝑗) &

⋀︀
1≤𝑖≤𝑛,1≤𝑘≤ℓ𝑖

(𝑟𝑖 ̸
𝜈𝑖𝑘→)

)︃]︃
These formulas become geometric by adopting the “semidefinitional extension trick” of [14]

to turn the generic negative relational atom 𝑝 ̸ 𝜇→ into ∀𝑞 : (𝑝
𝜇→ 𝑞 ⊃ ⊥). Following the

methodology of [17, 14], we can then introduce the following rules of our G3HML
GSOS

for the

GSOS specification of processes
4

̸ 𝜇→Def
𝑝 ̸ 𝜇→ , 𝑝

𝜇→ 𝑞,Γ ⇒ Δ

𝑓(�⃗�)
𝜋→ 𝑝(�⃗�, �⃗�), {𝑥𝑖

𝜇𝑖𝑗→ 𝑦𝑖𝑗}
1≤𝑖≤𝑛,1≤𝑗≤𝑚𝑖

, {𝑥𝑖 ̸
𝜈𝑖𝑘→ }

1≤𝑖≤𝑛,1≤𝑘≤ℓ𝑖

,Γ ⇒ Δ

𝑓∘
{𝑥𝑖

𝜇𝑖𝑗→ 𝑦𝑖𝑗}
1≤𝑖≤𝑛,1≤𝑗≤𝑚𝑖

, {𝑥𝑖 ̸
𝜈𝑖𝑘→ }

1≤𝑖≤𝑛,1≤𝑘≤ℓ𝑖

,Γ ⇒ Δ

{︃
𝑝ℎ(�⃗�, �⃗�) ≡ 𝑧, {𝑟𝑖

𝜇𝑖𝑗→ 𝑦𝑖𝑗}
1≤𝑖≤𝑛,1≤𝑗≤𝑚𝑖

, {𝑥𝑖 ̸
𝜈𝑖𝑘→ }

1≤𝑖≤𝑛,1≤𝑘≤ℓ𝑖

, 𝑓(�⃗�)
𝜋→ 𝑧,Γ ⇒ Δ

}︃
1≤ℎ≤𝑁

𝑓∘∘(!�⃗�)
𝑓(�⃗�)

𝜋→ 𝑧,Γ ⇒ Δ

Atm(𝑞),Atm(𝑝), 𝑞 ≡ 𝑝,Γ ⇒ Δ
Repl1

Atm(𝑝), 𝑞 ≡ 𝑝,Γ ⇒ Δ

Atm(𝑝),Atm(𝑞), 𝑞 ≡ 𝑝,Γ ⇒ Δ
Repl2

Atm(𝑞), 𝑞 ≡ 𝑝,Γ ⇒ Δ

In the replacement rules, Atm(𝑥) stands for 𝑥
𝜇→ 𝑝, or 𝑝

𝜇→ 𝑥, or 𝑥 ̸ 𝜇→ , or 𝑥 ≡ 𝑝. In the

rule 𝑓 ∘ ∘, 𝑁 is the number of GSOS rules in the TSS for the operator 𝑓 and action 𝜋; the

side condition (!�⃗�) denotes the requirement on 𝑦’s not to occur in the conclusion of 𝑓 ∘ ∘
(eigenvariable condition).

These rules mark the main difference from Simpson’s original calculus [12, p. 301], as we are,

once again, able to handle process operators by keeping structural atoms only on the left-hand

side of sequents, so that we can dismiss all the additional non-logical rules of [12, Fig. 4], proving

straightforwardly the structural completeness of our G3HMLGSOS.
More relevantly, contrary to what happens for Simpson’s system, we can give a direct and

constructive proof of cut-elimination by standard double induction:
5

Theorem 1 (Cut-elimination algorithm).
The rule of cut

Γ ⇒ Δ, 𝑝 : 𝐴 𝑝 : 𝐴,Γ′ ⇒ Δ′
Cut

Γ,Γ′ ⇒ Δ,Δ′

(where 𝑝 : 𝐴 is called the cut formula of the rule) is admissible in G3HMLGSOS .
4

For some operators, further rules (omitted here) should be added to deal with those instances presenting a duplication

of the atoms in the conclusion in order to have contraction rules height-preserving admissible. We refer the reader

to [17] for an extensive discussion.

5

From cut admissibility, we easily derive: admissibility of generalised replacement rules; axiomatic completeness

w.r.t Hennessy-Milner logic; (semantic) 𝜔-completeness via Tait-Schütte-Takeuti saturation method.

Acknowledgments

This work was partially funded by: the project SERICS – Security and Rights in CyberSpace

PE0000014, financed within PNRR, M4C2 I.1.3, funded by the European Union - NextGenera-

tionEU (MUR Code: 2022CY2J5S); the MIUR project PRIN 2017FTXR7S IT MATTERS (Methods

and Tools for Trustworthy Smart Systems); Istituto Nazionale di Alta Matematica – INdAM

group GNSAGA.

We thank three anonymous referees for their comments and feedback on the first submission.

References

[1] M. Hennessy, R. Milner, On observing nondeterminism and concurrency, in: J. W. de Bakker,

J. van Leeuwen (Eds.), Automata, Languages and Programming, 7th Colloquium, Noord-

weijkerhout, The Netherlands, July 14-18, 1980, Proceedings, volume 85 of Lecture Notes in
Computer Science, Springer, 1980, pp. 299–309. URL: https://doi.org/10.1007/3-540-10003-2_

79. doi:10.1007/3-540-10003-2_79.

[2] M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency, Journal of

the ACM (JACM) 32 (1985) 137–161.

[3] R. De Nicola, F. W. Vaandrager, Three logics for branching bisimulation, J. ACM 42 (1995)

458–487. URL: https://doi.org/10.1145/201019.201032. doi:10.1145/201019.201032.

[4] L. Aceto, W. J. Fokkink, C. Verhoef, Structural operational semantics, in: J. A. Bergstra,

A. Ponse, S. A. Smolka (Eds.), Handbook of Process Algebra, North-Holland / Elsevier,

2001, pp. 197–292. URL: https://doi.org/10.1016/b978-044482830-9/50021-7. doi:10.1016/
B978-044482830-9/50021-7.

[5] R. De Nicola, Behavioral equivalences, in: Encyclopedia of Parallel Computing, Springer,

2011, pp. 120–127.

[6] R. De Nicola, Process algebras, in: Encyclopedia of Parallel Computing, Springer, 2011, pp.

1624–1636.

[7] E. Clarke, O. Grumberg, D. Peled, D. Peled, Model Checking, The Cyber-Physical Systems

Series, MIT Press, 1999.

[8] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, J. Srba, Reactive systems: modelling, specification

and verification, Cambridge University Press, 2007.

[9] J. R. Andersen, N. Andersen, S. Enevoldsen, M. M. Hansen, K. G. Larsen, S. R. Olesen, J. Srba,

J. K. Wortmann, CAAL: concurrency workbench, Aalborg edition, in: Theoretical Aspects

of Computing-ICTAC 2015: 12th International Colloquium, Cali, Colombia, October 29-31,

2015, Proceedings 12, Springer, 2015, pp. 573–582.

[10] C. Stirling, Modal logics for communicating systems, Theoretical Computer Science 49

(1987) 311–347.

[11] A. K. Simpson, Compositionality via Cut-Elimination: Hennessy-Milner Logic for an

Arbitrary GSOS, in: Proceedings, 10th Annual IEEE Symposium on Logic in Computer

Science, San Diego, California, USA, June 26-29, 1995, IEEE Computer Society, 1995, pp. 420–

430. URL: https://doi.org/10.1109/LICS.1995.523276. doi:10.1109/LICS.1995.523276.

[12] A. K. Simpson, Sequent calculi for process verification: Hennessy-Milner logic for an

https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1007/3-540-10003-2_79
http://dx.doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1145/201019.201032
http://dx.doi.org/10.1145/201019.201032
https://doi.org/10.1016/b978-044482830-9/50021-7
http://dx.doi.org/10.1016/B978-044482830-9/50021-7
http://dx.doi.org/10.1016/B978-044482830-9/50021-7
https://doi.org/10.1109/LICS.1995.523276
http://dx.doi.org/10.1109/LICS.1995.523276

arbitrary GSOS, J. Log. Algebraic Methods Program. 60-61 (2004) 287–322. URL: https:

//doi.org/10.1016/j.jlap.2004.03.004. doi:10.1016/J.JLAP.2004.03.004.

[13] B. Bloom, S. Istrail, A. R. Meyer, Bisimulation can’t be traced, J. ACM 42 (1995) 232–268.

URL: https://doi.org/10.1145/200836.200876. doi:10.1145/200836.200876.

[14] R. Dyckhoff, S. Negri, Geometrisation of first-order logic, Bull. Symb. Log. 21 (2015)

123–163. URL: https://doi.org/10.1017/bsl.2015.7. doi:10.1017/BSL.2015.7.

[15] C. Stirling, A proof system with names for modal mu-calculus, in: A. Banerjee, O. Danvy,

K. Doh, J. Hatcliff (Eds.), Semantics, Abstract Interpretation, and Reasoning about Programs:

Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth Birthday, Manhattan,

Kansas, USA, 19-20th September 2013, volume 129 of EPTCS, 2013, pp. 18–29. URL: https:

//doi.org/10.4204/EPTCS.129.2. doi:10.4204/EPTCS.129.2.

[16] C. Stirling, A tableau proof system with names for modal mu-calculus, in: A. Voronkov,

M. V. Korovina (Eds.), HOWARD-60: A Festschrift on the Occasion of Howard Barringer’s

60th Birthday, volume 42 of EPiC Series in Computing, EasyChair, 2014, pp. 306–318. URL:

https://doi.org/10.29007/lwqm. doi:10.29007/lwqm.

[17] S. Negri, J. Von Plato, Proof analysis: a contribution to Hilbert’s last problem, Cambridge

University Press, 2011.

[18] A. S. Troelstra, H. Schwichtenberg, Basic proof theory, Second Edition, volume 43 of

Cambridge tracts in theoretical computer science, Cambridge University Press, 2000.

[19] A. Indrzejczak, Sequents and trees, Studies in Universal Logic, Birkhäuser, Cham (2021).

[20] R. De Nicola, M. Loreti, A modal logic for mobile agents, ACM Trans. Comput. Log. 5 (2004)

79–128. URL: https://doi.org/10.1145/963927.963930. doi:10.1145/963927.963930.

[21] B. Afshari, L. Grotenhuis, G. E. Leigh, L. Zenger, Ill-founded proof systems for intuitionistic

linear-time temporal logic, in: R. Ramanayake, J. Urban (Eds.), Automated Reasoning with

Analytic Tableaux and Related Methods - 32nd International Conference, TABLEAUX

2023, Prague, Czech Republic, September 18-21, 2023, Proceedings, volume 14278 of

Lecture Notes in Computer Science, Springer, 2023, pp. 223–241. URL: https://doi.org/10.

1007/978-3-031-43513-3_13. doi:10.1007/978-3-031-43513-3_13.

[22] B. Afshari, G. E. Leigh, G. M. Turata, A cyclic proof system for full computation tree logic,

in: B. Klin, E. Pimentel (Eds.), 31st EACSL Annual Conference on Computer Science Logic,

CSL 2023, February 13-16, 2023, Warsaw, Poland, volume 252 of LIPIcs, Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2023, pp. 5:1–5:19. URL: https://doi.org/10.4230/LIPIcs.

CSL.2023.5. doi:10.4230/LIPICS.CSL.2023.5.

[23] B. Afshari, G. E. Leigh, G. M. Turata, Demystifying 𝜇, CoRR abs/2401.01096

(2024). URL: https://doi.org/10.48550/arXiv.2401.01096. doi:10.48550/ARXIV.2401.
01096. arXiv:2401.01096.

[24] B. Afshari, S. Enqvist, G. E. Leigh, Cyclic proofs for the first-order𝜇-calculus, Log. J. IGPL 32

(2024) 1–34. URL: https://doi.org/10.1093/jigpal/jzac053. doi:10.1093/JIGPAL/JZAC053.

[25] M. Maggesi, C. Perini Brogi, A formal proof of modal completeness for provability logic,

in: L. Cohen, C. Kaliszyk (Eds.), 12th International Conference on Interactive Theorem

Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual Conference), volume 193

of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 26:1–26:18. URL:

https://doi.org/10.4230/LIPIcs.ITP.2021.26. doi:10.4230/LIPICS.ITP.2021.26.

[26] M. Maggesi, C. Perini Brogi, Mechanising Gödel-Löb provability logic in HOL light, J.

https://doi.org/10.1016/j.jlap.2004.03.004
https://doi.org/10.1016/j.jlap.2004.03.004
http://dx.doi.org/10.1016/J.JLAP.2004.03.004
https://doi.org/10.1145/200836.200876
http://dx.doi.org/10.1145/200836.200876
https://doi.org/10.1017/bsl.2015.7
http://dx.doi.org/10.1017/BSL.2015.7
https://doi.org/10.4204/EPTCS.129.2
https://doi.org/10.4204/EPTCS.129.2
http://dx.doi.org/10.4204/EPTCS.129.2
https://doi.org/10.29007/lwqm
http://dx.doi.org/10.29007/lwqm
https://doi.org/10.1145/963927.963930
http://dx.doi.org/10.1145/963927.963930
https://doi.org/10.1007/978-3-031-43513-3_13
https://doi.org/10.1007/978-3-031-43513-3_13
http://dx.doi.org/10.1007/978-3-031-43513-3_13
https://doi.org/10.4230/LIPIcs.CSL.2023.5
https://doi.org/10.4230/LIPIcs.CSL.2023.5
http://dx.doi.org/10.4230/LIPICS.CSL.2023.5
https://doi.org/10.48550/arXiv.2401.01096
http://dx.doi.org/10.48550/ARXIV.2401.01096
http://dx.doi.org/10.48550/ARXIV.2401.01096
http://arxiv.org/abs/2401.01096
https://doi.org/10.1093/jigpal/jzac053
http://dx.doi.org/10.1093/JIGPAL/JZAC053
https://doi.org/10.4230/LIPIcs.ITP.2021.26
http://dx.doi.org/10.4230/LIPICS.ITP.2021.26

Autom. Reason. 67 (2023) 29. URL: https://doi.org/10.1007/s10817-023-09677-z. doi:10.
1007/S10817-023-09677-Z.

[27] L. Viganò, Labelled non-classical logics, Springer Science & Business Media, 2013.

[28] A. K. Simpson, The proof theory and semantics of intuitionistic modal logic, University of

Edinburgh. College of Science and Engineering. (1994).

https://doi.org/10.1007/s10817-023-09677-z
http://dx.doi.org/10.1007/S10817-023-09677-Z
http://dx.doi.org/10.1007/S10817-023-09677-Z

	1 Introduction
	1.1 Proof systems for process verification
	1.2 Our contribution

	2 Calculus design, structural analysis, and first results

