
Maximum Letter-Duplicated Subsequence (short
paper)⋆

Riccardo Dondi1,*,†, Mehdi Hosseinzadeh1,† and Alexandru Popa2,†

1Università degli Studi di Bergamo, Bergamo, Italy
2University of Bucharest, Romania

Abstract
In this contribution we consider Max-LL-DUP, an optimization problem that asks for a letter-duplicated
subsequence of an input string that contains the maximum number of letters of the alphabet over which
the input string is defined. When each letter has at most four occurrences in the input string, we prove
that the problem is APX-hard. Then, we give a linear-time algorithm when each letter has at most three
occurrences in the input string.

Keywords
String Algorithms, LCS, APX-hardness

1. Introduction

Detecting gene duplications in genomes is a fundamental problem in biology. Recently, some
approaches have modeled this problem as the identification of a subsequence in a given input
string that represents a genome [1, 2, 3, 4]. The approach proposed by [3] aims to detect
tandem duplications, in particular when mutations may occur after duplications, and looks for a
letter-duplicated subsequence of a given string. A letter-duplicated subsequence consists of the
concatenation of substrings on a single letter that have length at least two. In [3] it is introduced
a decision problem that asks whether there exists a letter-duplicated subsequence of a given
string that contains each letter of the alphabet over which the input string is defined. The
problem has been shown to be NP-complete, even when each letter has at most six occurrences,
while it is polynomial-time solvable when each letter has at most three occurrences [3].

Since in many cases there is no letter-duplicated subsequence of a string that contains all the
letters of the alphabet Σ, we relax this constraint and we introduce and study an optimization
problem, called Max-LL-DUP, that asks for the maximum number of letters of Σ that are
contained in a letter-duplicated subsequence of 𝑆. In Section 2, we start by introducing some
definitions and by providing the formal definition of Max-LL-DUP. In Section 3, we prove that
Max-LL-DUP is APX-hard even if each letter has at most four occurrences in the input string,

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy
*Corresponding author.
†
These authors contributed equally.
$ riccardo.dondi@unibg.it (R. Dondi); m.hosseinzadeh@unibg.it (M. Hosseinzadeh);
alexandru.popa@fmi.unibuc.ro (A. Popa)
� 0000-0002-6124-2965 (R. Dondi); 0000-0003-3275-6286 (M. Hosseinzadeh); 0000-0003-3364-1210 (A. Popa)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:riccardo.dondi@unibg.it
mailto:m.hosseinzadeh@unibg.it
mailto:alexandru.popa@fmi.unibuc.ro
https://orcid.org/0000-0002-6124-2965
https://orcid.org/0000-0003-3275-6286
https://orcid.org/0000-0003-3364-1210
https://creativecommons.org/licenses/by/4.0

and in Section 4, we present a polynomial-time algorithm when each letter has at most three
occurrences. We conclude this contribution with some future directions.

2. Definitions

Given a string 𝑆, we denote by |𝑆| its length. We denote by 𝑆[𝑖] the letter of 𝑆 in position 𝑖,
with 1 ≤ 𝑖 ≤ |𝑆|. Given two positions 𝑖 and 𝑗, with 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑆|, we denote by 𝑆[𝑖, 𝑗] the
substring of 𝑆 between 𝑖 and 𝑗. If 𝑖 = 𝑗, then 𝑆[𝑖, 𝑖] is the letter 𝑆[𝑖]. Given a letter 𝑥 ∈ Σ, we
denote by 𝑥𝑖, with 𝑖 ≥ 1, a string consisting of 𝑖 occurrences of 𝑥. A subsequence 𝑆′ of 𝑆 is
obtained by removing some letters, possibly none, of 𝑆. Now, we introduce the definition of
letter-duplicated subsequence.

Definition 1. Given a string 𝑆 on alphabet Σ, a subsequence 𝑆′ of 𝑆 is letter-duplicated if
𝑆′ = 𝑥𝑎11 . . . 𝑥𝑎𝑧𝑧 where 𝑥𝑖 ∈ Σ and 𝑎𝑖 ≥ 2, with 1 ≤ 𝑖 ≤ 𝑧, and 𝑥𝑖 ̸= 𝑥𝑖+1, with 1 ≤ 𝑖 ≤ 𝑧 − 1.

A letter-duplicated subsequence of 𝑆 of length two is called a pair. Consider two pairs,
𝑆[𝑖]𝑆[𝑗], with 1 ≤ 𝑖 < 𝑗 ≤ |𝑆|, and 𝑆[𝑙]𝑆[ℎ] with 1 ≤ 𝑙 < ℎ ≤ |𝑆|, where 𝑆[𝑖] = 𝑆[𝑗] ̸= 𝑆[𝑙] =
𝑆[ℎ]. The two pairs are crossing when, assuming 𝑖 < 𝑙 it holds that: 1 ≤ 𝑖 < 𝑙 < 𝑗 < ℎ ≤ |𝑆|
or 1 ≤ 𝑖 < 𝑙 < ℎ < 𝑗 ≤ |𝑆|. Note that at most one of two crossing pairs can belong to a
letter-dupplicated subsequence of 𝑆. Now, we define the problem we are interested into.

Problem 1. Max-LL-DUP
Input: A string 𝑆 on alphabet Σ.
Output: A letter-duplicated subsequence 𝑆′ that contains the maximum number of letters in Σ.

Since the objective function of Max-LL-DUP is the number of letters appearing in a solution
and not the length of the subsequence, we assume in the following that each solution of Max-LL-
DUP contains at most one pair for each letter in Σ. We denote by 𝑥-Max-LL-DUP, 1 ≤ 𝑥 ≤ |𝑆|,
the restriction of Max-LL-DUP where each letter appears at most 𝑥 times in the input sequence.

3. APX-Hardness of 4-Max-LL-DUP

In this section, we show that 4-Max-LL-DUP is APX-hard. We prove the result by giving a
reduction from the Maximum Independent Set on cubic graphs (3-MIS). Recall that in a cubic
graph each vertex has degree 3 and that, given a cubic graph 𝐺 = (𝑉,𝐸), 3-MIS asks for a
subset 𝑉 ′ ⊆ 𝑉 of maximum cardinality such that no two vertices in 𝑉 ′ are adjacent.

Given an instance 𝐺 = (𝑉,𝐸) of 3-MIS we define a corresponding instance of 4-Max-LL-DUP
as follows. We start by defining the alphabet Σ and the string 𝑆. The alphabet Σ is defined as
follows:

Σ = {𝑎𝑖, 𝑏𝑖 : 𝑣𝑖 ∈ 𝑉, 1 ≤ 𝑖 ≤ |𝑉 |} ∪ {𝑒𝑖,𝑗 , 𝑒𝑗,𝑖 : {𝑣𝑖, 𝑣𝑗} ∈ 𝐸, 1 ≤ 𝑖, 𝑗 ≤ |𝑉 |}.
Given a vertex 𝑣𝑖 ∈ 𝑉 , the letters in {𝑎𝑖, 𝑏𝑖, 𝑒𝑖,𝑤, 𝑒𝑖,𝑧, 𝑒𝑖,𝑗 ∈ Σ : 𝑣𝑖 ∈ 𝑉 } are called the letters

related to 𝑣𝑖. Now, 𝑆 consists of different substrings. For each 𝑣𝑖, 1 ≤ 𝑖 ≤ |𝑉 |, 𝑆 contains the
following substrings 𝑆1(𝑣𝑖), 𝑆2(𝑣𝑖):

𝑆1(𝑣𝑖) = 𝑎𝑖𝑏𝑖𝑎𝑖𝑏𝑖 𝑆2(𝑣𝑖) = 𝑎𝑖𝑒𝑖,𝑗𝑒𝑖,𝑗𝑒𝑖,𝑧𝑒𝑖,𝑧𝑒𝑖,𝑤𝑒𝑖,𝑤𝑎𝑖.

For each {𝑣𝑖, 𝑣𝑗} ∈ 𝐸, with 1 ≤ 𝑖 < 𝑗 ≤ |𝑉 |, the following substring 𝑆(𝑖, 𝑗) is defined:

𝑆(𝑖, 𝑗) = 𝑒𝑖,𝑗𝑒𝑗,𝑖𝑒𝑖,𝑗𝑒𝑗,𝑖.

The input string 𝑆 is obtained by concatenating first the substrings 𝑆1(𝑣𝑖), 1 ≤ 𝑖 ≤ |𝑉 |, in
lexicographic order, then 𝑆2(𝑣𝑖), 1 ≤ 𝑖 ≤ |𝑉 |, in lexicographic order, then 𝑆(𝑣𝑖, 𝑣𝑗), where
{𝑣𝑖, 𝑣𝑗} ∈ 𝐸 and 1 ≤ 𝑖 < 𝑗 ≤ |𝑉 |. First, we show that 𝑆 is indeed an instance of 4-Max-LL-
DUP.

Lemma 1. Let 𝐺 be an instance of 3-MIS and 𝑆 be a corresponding string built by the reduction,
then each letter of Σ has at most four occurrences in 𝑆.

Proof. We show that each letter in Σ has at most four occurrences in 𝑆. Letter 𝑏𝑖, 1 ≤ 𝑖 ≤ |𝑉 |,
has two occurrences in 𝑆, since it appears only in substring 𝑆1(𝑣𝑖). Letter 𝑎𝑖, 1 ≤ 𝑖 ≤ |𝑉 |,
has four occurrences in 𝑆, since it appears (twice) only in substrings 𝑆1(𝑣𝑖), 𝑆2(𝑣𝑖). Letter 𝑒𝑖,𝑗 ,
1 ≤ 𝑖, 𝑗 ≤ |𝑉 |, has four occurrences in 𝑆, since it appears only in substrings 𝑆2(𝑣𝑖) (twice) and
𝑆(𝑖, 𝑗) (twice).

Now, we prove that starting from an independent set of 𝐺, we can compute in polynomial
time a solution of 4-Max-LL-DUP on instance 𝑆.

Lemma 2. Let 𝐺 be an instance of 3-MIS and 𝑆 be the corresponding instance of 4-Max-LL-DUP.
Given an independent set 𝑉 ′ of 𝐺, we can compute in polynomial time a solution of 4-Max-LL-DUP
on instance 𝑆 that contains 5|𝑉 ′|+ 4|𝑉 ∖ 𝑉 ′| pairs.

Proof. Given an independent set 𝑉 ′ of 𝐺, define a solution 𝑆′ of 4-Max-LL-DUP as follows:

- For each 𝑣𝑖 ∈ 𝑉 ′, add to 𝑆′ pair 𝑏𝑖𝑏𝑖 in 𝑆1(𝑣𝑖), and 𝑎𝑖𝑎𝑖 in 𝑆2(𝑣𝑖); moreover, for each 𝑗 (assume
w.l.o.g 𝑖 < 𝑗), add to 𝑆′ the pair 𝑒𝑖,𝑗 , 𝑒𝑖,𝑗 , in 𝑆(𝑖, 𝑗). Hence five pairs of letters related to 𝑣𝑖 are
in 𝑆′ (recall that 𝐺 is a cubic graph).

- For each 𝑣𝑖 ∈ 𝑉 ∖𝑉 ′, add to 𝑆′ the pair 𝑎𝑖𝑎𝑖 in 𝑆1(𝑣𝑖), and the pairs 𝑒𝑖,𝑗 , 𝑒𝑖,𝑗 , 𝑒𝑖,𝑧, 𝑒𝑖,𝑧 𝑒𝑖,𝑤, 𝑒𝑖,𝑤
in 𝑆2(𝑣𝑖), where {𝑣𝑖, 𝑣𝑗}, {𝑣𝑖, 𝑣ℎ}, {𝑣𝑖, 𝑣𝑤} are the edges of 𝐺 incident in 𝑣𝑖. Hence in this case
four pairs of letters related to 𝑣𝑖 are in 𝑆′.
𝑆′ contains 5|𝑉 ′|+ 4|𝑉 ∖ 𝑉 ′| pairs of letters, thus concluding the proof.

Lemma 3. Let 𝐺 be an instance of 3-MIS and 𝑆 be a corresponding instance of 4-Max-LL-DUP.
Given a solution of 4-Max-LL-DUP on instance 𝑆 that contains 5𝑞 + 4(|𝑉 | − 𝑞) pairs, we can
compute in polynomial time an independent set 𝑉 ′ of 𝐺 with |𝑉 ′| ≥ 𝑞.

Proof. Consider a solution 𝑆′ of 4-Max-LL-DUP that contains 5𝑞 + 4(|𝑉 | − 𝑞) pairs. First, we
notice that there exists a set 𝑉 ′ ⊆ 𝑉 of vertices in 𝐺 such that |𝑉 ′| ≥ 𝑞 and such that, for each
𝑣𝑖 ∈ 𝑉 ′, 𝑆′ contains all the five pairs of letters related to 𝑣𝑖, that is 𝑏𝑖𝑏𝑖, 𝑎𝑖𝑎𝑖 and for each 𝑗, with
{𝑣𝑖, 𝑣𝑗} ∈ 𝐸 (assume w.l.o.g 𝑖 < 𝑗), 𝑒𝑖,𝑗 , 𝑒𝑖,𝑗 . Indeed, assume aiming at a contradiction that this
is not the case. Since an instance of 4-Max-LL-DUP contains 5 pairs of letters related to each
vertex 𝑣𝑖 ∈ 𝑉 , then 𝑆′ can contain at most 5(𝑞 − 1) + 4(|𝑉 | − 𝑞 + 1) < 5𝑞 + 4(|𝑉 | − 𝑞) pairs.
Consider now 𝑣𝑖 ∈ 𝑉 ′. Then 𝑆′ contains 5 pairs of letters related to 𝑣𝑖. We claim that for each
{𝑣𝑖, 𝑣𝑗} ∈ 𝐸 (we assume w.l.o.g. 𝑖 < 𝑗), 𝑆′ contains one pair 𝑒𝑖,𝑗𝑒𝑖,𝑗 in each substring 𝑆(𝑖, 𝑗).

Assume this is not the case, then 𝑆′ must contain a pair 𝑒𝑖,𝑗𝑒𝑖,𝑗 in a substring of 𝑆 different from
𝑆(𝑖, 𝑗), that is in 𝑆2(𝑣𝑖). Thus 𝑆′ cannot contain pair 𝑎𝑖𝑎𝑖 in 𝑆2(𝑣𝑖), since it is crossing with
pair 𝑒𝑖,𝑗𝑒𝑖,𝑗 . Since 𝑆′ can contain at most one of the crossing pairs 𝑎𝑖𝑎𝑖, 𝑏𝑖𝑏𝑖 of 𝑆1(𝑣𝑖), it follows
that 𝑆′ contains at most 4 pairs of letters related to 𝑣𝑖, which contradicts the assumption that
𝑣𝑖 ∈ 𝑉 ′.

Consider two vertices 𝑣𝑖, 𝑣𝑧 ∈ 𝑉 ′, with 1 ≤ 𝑖 < 𝑧 ≤ |𝑉 |. Since 𝑆′ contains 5 pairs of letters
related to each of 𝑣𝑖, 𝑣𝑧 , then for 𝑥 ∈ {𝑖, 𝑧} 𝑆′ must contain a pair 𝑒𝑥,𝑗𝑒𝑥,𝑗 in each 𝑆(𝑥, 𝑗). Then
{𝑣𝑖, 𝑣𝑧} /∈ 𝐸, otherwise the pairs 𝑒𝑖,𝑧𝑒𝑖,𝑧 and 𝑒𝑧,𝑖𝑒𝑧,𝑖 would be crossing in 𝑆(𝑖, 𝑧) and could
not be both in 𝑆′. Thus no edge {𝑣𝑖, 𝑣𝑧} ∈ 𝐸 and 𝑉 ′ is an independent set of 𝐺 of size at least
𝑞.

We can conclude with the main result of this section.

Theorem 1. 4-Max-LL-DUP is APX-hard.

Proof. Due to the results of Lemma 2 and in Lemma 3, we have described an 𝐿-reduction from
3-MIS to 4-Max-LL-DUP (see [5] for details on L-reductions). Indeed, an optimal solution of
3-MIS, denoted by OPT(3-MIS) contains at least |𝑉 |

4 vertices (a greedy algorithm that selects a
vertex 𝑣, adds it to the independent set and remove 𝑣 and its neighbors, computes an indepen-
dent set of size at least |𝑉 |

4). Hence, denoted by OPT(4-Max-LL-DUP) an optimal solution of
4-Max-LL-DUP, by Lemma 2 there exists a constant 𝛼 such that:

𝑂𝑃𝑇 (4-Max-LL-DUP) ≤ 𝛼 𝑂𝑃𝑇 (3-MIS).

Moreover, given an approximated solution of 4-Max-LL-DUP on instance 𝑆 of value
APX(4-Max-LL-DUP) by Lemma 3 we can compute in polynomial time an approximated solu-
tion of 3-MIS on instance 𝐺 containing APX(3-MIS) vertices, such that there exists a constant 𝛽
and it holds that

𝑂𝑃𝑇 (3-MIS)−𝐴𝑃𝑋(3-MIS) ≤ 𝛽 (𝑂𝑃𝑇 (4-Max-LL-DUP)−𝐴𝑃𝑋(4-Max-LL-DUP)).

It follows that have designed an L-reduction from 3-MIS to 4-Max-LL-DUP. Since 3-MIS is
APX-hard [6], then also 4-Max-LL-DUP is APX-hard.

4. A Linear-Time Algorithm for 3-Max-LL-DUP

We now show that 3-Max-LL-DUP is solvable in linear time. We present how to compute the
value of an optimal solution of 3-Max-LL-DUP, the algorithm can be easily adapted to compute
the actual solution.

Consider a function 𝐷[𝑗], with 0 ≤ 𝑗 ≤ |𝑆|, that represents the length of an optimal solution
of 3-Max-LL-DUP on instance 𝑆[1, 𝑗]. Function 𝐷[𝑗] can be computed with the following
recurrence. For 𝑗 ∈ 0, 1, 𝐷[𝑗] = 0; for 𝑗 ≥ 2, we have that:

𝐷[𝑗] = max

⎧⎨⎩
𝐷[𝑗 − 1]
𝐷[𝑟𝑎 − 1] + 1 where 𝑆[𝑗] = 𝑎 and 𝑟𝑎 is the rightmost

occurrence of 𝑎 in 𝑆[1, 𝑗 − 1].
(1)

We start by considering the correctness of the recurrence.

Lemma 4. There exists a solution of 3-Max-LL-DUP on 𝑆[1, 𝑗] consisting of ℎ pairs if and only if
𝐷[𝑗] = ℎ.

Proof. We prove the lemma by induction. In the base case, for 𝑗 = 0, 1, there is no pair in 𝑆[1, 1]
and by definition, 𝐷[0] = 0 and 𝐷[1] = 0. Assume that the lemma holds for a string 𝑆[1, 𝑧],
with 𝑧 < 𝑗, we show that it holds for 𝑗. Consider a solution 𝑆′ of 3-Max-LL-DUP on instance
𝑆[1, 𝑗] of size ℎ. If 𝑆′ does not include 𝑆[𝑗], then 𝑆′ is a solution of 3-Max-LL-DUP on instance
𝑆[1, 𝑗 − 1] of size ℎ and by induction hypothesis 𝐷[𝑗 − 1] ≥ ℎ, thus 𝐷[𝑗] ≥ ℎ. Assume that 𝑆′

includes 𝑆[𝑗], then it must include also another occurrence of 𝑎 = 𝑆[𝑗] in 𝑆[1, 𝑗 − 1] we can
assume that it is 𝑆[𝑟𝑎]. Thus 𝑆′ contains ℎ−1 pairs of 𝑆[1, 𝑟𝑎−1], thus by induction hypothesis
𝐷[𝑟𝑎 − 1] ≥ ℎ− 1 and, by Recurrence 1, 𝐷[𝑗] ≥ ℎ. Note indeed that, since 𝑆 contains at most
three occurrences of each letter, then no solution of 3-Max-LL-DUP on instance 𝑆[1, 𝑟𝑎 − 1]
contains 𝑎.

Assume that 𝐷[𝑗] = ℎ, as computed by Recurrence 1. If 𝐷[𝑗] = 𝐷[𝑗 − 1] = ℎ, then by
induction hypothesis there exists a solution 𝑆′ of 3-Max-LL-DUP on instance 𝑆[1, 𝑗− 1], hence
also on 𝑆[1, 𝑗], of size at least ℎ. Assume that 𝐷[𝑗] = 𝐷[𝑟𝑎 − 1] + 1, then 𝐷[𝑟𝑎 − 1] = ℎ− 1.
It follows by induction hypothesis that there exists a solution 𝑆′′ of 3-Max-LL-DUP on instance
𝑆[1, 𝑟𝑎 − 1] of size at least ℎ− 1. By adding the pair (𝑆[𝑟𝑎], 𝑆[𝑗]) to 𝑆′′ we obtain a solution of
3-Max-LL-DUP on instance 𝑆[1, 𝑗] of size at least ℎ.

Next, we show that 𝐷 can be computed in linear time. Notice that 𝐷 contains a linear
number of entries. Each 𝐷[𝑗] can be updated in constant time as described in the following.
First, assume that we have computed in linear time an array 𝐴 of size |Σ| and indexed by Σ,
that for each 𝑎 ∈ Σ stores the positions of the two leftmost occurrences of 𝑎 (recall that each
letter has at most three occurrences in 𝑆; note that we can assume that each letter of Σ has at
least two occurrences in 𝑆, otherwise we can delete it from 𝑆). Array 𝐴 can be computed in
linear time, scanning 𝑆 from left to right. Using array 𝐴, given 𝑎 = 𝑆[𝑗], we can compute in
constant time the value of 𝑟𝑎, since it is the maximum value smaller than 𝑗 contained in the
entry of 𝐴 associated with 𝑎. Then 𝐷[𝑗] can be computed in constant time, since we have to
consider two values, namely 𝐷[𝑗 − 1], that can be computed in constant time, and 𝐷[𝑟𝑎 − 1],
that can be computed in constant time using array 𝐴. Finally, the length of an optimal solution
of 3-Max-LL-DUP on instance 𝑆 is stored in 𝐷[|𝑆|].

5. Conclusion

We have introduced Max-LL-DUP, a problem that asks for a letter-duplicated subsequence of
an input string that contains the maximum number of letters of the alphabet. An interesting
future direction is to further study the approximation complexity of the problem, in particular,
the design of constant-factor approximation algorithms.

References

[1] S. Schrinner, M. Goel, M. Wulfert, P. Spohr, K. Schneeberger, G. W. Klau, Using
the longest run subsequence problem within homology-based scaffolding, Algorithms

Mol. Biol. 16 (2021) 11. URL: https://doi.org/10.1186/s13015-021-00191-8. doi:10.1186/
S13015-021-00191-8.

[2] R. Dondi, F. Sikora, The longest run subsequence problem: Further complexity results,
in: P. Gawrychowski, T. Starikovskaya (Eds.), 32nd Annual Symposium on Combinatorial
Pattern Matching, CPM 2021, July 5-7, 2021, Wrocław, Poland, volume 191 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 14:1–14:15. URL: https://doi.org/10.
4230/LIPIcs.CPM.2021.14. doi:10.4230/LIPICS.CPM.2021.14.

[3] W. Lai, A. Liyanage, B. Zhu, P. Zou, Beyond the longest letter-duplicated subsequence
problem, in: H. Bannai, J. Holub (Eds.), 33rd Annual Symposium on Combinatorial Pattern
Matching, CPM 2022, June 27-29, 2022, Prague, Czech Republic, volume 223 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 7:1–7:12. doi:10.4230/LIPIcs.CPM.
2022.7.

[4] M. Lafond, W. Lai, A. Liyanage, B. Zhu, The longest subsequence-repeated subsequence
problem, in: W. Wu, J. Guo (Eds.), Combinatorial Optimization and Applications - 17th In-
ternational Conference, COCOA 2023, Hawaii, HI, USA, December 15-17, 2023, Proceedings,
Part I, volume 14461 of Lecture Notes in Computer Science, Springer, 2023, pp. 446–458. URL:
https://doi.org/10.1007/978-3-031-49611-0_32. doi:10.1007/978-3-031-49611-0_32.

[5] D. P. Williamson, D. B. Shmoys, The Design of Approximation Algorithms, Cambridge
University Press, 2011. URL: http://www.cambridge.org/de/knowledge/isbn/item5759340/
?site_locale=de_DE.

[6] P. Alimonti, V. Kann, Some apx-completeness results for cubic graphs, Theor. Comput.
Sci. 237 (2000) 123–134. URL: https://doi.org/10.1016/S0304-3975(98)00158-3. doi:10.1016/
S0304-3975(98)00158-3.

https://doi.org/10.1186/s13015-021-00191-8
http://dx.doi.org/10.1186/S13015-021-00191-8
http://dx.doi.org/10.1186/S13015-021-00191-8
https://doi.org/10.4230/LIPIcs.CPM.2021.14
https://doi.org/10.4230/LIPIcs.CPM.2021.14
http://dx.doi.org/10.4230/LIPICS.CPM.2021.14
http://dx.doi.org/10.4230/LIPIcs.CPM.2022.7
http://dx.doi.org/10.4230/LIPIcs.CPM.2022.7
https://doi.org/10.1007/978-3-031-49611-0_32
http://dx.doi.org/10.1007/978-3-031-49611-0_32
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
https://doi.org/10.1016/S0304-3975(98)00158-3
http://dx.doi.org/10.1016/S0304-3975(98)00158-3
http://dx.doi.org/10.1016/S0304-3975(98)00158-3

	1 Introduction
	2 Definitions
	3 APX-Hardness of 4-Max-LL-DUP
	4 A Linear-Time Algorithm for 3-Max-LL-DUP
	5 Conclusion

