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Abstract
We study a recently introduced generalization of distance domination in graphs known as (𝑡, 𝑟)-
Broadcast Domination: A set 𝑆 of broadcasting vertices transmit a signal of initial strength 𝑡; the
strength of the signal decays linearly along edges according to distance, that is, a vertex at a distance
𝑑 < 𝑡 from a broadcasting vertex 𝑣 ∈ 𝑆 receives a signal of strength 𝑡− 𝑑, for each 𝑣 ∈ 𝑆. The goal is
to determine a set 𝑆 of broadcasting vertices of minimum size, which ensures that every vertex in the
network receives a cumulative signal strength of at least 𝑟.

In this paper, we initiate the study of the (𝑡, 𝑟)-Broadcast Domination problem in general graphs.
Our results include a general approximation algorithm and optimal polynomial time algorithms for
cographs. Moreover, we consider graphs of bounded Neighborhood diversity (nd), and graphs of bounded
Iterated type partition number (itp) and give: (i) a fixed parameter tractable (FPT) algorithm for (𝑡, 𝑟)-
Broadcast Domination parameterized by nd; (ii) a FPT algorithm for (𝑡, 𝑟)-Broadcast Domination
parameterized by itp plus the solution size 𝛽 = |𝑆|; (iii) a FPT algorithm for (𝑡, 𝑟)-Broadcast Domina-
tion parameterized by itp plus the demand 𝑟.
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1. Introduction

The concept of graph domination was introduced by Claude Berge in [3] and formally defined
by Oystein Ore in [31]. Since then it has been extensively studied and generalized in quite
many interesting variants [20, 21]. These include versions of graph domination with distance
parameters that can be applied in multi-agent security and pursuit, city planning (such as
the placement of hospitals, radio stations, and nuclear reactors), routing in communication
networks, and sensor placement in power networks. One significant generalization of the graph
domination problem is distance domination, first studied in [23]. In this variant, a vertex in the
dominating set can "dominate" its directly adjacent vertices and all vertices within a certain
distance. Specifically, a distance-𝑘 dominating set of a graph 𝐺 = (𝑉,𝐸) is a set 𝑆 ⊆ 𝑉 such
that every vertex 𝑣 ∈ 𝑉 is either in 𝑆 or it is within distance 𝑘 from a vertex in 𝑆. This means
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that 𝑆 is a distance-𝑘 dominating set of 𝐺 if any vertex 𝑣 in 𝐺 can be reached by a path of
length at most 𝑘 starting from a vertex in 𝑆. The distance-𝑘 domination number of a graph 𝐺
is the smallest cardinality of such a set. Notably, distance-𝑘 domination generalizes standard
domination, where distance-1 domination is equivalent to classical domination.

A recent variation of distance domination is the (𝑡, 𝑟)-Broadcast Domination, first defined
by Blessing et al. in [4]. As an application consider the following scenario in a wireless network
𝐺: A set of broadcast towers on a subset of a graph’s vertices, each has a signal strength 𝑡. Each
tower provides itself a signal strength of 𝑡, its neighbors 𝑡− 1, and so on, decreasing by 1 as it
traverses each edge until the signal dies out. The goal of the (𝑡, 𝑟)-Broadcast Domination
problem is to determine the minimal number of towers needed to ensure every vertex in 𝐺
receives a cumulative signal strength of at least 𝑟.
Another application addresses the issue of effectively crafting accurate and evidence-based
information to combat misinformation. In epidemiology, graph-based information diffusion
algorithms can be used to find the smallest set of individuals who can cooperate in immunizing
the vertices in order to prevent the spreading of negative narratives [12, 17, 26]. While these
algorithms are not designed for intercepting fakes, they can be used as a component in a
broader strategy for identifying and mitigating the spread of fake information. (𝑡, 𝑟)-Broadcast
Domination assumes that the strength of the message decreases by passing from one individual
to another.

Since its introduction, the (𝑡, 𝑟)-Broadcast Domination problem has been extensively
studied in various special classes of graphs: Two-dimensional grids, paths, triangular grids,
matchstick graphs, and 𝑛-dimensional grids [1, 2, 4, 6, 7, 13, 15, 16, 22, 25, 32].

Our results. In this paper, we initiate the study of the (𝑡, 𝑟)-Broadcast Domination problem
in general graphs.
Our results include: (i) a general approximation algorithm and (ii) an optimal polynomial time
algorithm for cographs. Moreover, we consider graphs of bounded Neighborhood diversity (nd),
and graphs of bounded Iterated type partition number (itp) and give: (iii) a fixed parameter
tractable (FPT) algorithm for (𝑡, 𝑟)-Broadcast Domination parameterized by nd; (iv) a FPT
algorithm for (𝑡, 𝑟)-Broadcast Domination parameterized by itp plus the solution size 𝛽 =
|𝑆|; (v) a FPT algorithm for (𝑡, 𝑟)-Broadcast Domination parameterized by itp plus 𝑟.
We recall that a problem with input size 𝑛 and parameter 𝑝 is called fixed-parameter tractable
(FPT) if it can be solved in time 𝑓(𝑝) · 𝑛𝑐, where 𝑓 is a computable function only depending on
𝑝 and 𝑐 is a constant [14, 30].

2. The problem
Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be an undirected graph and two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), we denote by
𝑛 = |𝑉 (𝐺)| the number of vertices in 𝐺 and by 𝑑(𝑢, 𝑣) the distance between 𝑢 and 𝑣 in 𝐺.
Moreover, for a vertex 𝑣 ∈ 𝑉 (𝐺), we denote by 𝑁𝐺(𝑣) = {𝑢 ∈ 𝑉 (𝐺) | (𝑢, 𝑣) ∈ 𝐸(𝐺)} the
neighborhood of 𝑣 and 𝑁𝐺[𝑣] = 𝑁𝐺(𝑣) ∪ {𝑣}. Furthermore, we denote by 𝑁𝐺,𝑡(𝑣) = {𝑢 ∈
𝑉 (𝐺) | 𝑑𝐺(𝑢, 𝑣) ≤ 𝑡} the neighborhood of radius 𝑡 around 𝑣. Clearly, 𝑁𝐺,1(𝑣) = 𝑁𝐺[𝑣]. In the
above notations, we will omit the subscript 𝐺 whenever the graph is clear from the context.

A Dominating set in a graph 𝐺 = (𝑉,𝐸) is a subset of 𝑉 such that every vertex not in the set
has at least one neighbor in the set.



Definition 1. Given an undirected graph 𝐺 = (𝑉,𝐸) and integers 𝑡 ≥ 2, 𝑟 ≥ 1, a subset of
vertices 𝑆 ⊆ 𝑉 is a (𝑡, 𝑟)- Broadcast Dominating set of 𝐺 if for each 𝑣 ∈ 𝑉 , it holds∑︁

𝑢∈𝑆∩𝑁𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)) ≥ 𝑟, (1)

In this paper, we will consider the following problem.

(𝑡, 𝑟)-Broadcast Domination:
Input: An undirected graph 𝐺 = (𝑉,𝐸) and two integers 𝑡 ≥ 2, 𝑟 ≥ 1
Output: Find a (𝑡, 𝑟)-Broadcast Dominating set of minimum size.

We assume that for each 𝑣 ∈ 𝑉 we have 𝑟 ≤
∑︀

𝑢∈𝑁𝑡(𝑣)
(𝑡− 𝑑(𝑢, 𝑣)), otherwise, the problem

does not admit any solution. This assumption is harmless, in the sense that it is a polynomially
verifiable condition that does not impact the results.

It is worth observing that when 𝑡 = 2 and 𝑟 = 1 the (𝑡, 𝑟)-Broadcast Domination problem
corresponds to the classical Dominating set problem.

Finally, since the problem can be solved independently in each connected component of the
input graph, from now on, we assume that the input graph is connected.

3. Approximation algorithm
Knowing that (𝑡, 𝑟)-Broadcast Domination generalizes the Dominating set problem, by the
hardness results in [8, 18], we immediately have the following theorem.

Theorem 1. (𝑡, 𝑟)-Broadcast Domination cannot be approximated to within a factor of
(1− 𝜖) ln𝑛 in polynomial time for any constant 𝜖 > 0 unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log𝑛)).

Moreover, using the same arguments of the proof of Theorem 1 in [9], one can easily get
a logarithmic approximation algorithm. We show that the (𝑡, 𝑟)-Broadcast Domination
problem can be recast as a submodular cover problem, and apply a classical results due to
Wosley [33].

For a graph 𝐺 = (𝑉,𝐸) and integers 𝑡 ≥ 2, 𝑟 ≥ 1, we define a function 𝑓 : 2𝑉 → N, as
follows: for all 𝑆 ⊆ 𝑉 , let

𝑓(𝑆) =
∑︁
𝑣∈𝑉

𝜋𝑣(𝑆), where 𝜋𝑣(𝑆) = min

(︂
𝑟,

∑︁
𝑠∈𝑆∩𝑁𝑡(𝑣)

(𝑡− 𝑑(𝑠, 𝑣))

)︂
. (2)

Lemma 1. The function 𝑓 : 2𝑉 → N given in (2), satisfies the following properties:
(i) 𝑓 is integer valued; (ii) 𝑓(∅) = 0; (iii) 𝑓 is non-decreasing; (iv) A set 𝑆 ⊆ 𝑉 satisfies 𝑓(𝑆) =
𝑓(𝑉 ) if and only if 𝑆 is (𝑡, 𝑟)-Broadcast Dominating set; (v) 𝑓 is submodular.

Hence, one can apply the natural greedy algorithm, call it 𝒜, which starts with 𝑆 = ∅
and iteratively adds to 𝑆 the element 𝑣 ∈ 𝑉 ∖ 𝑆 s.t. 𝑓(𝑆 ∪ {𝑣}) − 𝑓(𝑆) is maximum, until
𝑓(𝑆) = 𝑓(𝑉 ) is achieved.

Theorem 2. (𝑡, 𝑟)-Broadcast Domination problem can be approximated in polynomial time
by a factor ln𝑛+ ln(min(𝑟, 𝑡)) + 1.



Proof. By a classical result of Wolsey [33], it follows that algorithm𝒜 is a (ln(max𝑤∈𝑉 𝑓({𝑤}))+
1)-approximation algorithm for (𝑡, 𝑟)-Broadcast Domination. For each 𝑤 ∈ 𝑉 , we have

𝑓({𝑤}) =
∑︁
𝑣∈𝑉

min

(︂
𝑟,

∑︁
𝑠∈{𝑤}∩𝑁𝑡(𝑣)

(𝑡−𝑑(𝑠, 𝑣))

)︂
=

∑︁
𝑣∈𝑁𝑡(𝑤)

min
(︀
𝑟, 𝑡−𝑑(𝑤, 𝑣)

)︀
≤ 𝑛min(𝑟, 𝑡).

It is worth observing that we can always assume that 𝑡 ≤ 𝑛− 1, since the distances between
two nodes are at most equal to 𝑛− 1. Hence, the approximation guaranteed by the Theorem is
at most 2 ln𝑛+ 1.

4. A polynomial time algorithm for cographs
Cographs have been discovered independently many times since the 1970s, with different
equivalent definitions [5]. We are going to adopt the following definition.
Definition 2. A cograph is a graph that can be constructed using the following recursive rules:

• Any single-vertex graph is a cograph;
• The disjoint union 𝐺1 ⊕𝐺2 of two cographs is a cograph.
𝐺1 ⊕𝐺2 is the graph with vertex set 𝑉 (𝐺1) ∪ 𝑉 (𝐺2) and edge set 𝐸(𝐺1) ∪ 𝐸(𝐺2).

• The join 𝐺1 ⊗𝐺2 of two cographs is a cograph.
𝐺1 ⊗ 𝐺2 has vertex set 𝑉 (𝐺1) ∪ 𝑉 (𝐺2) and edge set 𝐸(𝐺1) ∪ 𝐸(𝐺2) ∪ {(𝑢,𝑤) | 𝑢 ∈
𝑉 (𝐺1), 𝑤 ∈ 𝑉 (𝐺2)}.

Definition 3. A cotree 𝑇 (𝐺) is a binary parse tree defining a cograph 𝐺, in which the leaves are
the vertices of 𝐺 and each internal vertex labeled ⊕ (resp. ⊗) represents the disjoint union (resp.
join) operation.

Observation 1. If a cograph 𝐺 is connected, then the root of the cotree is labeled ⊗ and the
diameter is at most 2.

Consider a connected cograph 𝐺 = (𝑉,𝐸), the cotree 𝑇 associated to 𝐺, and integers
𝑡 ≥ 2, 𝑟 ≥ 1. We recursively compute a solution of the (𝑡, 𝑟)-Broadcast Domination problem.
The algorithm uses the dynamic-programming design pattern and traverses the cotree 𝑇 in a
breadth-first fashion.

Fix a node 𝑥 in 𝑇, we denote by 𝐺(𝑥) = (𝑉 (𝑥), 𝐸(𝑥)) the subgraph of 𝐺 associated to 𝑥.
Clearly 𝐺 = 𝐺(𝑦) where 𝑦 is the root of 𝑇 . To reconstruct the solution recursively, we calculate
optimal solutions, for each internal node of 𝑥 ∈ 𝑇 considering all the possible contributions, of
vertices in 𝑉 ∖ 𝑉 (𝑥). Specifically, we compute bottom-up the solutions associated with each
internal node 𝑥 ∈ 𝑇 for each demand 𝑟′ = 1, . . . , 𝑟. A solution with demand 𝑟′ = 𝑟 − 𝑎 will
be used when we assume that each node in 𝑉 (𝑥) receives a cumulative signal strength 𝑎 from
vertices in 𝑉 ∖ 𝑉 (𝑥).

The following definition introduces the values that will be computed by the algorithm in
order to be able to compute the solution of the (𝑡, 𝑟)-Broadcast Domination problem.

Definition 4. Given a cograph 𝐺 = (𝑉,𝐸) and two integers 𝑡 ≥ 2, 𝑟 ≥ 1 we denote by 𝛾𝑡(𝐺, 𝑟)
the size of a smallest (𝑡, 𝑟)-Broadcast Dominating set for 𝐺, where the distance function is redefined
as 𝑑′(𝑢, 𝑣) = min(2, 𝑑𝐺(𝑢, 𝑣)), for each 𝑢, 𝑣 ∈ 𝑉 .

For 𝑟 = 0, we also define this value for any cograph 𝐺 as 𝛾𝑡(𝐺, 0) = 0.
Formally, we are going to compute the value 𝛾𝑡(𝐺(𝑥), 𝑟′), for each 𝑥 ∈ 𝑇 and 𝑟′ = 0, 1, . . . , 𝑟.



Observation 2. The reason for using the redefined distance function is as follows. For each internal
node 𝑥 ∈ 𝑇 labeled with ⊗ (join) the redefined function matches the original one, while when 𝑥 is
labeled with ⊕ (disjoint union), we have that 𝑥 is associated with two disconnected components. In
this case, since the graph 𝐺 is connected, and the vertices in 𝑉 (𝑥), by construction, will share the
same neighborhood in 𝑉 ∖ 𝑉 (𝑥), we know that the distance between vertices belonging to different
components of 𝐺(𝑥) is 2 in 𝐺.

The solution for the instance ⟨𝐺, 𝑡, 𝑟⟩ of our original (𝑡, 𝑟)-Broadcast Domination problem
is 𝛾𝑡(𝐺(𝑦), 𝑟) where 𝑦 is the root of 𝑇.

Lemma 2. For each 𝑥 ∈ 𝑇 , the computation of 𝛾𝑡(𝐺(𝑥), 𝑟′) for each 𝑟′ = 1, . . . , 𝑟 can be done
recursively in time 𝑂(𝑟2).

Proof. Consider a node 𝑥 ∈ 𝑇 , we show how to use a bottom-up strategy to compute all the
values of 𝛾𝑡(𝐺(𝑥), 𝑟′), for each 𝑟′ = 1, . . . , 𝑟.

For each leaf 𝑥 ∈ 𝑇 we have that 𝐺(𝑥) is a single vertex. Then,

𝛾𝑡(𝐺(𝑥), 𝑟′) =

{︃
1 if 𝑡 ≥ 𝑟′,

∞ otherwise.
(3)

For any internal node 𝑥, assuming that we have already computed the solution for its children
nodes, we show how to calculate each value 𝛾𝑡(𝐺(𝑥), 𝑟′), for each 𝑟′ = 1, . . . , 𝑟, in time 𝑂(𝑟′).

We have two cases to consider according to the label of 𝑥 (cf. Definition 3):
1) Node 𝑥 is labeled ⊕ (i.e., represents the disjoint union operation).
In this case we have that 𝐺(𝑥) = 𝐺1 ⊕𝐺2 where 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are the
graphs associated with the children of 𝑥 in 𝑇 . By Observation 2, we assume that the distance
between vertices belonging to the two components 𝐺1 and 𝐺2 is 2.

For each 𝑟′ = 1, . . . , 𝑟, we can fix the demand 𝑟1 (𝑟2) for 𝐺1 (𝐺2) and compute the solution
for the other graph 𝐺2 (𝐺1) ensuring that both solutions satisfy the demand 𝑟′.

Fixed the value of 𝑟′, we denote by 𝑚1 the minimum value of 𝑟1, which represents the portion
of the demand 𝑟′ satisfied by vertices in 𝑉1. Since the distance between vertices belonging to
the two components is 2, we have that each vertex in 𝑉2 provides a signal strength of 𝑡− 2 to
vertices in 𝑉1 and overall they should cover the residual demand 𝑟′−𝑚1. Hence, the value of 𝑚1

corresponds to the smallest non negative integer such that |𝑉2| ≥
⌈︁
𝑟′−𝑚1
𝑡−2

⌉︁
. Indeed, by choosing

a value of 𝑟1 smaller than 𝑚1, we have that the contribution of vertices in 𝑉2 is not enough
to reach 𝑟′ and hence such values are not compatible with a solution for 𝐺(𝑥). Then, for each
𝑚1 ≤ 𝑟1 ≤ 𝑟′, we compute the value 𝑟2 = max(0, 𝑟′−(𝑡−2)𝛾𝑡(𝐺1, 𝑟1)), which corresponds to
the residual demand on 𝐺2. Similarly, let 𝑚2 the smallest non negative integer such that |𝑉1| ≥⌈︁
𝑟′−𝑚2
𝑡−2

⌉︁
. For each 𝑚2 ≤ 𝑟2 ≤ 𝑟′, we compute the value 𝑟1 = max(0, 𝑟′ − (𝑡− 2)𝛾𝑡(𝐺2, 𝑟2)),

which corresponds to the residual demand on 𝐺1. We have,

𝛾𝑡(𝐺(𝑥), 𝑟′) = min

(︂
min

𝑚1≤𝑟1≤𝑟′

(︂
𝛾𝑡(𝐺1, 𝑟1)+max

{︂⌈︂
𝑟′−𝑟1
𝑡−2

⌉︂
, 𝛾𝑡(𝐺2, 𝑟2)

)︂)︂
,

min
𝑚2≤𝑟2≤𝑟′

(︂
𝛾𝑡(𝐺2, 𝑟2)+max

(︂⌈︂
𝑟′−𝑟2
𝑡−2

⌉︂
, 𝛾𝑡(𝐺1, 𝑟1)

)︂)︂)︂
. (4)



2) Node 𝑥 is labeled ⊗ (i.e., represents the join operation).
Let 𝐺(𝑥) = 𝐺1 ⊗ 𝐺2. We repeat the reasoning above by considering that, in this case,the
distance between vertices belonging to the two components 𝐺1 and 𝐺2 is 1.

Let 𝑚1 be the smallest non negative integer such that |𝑉2| ≥
⌈︁
𝑟′−𝑚1
𝑡−1

⌉︁
. For each 𝑚1 ≤ 𝑟1 ≤

𝑟′, we compute the value 𝑟2 = max(0, 𝑟′ − (𝑡− 1)𝛾𝑡(𝐺1, 𝑟1)).

Similarly, let 𝑚2 the smallest non negative integer such that |𝑉1| ≥
⌈︁
𝑟′−𝑚2
𝑡−1

⌉︁
. For each

𝑚2 ≤ 𝑟2 ≤ 𝑟′, we compute the value 𝑟1 = max(0, 𝑟′ − (𝑡− 1)𝛾𝑡(𝐺2, 𝑟2)). We have,

𝛾𝑡(𝐺(𝑥), 𝑟′) = min

(︂
min

𝑚1≤𝑟1≤𝑟′

(︂
𝛾𝑡(𝐺1, 𝑟1)+max

(︂⌈︂
𝑟′−𝑟1
𝑡−1

⌉︂
, 𝛾𝑡(𝐺2, 𝑟2)

)︂)︂
,

min
𝑚2≤𝑟2≤𝑟′

(︂
𝛾𝑡(𝐺2, 𝑟2)+max

(︂⌈︂
𝑟′−𝑟2
𝑡−1

⌉︂
, 𝛾𝑡(𝐺1, 𝑟1)

)︂)︂)︂
. (5)

By induction on the tree, we can prove that the recursive formula presented in (4)-(5) coincides
with the definition of 𝛾𝑡(·, ·) and both the values are computed in time 𝑂(𝑟′); hence, the
algorithm is correct and the overall computation associated to a node 𝑥 ∈ 𝑇 is 𝑂(𝑟2).

Theorem 3. When 𝐺 is a cograph, the (𝑡, 𝑟)-Broadcast Domination problem is solvable in
time 𝑂(𝑛𝑟2 +𝑚).

Proof. We recall that: (i) Building the cotree 𝑇 associated to a given cograph 𝐺 can be done in
linear time (𝑂(𝑛+𝑚)); (ii) the cotree contains 2𝑛− 1 vertices (it has 𝑛 leaves).
Hence, exploiting Lemma 2, we can build the desired solution 𝛾𝑡(𝐺, 𝑟) in time 𝑂(𝑛𝑟2 +𝑚).
The optimal set 𝑆 can be computed in the same time by standard backtracking techniques.

5. Graphs of bounded neighborhood diversity or itp number
In this section, we recall the definitions of Neighborhood diversity and Iterated type partition
number of a graph and give FPT algorithms for graphs in which such parameters are bounded.

Definition 5. The following operations can be used to construct any graph:
(O1) The creation of an isolated vertex.
(O2) The substitution of the vertices 1, . . . , ℓ of an outline graph 𝐻 by the graphs

𝐺1, . . . , 𝐺ℓ, denoted by 𝐻(𝐺1, . . . , 𝐺ℓ), is the graph 𝐺 = (𝑉,𝐸) with
𝑉 =

⋃︀
1≤𝑖≤ℓ 𝑉 (𝐺𝑖)

𝐸 =
⋃︁

1≤𝑖≤ℓ

𝐸(𝐺𝑖)∪{(𝑢,𝑤) | 𝑢 ∈ 𝐺𝑖, 𝑤 ∈ 𝐺𝑗 , (𝑖, 𝑗) ∈ 𝐸(𝐻), 1 ≤ 𝑖 < 𝑗 ≤ ℓ}.

Notice that the disjoint union and join operations of Definition 2 are special cases of (O2) with
ℓ = 2.

Let 𝐺 = 𝐻(𝐺1, . . . , 𝐺ℓ) be a connected graph. According to operation (O2): 𝐻 is a connected
outline graph with ℓ vertices and 𝐺𝑖 is a subgraph of 𝐺 such that for all 𝑢, 𝑣 ∈ 𝑉 (𝐺𝑖), 𝑁(𝑢) ∖
𝑉 (𝐺𝑖) = 𝑁(𝑣) ∖ 𝑉 (𝐺𝑖), for each 𝑖 = 1, . . . , ℓ.

Let 𝑆 be a (𝑡, 𝑟)-Broadcast Dominating set of 𝐺. Denote by 𝑆𝑖 the subset of 𝑆 including the
vertices in 𝐺𝑖, that is, 𝑆 =

⋃︀
1≤𝑖≤ℓ 𝑆𝑖 where 𝑆𝑖 ⊆ 𝑉 (𝐺𝑖).



In the following, we give a reformulation of the condition in (1) of Definition 1 that takes
into account the construction of 𝐺 in terms of the operation (O1)–(O2) described in Definition
5 and that will be useful to present our algorithms.

Since 𝐺 is a connected graph then also 𝐻 is a connected graph. Hence, we have that
each vertex 𝑣 ∈ 𝑉 (𝐺𝑖), with 1 ≤ 𝑖 ≤ ℓ, is at distance at most 2 from any 𝑢 ∈ 𝑉 (𝐺𝑖), and
𝑑𝐺(𝑢, 𝑣) = 𝑑𝐻(𝑖, 𝑗) for each 𝑢 ∈ 𝑉 (𝐺𝑗) for 𝑗 ̸= 𝑖. Hence, knowing that 𝑡 ≥ 2, for each
𝑣 ∈ 𝑉 (𝐺𝑖), we have

|𝑆 ∩𝑁𝐺,𝑡(𝑣)| = |𝑆 ∩ 𝑉 (𝐺𝑖)|+
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆 ∩ 𝑉 (𝐺𝑗)| = |𝑆𝑖|+
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 |

and
∑︁

𝑢∈𝑆∩𝑁𝐺,𝑡(𝑣)

𝑑𝐺(𝑢, 𝑣) =
∑︁
𝑢∈𝑆𝑖

𝑑𝐺(𝑢, 𝑣) +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 | 𝑑𝐻(𝑖, 𝑗)

=|𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)|+ 2 |𝑆𝑖 ∖𝑁𝐺𝑖 [𝑣]|+
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 | 𝑑𝐻(𝑖, 𝑗).

Summarizing,∑︁
𝑢∈𝑆∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑𝐺(𝑢, 𝑣)) = 𝑡 |𝑆 ∩𝑁𝐺,𝑡(𝑣)| −
∑︁

𝑢∈𝑆∩𝑁𝐺,𝑡(𝑣)

𝑑𝐺(𝑢, 𝑣) =

=𝑡

(︂
|𝑆𝑖|+

∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 |
)︂
−
(︂
|𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)|+ 2 |𝑆𝑖 ∖𝑁𝐺𝑖 [𝑣]|+

∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 | 𝑑𝐻(𝑖, 𝑗)

)︂

=𝑡 |𝑆𝑖| − |𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)| − 2 |𝑆𝑖 ∖𝑁𝐺𝑖 [𝑣]|+
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 | (𝑡− 𝑑𝐻(𝑖, 𝑗)). (6)

Now, we consider that (𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)) ∩ (𝑆𝑖 ∖𝑁𝐺𝑖 [𝑣]) = ∅ and
– for 𝑣 ̸∈ 𝑆𝑖 it holds (𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)) ∪ (𝑆𝑖 ∖𝑁𝐺𝑖 [𝑣]) = 𝑆𝑖, and
– for 𝑣 ∈ 𝑆𝑖 it holds (𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)) ∪ (𝑆𝑖 ∖𝑁𝐺𝑖 [𝑣]) = 𝑆𝑖 ∖ {𝑣}. Then,

|𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)|+ 2 |𝑆𝑖 ∖𝑁𝐺𝑖 [𝑣] | =

{︃
2|𝑆𝑖| − |𝑆𝑖 ∩𝑁𝐺𝑖 [𝑣]| if 𝑣 ̸∈ 𝑆𝑖,

2|𝑆𝑖| − 2− |𝑆𝑖 ∩𝑁𝐺𝑖 [𝑣]| if 𝑣 ∈ 𝑆𝑖.

Hence, by (6), to verify (1), i.e.,
∑︀

𝑢∈𝑆∩𝑁𝐺,𝑡(𝑣)
(𝑡− 𝑑𝐺(𝑢, 𝑣)) ≥ 𝑟, for each vertex 𝑣 ∈ 𝑉 (𝐺𝑖),

is equivalent to verify

((𝑡− 2) |𝑆𝑖|+ |𝑆𝑖 ∩𝑁𝐺𝑖 [𝑣] |) +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 |(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟 if 𝑣 ̸∈ 𝑆𝑖, (7)

((𝑡− 2) |𝑆𝑖|+ 2 + |𝑆𝑖 ∩𝑁𝐺𝑖 [𝑣] |) +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 |(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟 if 𝑣 ∈ 𝑆𝑖. (8)

Notice that the first part in each of the two sums of (7) and (8) refers to the relation between
𝑣 ∈ 𝑉 (𝐺𝑖) and the vertices of the solution set in 𝐺𝑖 (i.e., 𝑆𝑖) while the second part refers to the
relation between vertex 𝑖 in 𝑉 (𝐻) and all the other vertices 𝑗 in 𝑉 (𝐻).



5.1. Neighborhood Diversity

The neighborhood diversity of a graph was introduced by Lampis in [28]. Given a graph
𝐺 = (𝑉,𝐸), two vertices 𝑢, 𝑣 ∈ 𝑉 have the same type iff 𝑁(𝑣) ∖ {𝑢} = 𝑁(𝑢) ∖ {𝑣}. The
neighborhood diversity of a graph 𝐺, nd(𝐺), is the minimum number ℓ of sets in a partition
𝑉1, 𝑉2, . . . , 𝑉ℓ, of the vertex set 𝑉 , such that all the vertices in 𝑉𝑖 have the same type, for
𝑖 = 1, . . . , ℓ. By definition, each 𝑉𝑖 induces either a clique or an independent set in 𝐺. In this
paper, we will use the following equivalent definition based on the operations (O1)-(O2).

Definition 6. A graph 𝐺 has neighborhood diversity ℓ ≥ 1 if ℓ is the minimum integer such that
𝐺 = 𝐻(𝐺1, . . . , 𝐺ℓ) where 𝐺𝑖 is either a clique or an independent set, for each 𝑖 = 1, . . . , ℓ.

The following theorem states that the (𝑡, 𝑟)-Broadcast Domination problem is FPT with
respect to the neighborhood diversity of the input graph.

We denote by nd the neighborhood diversity of the input graph 𝐺 = 𝐻(𝐺1, . . . , 𝐺nd).

Theorem 4. The (𝑡, 𝑟)-Broadcast Domination problem is solvable in time
𝑂(nd5nd+𝑜(nd) log𝐷) where 𝐷 = max{𝑡, 𝑟, |𝑉 (𝐺)|}.

Proof. Denote by 𝑉𝑖 the vertex set of 𝐺𝑖. Let 𝑆 be a (𝑡, 𝑟)-Broadcast Dominating set of 𝐺. For
each 𝑖 = 1, . . . , nd, define 𝑆𝑖 = 𝑆 ∩ 𝑉𝑖.
In order to give an algorithm solving the (𝑡, 𝑟)-Broadcast Domination problem for 𝐺, we
characterize (7) and (8) for 𝐺. Let 𝑣 ∈ 𝑉𝑖 with 1 ≤ 𝑖 ≤ nd. If 𝐺𝑖 is a clique then

|𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)| =

{︃
|𝑆𝑖| if 𝑣 ̸∈ 𝑆𝑖,

|𝑆𝑖| − 1 otherwise.

By (7) and (8) we have

(𝑡− 1) |𝑆𝑖|+
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 |(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟 if 𝑣 ̸∈ 𝑆𝑖,

(𝑡− 1) |𝑆𝑖|+ 1 +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 |(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟 if 𝑣 ∈ 𝑆𝑖.

If 𝐺𝑖 is an independent set then |𝑆𝑖 ∩𝑁𝐺𝑖(𝑣)| = 0 and by (7) and (8) we have

(𝑡− 2) |𝑆𝑖|+
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 |(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟 if 𝑣 ̸∈ 𝑆𝑖

(𝑡− 2) |𝑆𝑖|+ 2 +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

|𝑆𝑗 |(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟 if 𝑣 ∈ 𝑆𝑖.

By the above inequalities, it is easy to see that an instance ⟨𝐺, 𝑡, 𝑟⟩ of (𝑡, 𝑟)-Broadcast Domi-
nation has a solution 𝑆 =

⋃︀
1≤𝑖≤nd 𝑆𝑖 with 𝑆𝑖 ⊆ 𝑉𝑖 if and only if the following Integer Linear

Programming has a solution x = (𝑥1, . . . , 𝑥nd) such that 𝑆𝑖 consists of any 𝑥𝑖 = |𝑆𝑖| vertices



of 𝑉𝑖. The binary variable 𝑦𝑖, indicates whether 𝑆𝑖 = 𝑉𝑖 or not; in particular, 𝑦𝑖 ∈ {0, 1} and by
constraints (3)-(4) below, we have that if 𝑦𝑖 = 1 then 𝑥𝑖 = |𝑉𝑖|.

min
∑︁

𝑖=1,...,nd

𝑥𝑖 subject to:

(1) (𝑡− 1)𝑥𝑖 + 𝑦𝑖 +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

𝑥𝑗(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟 ∀𝑖 such that 1 ≤ 𝑖 ≤ nd and 𝐺𝑖 is a clique

(2) (𝑡− 2)𝑥𝑖 + 2𝑦𝑖 +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

𝑥𝑗(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟 ∀𝑖 such that 1 ≤ 𝑖 ≤ nd and 𝐺𝑖 is an ind. set

(3) 𝑥𝑖 ≥ |𝑉𝑖|𝑦𝑖 ∀𝑖 = 1, . . . , nd

(4) 𝑥𝑖 ≤ |𝑉𝑖| ∀𝑖 = 1, . . . , nd

(5) 𝑦𝑖 ∈ {0, 1} ∀𝑖 = 1, . . . , nd

To evaluate the time to solve the above ILP, we use a well-known result, stated in [19, 29]: Any
ℓ-Variable Integer Linear Programming Feasibility can be solved in time 𝑂(ℓ2.5ℓ+𝑜(ℓ) ·𝐿) where
𝐿 is the number of bits in the input. [19, 29], where

ℓ-Variable Integer Linear Programming Feasibility
Instance: A matrix 𝐴 ∈ Z𝑟×ℓ and a vector 𝑏 ∈ Z𝑟 .
Question: Is there a vector 𝑥 ∈ Zℓ such that 𝐴𝑥 ≥ 𝑏?

Hence, observing that the considered ILP uses at most 2 nd variables and that the coefficients
are upper bounded by 𝐷 = max{𝑡, 𝑟, |𝑉 (𝐺)|}, we have that it can be solved within time
𝑂(nd5nd+𝑜(nd) log𝐷).

5.2. Iterated type partition number

Given a graph 𝐺, the iterated type partition number of 𝐺, introduced in [10], is defined by
iteratively contracting clique and independent set subgraphs having the same neighborhood
until a prime graph is obtained; a graph is called prime if no more contractions are possible.
The iterated type partition number, denoted itp(𝐺), is the number of vertices of the obtained
prime graph. It can be shown that the vertices of the obtained prime graph represent subgraphs
that are cographs. An example of a graph 𝐺 with itp(𝐺) = 5 and its iterative identification is
given in Figure 1.

Trivially, for each graph 𝐺 we have itp(𝐺) ≤ nd(𝐺). See also [10] for a discussion on the
relations with other graph parameters.

In this paper, we will use the following equivalent definition based on the operations (O1)-(O2).

Definition 7. A graph 𝐺 has iterated type partition number ℓ ≥ 1 if ℓ is the minimum integer
such that 𝐺 = 𝐻(𝐺1, . . . , 𝐺ℓ) for cographs 𝐺1, 𝐺2, . . . , 𝐺ℓ and an outline graph 𝐻 .

We denote by itp the iterated type partition number of the input graph 𝐺.
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Figure 1: (a)-(c) A graph 𝐺 with iterated type partition number 5 and its iterative identification. Dashed
circles describe the identified clique or independent set subgraphs sharing the same neighborhood.

Observation 3. We notice that if 𝐺 = 𝐻(𝐺1, . . . , 𝐺itp) is connected then for each 𝑢, 𝑣 ∈ 𝑉 (𝐺𝑖)
the distance between 𝑢 and 𝑣 in 𝐺𝑖 is at most 2, for any 𝑖 = 1, . . . , itp. Indeed, if 𝐺𝑖 is connected,
then it is a connected cograph and has a diameter at most 2. If 𝐺𝑖 is not connected, there exists 𝑗
such that (𝑖, 𝑗) is an edge in 𝐻 . Hence, 𝑢 and 𝑣 have common neighbors in 𝑉 (𝐺𝑗). Hence, as in
Observation 2, the use of the values in Definition 4 is correct.

Algorithm for bounded itp and solution size 𝛽

Using the strategy adopted in Section 4, we are able to compute in time 𝑂(𝑛𝑟2 +𝑚) the values
𝛾𝑡(𝐺𝑖, 𝑟

′) as well as the corresponding solutions denoted Γ𝐺𝑖,𝑟′ , for each cograph 𝐺𝑖 with
𝑖 = 1, . . . , itp and 𝑟′ = 1, . . . , 𝑟

Definition 8. Given a cograph 𝐺 = (𝑉,𝐸) and two integers 𝑡 ≥ 2, 𝑟 ≥ 1 we denote by 𝛽𝑡(𝐺, 𝑏)
the value of the largest demand 𝑟′ such that there exists a set 𝑆 of size at most 𝑏 (|𝑆| ≤ 𝑏)
and 𝑆 is a (𝑡, 𝑟′)-Broadcast Dominating set of 𝐺, where the distance function is redefined as
𝑑′(𝑢, 𝑣) = min(2, 𝑑𝐺(𝑢, 𝑣)), for each 𝑢, 𝑣 ∈ 𝑉 .

Using the values 𝛾𝑡(𝐺𝑖, 𝑟
′) and the solutions Γ𝐺𝑖,𝑟′ , for each cograph 𝐺𝑖 with 𝑖 = 1, . . . , itp

and each 𝑟′ = 1, . . . , 𝑟 we are able to compute in time 𝑂(𝑛𝑟) the values 𝛽𝑡(𝐺𝑖, 𝑏) for 𝑖 =
1, . . . , itp and 𝑏 = 1, 2, . . . , |𝑉 (𝐺𝑖)|, as well as the corresponding solutions denoted B𝐺𝑖,𝑏.

Theorem 5. (𝑡, 𝑟)-Broadcast Domination is solvable in time 𝑂(itp(𝛽+1)itp+1+𝑛𝑟2+𝑚).

Proof. Algorithm ITP-𝛽 starting from 𝑏 = 1 increases the budget until a solution is identified.
We recall that we are assuming that for each 𝑣 ∈ 𝑉 we have 𝑟 ≤

∑︀
𝑢∈𝑁𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)), hence
the problem does admit a solution.

Fixed a budget 𝑏, the algorithm considers all the possible vectors s = (𝑠1, . . . , 𝑠itp) where
𝑏 =

∑︀itp
𝑖=1 𝑠𝑖 and 0 ≤ 𝑠𝑖 ≤ min(𝑏, |𝑉 (𝐺𝑖)|). For each vector, the algorithm evaluates whether

there exists a solution 𝑆 such that |𝑆𝑖| = 𝑠𝑖 where 𝑆𝑖 = 𝑆 ∩ 𝑉 (𝐺𝑖), for each 1 ≤ 𝑖 ≤ itp.
Specifically, it computes the values 𝑟′𝑖, corresponding to the residual demand on 𝐺𝑖 considering
the contribution of nodes in 𝑆 ∖ 𝑆𝑖. Such contribution depends only on the sizes 𝑠𝑗 of each 𝑆𝑗

with 𝑗 ̸= 𝑖. Then the values 𝛽𝑡(·, ·) are exploited to check whether each component 𝐺𝑖 is able
to reach the residual demand 𝑟′𝑖, using the assigned budget 𝑠𝑖. If this is the case, the solution set
is determined in line 4 and returned by the algorithm.

For each 𝑖 = 1, . . . , itp and 𝑣 ∈ 𝑉 (𝐺𝑖) we have

𝛽𝑡(𝐺𝑖, 𝑠𝑖) =
∑︁

𝑢∈B𝐺𝑖,𝑠𝑖
∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)) ≥ 𝑟′𝑖 = 𝑟 −
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

𝑠𝑗(𝑡− 𝑑𝐻(𝑖, 𝑗)),



Algorithm 1: ITP-𝛽(𝐺 = 𝐻(𝐺1, . . . , 𝐺itp), 𝑡, 𝑟,𝛽𝑡(·, ·),B·,·)

Input: A graph 𝐺 = 𝐻(𝐺1, . . . , 𝐺itp), a radius 𝑡, a demand 𝑟, and values 𝛽𝑡(𝐺𝑖, 𝑏) for
each 𝑖 = 1, . . . , itp and 𝑏 = 1, . . . , |𝑉 (𝐺𝑖)|, with their associated solutions
B𝐺𝑖,𝑏.

Output: 𝑆 a solution for the (𝑡, 𝑟)-Broadcast Domination problem for 𝐺.
1 for 𝑏 = 1 to 𝛽 do
2 for each s = (𝑠1, . . . , 𝑠itp) |

∑︀itp
𝑖=1 𝑠𝑖=𝑏 and 0 ≤ 𝑠𝑖 ≤ min(𝑏, |𝑉 (𝐺𝑖)|) do

3 for 𝑖 = 1, . . . , itp do 𝑟′𝑖 = 𝑟 −
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

𝑠𝑗(𝑡− 𝑑𝐻(𝑖, 𝑗))

4 if
⋀︀itp

𝑖=1 (𝛽𝑡(𝐺𝑖, 𝑠𝑖) ≥ 𝑟′𝑖) then return 𝑆 =
⋃︀itp

𝑖=1 B𝐺𝑖,𝑠𝑖

and consequently∑︁
𝑢∈𝑆∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)) =
∑︁

𝑢∈𝑆𝑖∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)) +
∑︁
𝑗 ̸=𝑖

⎛⎝ ∑︁
𝑢∈𝑆𝑗∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣))

⎞⎠
=

∑︁
𝑢∈B𝐺𝑖,𝑠𝑖

∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)) +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

𝑠𝑗(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟.

Finally, we notice that Algorithm ITP-𝛽 requires time 𝑂(itp (𝛽 + 1)itp). Moreover, the time

to obtain all the values 𝛽𝑡(𝐺𝑖, 𝑏) and the corresponding solutions B𝐺𝑖,𝑏 for 𝑖 = 1, . . . , itp and
𝑏 = 1, 2, . . . , |𝑉 (𝐺𝑖)|, is 𝑂(𝑛𝑟2 +𝑚).

Algorithm for bounded itp and demand 𝑟

Let 𝐺 = 𝐻(𝐺1, . . . , 𝐺itp). In this section, we design an FPT algorithm to solve the (𝑡, 𝑟)-
Broadcast Domination problem for 𝐺 parameterized by itp and the demand 𝑟. The algorithm
exploits the values 𝛾𝑡(𝐺𝑖, 𝑟

′) that can be obtained using the strategy adopted in Section 4, for
each cograph 𝐺𝑖 with 1 ≤ 𝑖 ≤ itp and 𝑟′ = 1, . . . , 𝑟. We recall that 𝛾𝑡(𝐺, 0) = 0, for each
cograph 𝐺.

Theorem 6. (𝑡, 𝑟)-Broadcast Domination is solvable in time 𝑂(itp (𝑟 + 1)itp + 𝑛𝑟2 +𝑚).

Proof. Algorithm ITP-𝑟 considers all the possible vectors r = (𝑟1, . . . , 𝑟itp), where 𝑟𝑖 = 0, . . . , 𝑟
and 𝑖 = 1, . . . , itp, and for each of them verifies if each value 𝑟𝑖 satisfies

𝑟𝑖 ≥ 𝑟 −
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

𝛾𝑡(𝐺𝑗 , 𝑟𝑗)(𝑡− 𝑑𝐻(𝑖, 𝑗)). (9)

Assuming that (9) holds for each 𝑟𝑖 in r, select the vertex set 𝑆(r) =
⋃︀

1≤𝑖≤itp Γ𝐺𝑖,𝑟𝑖 , where
Γ𝐺𝑖,𝑟𝑖 ⊆ 𝑉 (𝐺𝑖) is obtained by using the strategy in Section 4 with |Γ𝐺𝑖,𝑟𝑖 | = 𝛾𝑡(𝐺𝑖, 𝑟𝑖). For
𝑣 ∈ 𝑉 (𝐺𝑖) and 𝑖 = 1, . . . , itp, we have∑︁

𝑢∈Γ𝐺𝑖,𝑟𝑖
∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)) ≥ 𝑟𝑖. (10)



Algorithm 2: ITP-𝑟(𝐺 = 𝐻(𝐺1, . . . , 𝐺itp), 𝑡, 𝑟,𝛾𝑡(·, ·))
Input: A graph 𝐺 = 𝐻(𝐺1, . . . , 𝐺itp), a radius 𝑡, a demand 𝑟, and values 𝛾𝑡(𝐺𝑖, 𝑟

′) for
each 𝑖 = 1, . . . , itp and 𝑟′ = 1, . . . , 𝑟.

Output: The vector of demands r𝑠.
1 𝑠 = ∞ and r𝑠 = (0, . . . , 0)
2 for each r = (𝑟1, . . . , 𝑟itp) such that 0 ≤ 𝑟𝑖 ≤ 𝑟, 1 ≤, 𝑖 ≤ itp do

3 if
itp⋀︁
𝑖=1

⎛⎜⎝𝑟𝑖 ≥ 𝑟 −
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

𝛾𝑡(𝐺𝑗 , 𝑟𝑗)(𝑡− 𝑑𝐻(𝑖, 𝑗))

⎞⎟⎠ then

4 if 𝑠 >
∑︀

1≤𝑖≤itp 𝛾𝑡(𝐺𝑖, 𝑟𝑖) then 𝑠 =
∑︁

1≤𝑖≤itp

𝛾𝑡(𝐺𝑖, 𝑟𝑖) and r𝑠 = r

5 return r𝑠;

By (9) and (10), it holds∑︁
𝑢∈𝑆(r)∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)) =
∑︁

𝑢∈Γ𝐺𝑖,𝑟𝑖
∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣)) +
∑︁
𝑗 ̸=𝑖

⎛⎜⎝ ∑︁
𝑢∈Γ𝐺𝑗,𝑟𝑗

∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣))

⎞⎟⎠
≥ 𝑟𝑖 +

∑︁
𝑗 ̸=𝑖

⎛⎜⎝ ∑︁
𝑢∈Γ𝐺𝑗,𝑟𝑗

∩𝑁𝐺,𝑡(𝑣)

(𝑡− 𝑑(𝑢, 𝑣))

⎞⎟⎠ = 𝑟𝑖 +
∑︁
𝑗|𝑗 ̸=𝑖

𝑑𝐻 (𝑖,𝑗)≤𝑡

𝛾𝑡(𝐺𝑗 , 𝑟𝑗)(𝑡− 𝑑𝐻(𝑖, 𝑗)) ≥ 𝑟.

Hence, the set 𝑆(r) =
⋃︀

1≤𝑖≤itp Γ𝐺𝑖,𝑟𝑖 is a (𝑡, 𝑟)-Broadcast Dominating set of 𝐺.
Furthermore, since Algorithm ITP-𝑟 returns, among all the vectors r whose components 𝑟𝑖

satisfy (9) and (10) for each 𝑖 = 1, . . . , itp, the vector r𝑠 (see lines 4-5) such that
r𝑠 = argmin

r
|𝑆(r)|,

we can reconstruct the set 𝑆(r𝑠) that is a solution for the instance ⟨𝐺, 𝑡, 𝑟⟩ of the (𝑡, 𝑟)-
Broadcast Domination problem.

Finally, we notice that Algorithm ITP-𝑟 requires time 𝑂(itp (𝑟 + 1)itp). Moreover the time
to obtain all the values 𝛾𝑡(𝐺𝑖, 𝑟

′) and the solutions Γ𝐺𝑖,𝑟′ , for 𝑖 = 1, . . . , itp and 𝑟′ = 1, . . . , 𝑟,
is 𝑂(𝑛𝑟2 +𝑚).

6. Discussion
The (𝑡, 𝑟)-Broadcast Domination problem has been recently introduced and studied in some
special classes of graphs (mainly grid graphs and lattices). We have initiated the study of the
(𝑡, 𝑟)-Broadcast Domination problem in general graphs. We have designed an approxima-
tion algorithm for general graphs and optimal polynomial time algorithms for cographs and
graphs of bounded Neighborhood diversity (nd). Moreover, we have presented FPT algorithms
parameterized by Iterated type partition number (itp) plus the solution size 𝛽 = |𝑆| and by itp

plus the demand 𝑟. It eluded us the design of an FPT algorithm for the problem parameterized
by itp only, which we leave as an open problem.
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