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Abstract
Given an undirected connected graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) on 𝑛 vertices, the minimum Monitoring
Edge-Geodetic Set (MEG-set) problem asks to find a subset 𝑀 ⊆ 𝑉 (𝐺) of minimum cardinality such
that, for every edge 𝑒 ∈ 𝐸(𝐺), there exist 𝑥, 𝑦 ∈ 𝑀 for which all shortest paths between 𝑥 and 𝑦 in 𝐺
traverse 𝑒.

We show that, for any constant 𝑐 < 1
2

, no polynomial-time (𝑐 log𝑛)-approximation algorithm for
the minimum MEG-set problem exists, unless P = NP.
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1. Introduction

We study the minimum Monitoring Edge-Geodetic Set (MEG-set) problem. Given an undi-
rected and connected graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) on 𝑛 vertices, we say that an edge 𝑒 ∈ 𝐸(𝐺)
is monitored by a pair {𝑥, 𝑦} if 𝑒 lies on every shortest path between 𝑥 and 𝑦 in 𝐺. Moreover,
we say that a set 𝑀 ⊆ 𝑉 (𝐺) monitors 𝑒 if there exist 𝑥, 𝑦 ∈ 𝑀 such that {𝑥, 𝑦} monitors
𝑒. A MEG-set of 𝐺 is a subset 𝑀 ⊆ 𝑉 (𝐺) that monitors all edges in 𝐸(𝐺). The goal of the
minimum MEG-set problem is that of finding a MEG-set of 𝐺 of minimum cardinality. This
problem naturally arises in a scenario where network failures are detected by probes that can
detect the current distance that separates them, placed in some network nodes. Then, finding a
MEG-set of minimum cardinality means determining the minimum number of probes needed to
monitor the entire network. Furthermore, the importance of the problem also derives from its
connections with other concepts and scenarios related to network monitoring, such as distance
edge-monitoring and the computation of edge-geodetic sets.

The minimum MEG-set problem has been introduced in [1], where the authors focus on
providing upper and lower bounds to the size of minimum MEG-sets for both general graphs
and special classes of graphs. Further bounds on the size of MEG-sets have been given in
[2, 3, 4, 5, 6]. The problem was proven to be NP-hard by [2] on general graphs, and by [3]
on 3-degenerate 2-apex graphs. However, to the best of our knowledge, no inapproximability
result is currently known.

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy

*Corresponding author.
" davide.bilo@univaq.it (D. Bilò); giordano.colli@student.univaq.it (G. Colli); luca.forlizzi@univaq.it (L. Forlizzi);
stefano.leucci@univaq.it (S. Leucci)
� 0000-0003-3169-4300 (D. Bilò); 0000-0002-3923-7668 (L. Forlizzi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:davide.bilo@univaq.it
mailto:giordano.colli@student.univaq.it
mailto:luca.forlizzi@univaq.it
mailto:stefano.leucci@univaq.it
https://orcid.org/0000-0003-3169-4300
https://orcid.org/0000-0002-3923-7668
https://creativecommons.org/licenses/by/4.0


In this paper, we show that the problem of finding a MEG-set of minimum size is not
approximable within a factor of 𝑐 ln𝑛, where 𝑐 < 1

2 is a constant of choice, unless P = NP.

2. Preliminaries

Lemma 1. Let 𝑣 be a vertex of degree 1 in 𝐺. Vertex 𝑣 belongs to all MEG-sets of 𝐺.

Proof. Assume towards a contradiction that some MEG-set 𝑀 ⊆ 𝑉 (𝐺) ∖ {𝑣} of 𝐺 exists. Let
{𝑥, 𝑦} with 𝑥, 𝑦 ∈ 𝑀 be a pair of vertices that monitors the unique edge incident to 𝑣. Since
{𝑥, 𝑦} ∩ {𝑣} = ∅, all shortest path from 𝑥 to 𝑦 in 𝐺 contain 𝑣 as an internal vertex, thus 𝑣 must
have at least two incident edges, contradicting the hypothesis of the lemma.

Lemma 2. Let 𝑢 be a vertex of degree 1 in 𝐺 and let 𝑣 be its sole neighbor. If |𝑉 (𝐺)| ≥ 3 and 𝑀
is a MEG-set of 𝐺 then 𝑀 ∖ {𝑣} is a MEG-set of 𝐺.

Proof. From Lemma 1 we know that 𝑢 ∈ 𝑀 . We start by observing that {𝑢, 𝑣} only monitors
edge (𝑢, 𝑣) and, since |𝐸(𝐺)| ≥ |𝑉 (𝐺)| − 1 ≥ 2, there must exist some vertex 𝑥 ∈ 𝑀 ∖ {𝑢, 𝑣}.

Since (𝑢, 𝑣) is a bridge of𝐺, it is traversed by all paths between 𝑢 and any vertex in 𝑉 (𝐺)∖{𝑢}
and, in particular, it is monitored by {𝑢, 𝑥}.

We now turn our attention to the edges in 𝐸 ∖ {(𝑣, 𝑢)} and show that any such edge 𝑒 that
is monitored by {𝑣, 𝑦}, with 𝑦 ∈ 𝑀 , is also monitored by {𝑢, 𝑦}. Notice, since 𝑒 ̸= (𝑢, 𝑣), we
have 𝑦 ̸= 𝑢. Consider any shortest path 𝑃 from 𝑢 to 𝑦 in 𝐺 and observe that 𝑃 consists of
the edge (𝑢, 𝑣) followed by a path 𝑃 ′ from 𝑣 to 𝑦. By suboptimality of shortest paths, 𝑃 ′ is a
shortest path from 𝑣 to 𝑦 in 𝐺. Since {𝑣, 𝑦} monitors 𝑒, 𝑃 ′ contains 𝑒 and so does 𝑃 . Thus,
{𝑢, 𝑦} monitors 𝑒.

3. Our Inapproximability Result

We reduce from the Set Cover problem. A Set Cover instance ℐ = ⟨𝑋,𝒮⟩ is described as a set
of 𝜂 items 𝑋 = {𝑥1, . . . , 𝑥𝜂}, and a collection 𝒮 = {𝑆1, . . . , 𝑆ℎ} of ℎ ≥ 2 distinct subsets of 𝑋 ,
such that each subset contains at least two items and each item appears in at least two subsets.1

The goal is that of computing a collection 𝒮* ⊆ 𝒮 of minimum size such that ∪𝑆𝑖∈𝒮*𝑆𝑖 = 𝑋 .2

It is known that, unless P = NP, the Set Cover problem is not approximable within a factor
of (1− 𝜀) ln |ℐ|, where 𝜀 > 0 is a constant and |ℐ| is the size of the Set Cover instance [7].

Given an instance ℐ = ⟨𝑋,𝒮⟩ of Set Cover, we can build an associated bipartite graph 𝐻
whose vertex set 𝑉 (𝐻) is 𝑋 ∪ 𝒮 and such that 𝐻 contains edge (𝑥𝑖, 𝑆𝑗) if and only if 𝑥𝑖 ∈ 𝑆𝑗 .
We define 𝑁 = ℎ+ 𝜂. Observe that |ℐ| ≥ 𝑁 .

1This can be guaranteed w.l.o.g. by repeatedly reducing the instance by applying the first applicable of the following
two reduction rules. Rule 1: if there exists an item 𝑥𝑖 that is contained by a single subset 𝑆𝑗 , then 𝑆𝑗 belongs to all
feasible solutions, and we reduce to the instance in which both 𝑆𝑗 and 𝑥𝑖 have been removed. Rule 2: if there exists
a subset 𝑆𝑗 that contains a single element, then (due to Rule 1) there is an optimal solution that does not contain
𝑆𝑗 , and we reduce to the instance in which 𝑆𝑗 has been removed. Notice that this process can only decrease the
values of 𝜂 and ℎ.

2We assume w.l.o.g. that ∪ℎ
𝑖=1𝑆𝑖 = 𝑋 , i.e., that a solution exists.
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Figure 1: The graph 𝐺 obtained by applying our reduction with 𝑘 = 2 to the Set Cover instance ℐ =
⟨𝑋,𝒮⟩ with 𝜂 = 5, ℎ = 4, 𝑆1 = {𝑥1, 𝑥2, 𝑥3}, 𝑆2 = {𝑥2, 𝑥3}, 𝑆3 = {𝑥2, 𝑥4, 𝑥5}, and 𝑆4 = {𝑥3, 𝑥5}. To
reduce clutter, the edges of the clique induced by the vertices 𝑦𝑖 (in the gray area) are not shown.

Let 𝑘 be an integer parameter, whose exact value will be chosen later, that satisfies 2 ≤
𝑘 = 𝑂(poly(𝑁)). We construct a graph 𝐺 that contains 𝑘 copies 𝐻1, . . . ,𝐻𝑘 of 𝐻 as induced
subgraphs. In the following, for any ℓ = 1, . . . , 𝑘, we denote by 𝑥𝑖,ℓ and 𝑆𝑗,ℓ the vertices of
𝐻ℓ corresponding to the vertices 𝑥𝑖 and 𝑆𝑗 of 𝐻 , respectively. More precisely, we build 𝐺 by
starting with a graph that contains exactly the 𝑘 copies 𝐻1, . . . ,𝐻𝑘 of 𝐻 and augmenting it as
follows (see Figure 1):

• For each item 𝑥𝑖 ∈ 𝑋 , we add two new vertices 𝑦𝑖, 𝑦′𝑖 along with the edge (𝑦𝑖, 𝑦
′
𝑖) and all

the edges in {(𝑥𝑖,ℓ, 𝑦𝑖) | ℓ = 1, . . . , 𝑘};
• We add all the edges (𝑦𝑖, 𝑦𝑖′) for all 1 ≤ 𝑖 ≤ 𝑖′ ≤ 𝜂, so that the subgraph induced by
𝑦1, . . . , 𝑦𝜂 is complete.

• For each set 𝑆𝑗 ∈ 𝒮 , we add two new vertices 𝑧𝑗 , 𝑧′𝑗 along with the edge (𝑧𝑗 , 𝑧
′
𝑗), and all

the edges in {(𝑆𝑗,ℓ, 𝑧𝑗) | ℓ = 1, . . . , 𝑘}.

Observe that the number 𝑛 of vertices of 𝐺 satisfies 𝑛 = 2ℎ+2𝜂+𝑘(𝜂+ℎ) = (𝑘+2)(𝜂+ℎ) =
(𝑘 + 2)𝑁 .

Let 𝑌 = {𝑦𝑖 | 𝑖 = 1, . . . , 𝜂}, 𝑌 ′ = {𝑦′𝑖 | 𝑖 = 1, . . . , 𝜂}, 𝑍 = {𝑧𝑗 | 𝑖 = 1, . . . , ℎ}, and
𝑍 ′ = {𝑧𝑗 | 𝑖 = 1, . . . , ℎ}. Moreover, define 𝐿 as the set of all vertices of degree 1 in 𝐺, i.e.,
𝐿 = 𝑌 ′ ∪ 𝑍 ′. By Lemma 1, the vertices in 𝐿 belong to all MEG-sets of 𝐺.

Lemma 3. 𝐿 monitors all edges having both endvertices 𝑌 ∪ 𝑌 ′ ∪ 𝑍 ∪ 𝑍 ′
.



Proof. Observe that all shortest paths from 𝑦′𝑖 ∈ 𝐿 (resp. 𝑧′𝑗 ∈ 𝐿) to any other vertex 𝑣 ∈ 𝐿∖{𝑦′𝑖}
(resp. 𝑣 ∈ 𝐿 ∖ {𝑧′𝑗}) must traverse the sole edge incident to 𝑦′𝑖 (resp. 𝑧′𝑖), namely (𝑦′𝑖, 𝑦𝑖) (resp.
𝑧′𝑗 , 𝑧𝑗). Since |𝐿| ≥ 2, such a 𝑣 always exists, and all edges incident to 𝐿 are monitored by 𝐿.

The only remaining edges are those with both endpoints in 𝑌 . Let (𝑦𝑖, 𝑦𝑖′) be such an edge.
Since the only shortest path between 𝑦′𝑖 and 𝑦′𝑖′ in 𝐺 is ⟨𝑦′𝑖, 𝑦𝑖, 𝑦𝑖′ , 𝑦′𝑖′⟩, the pair {𝑦′𝑖, 𝑦′𝑖′} monitors
(𝑦𝑖, 𝑦𝑖′).

Lemma 4. Let 𝒮1, . . . ,𝒮𝑘 be 𝑘 (not necessarily distinct) set covers of ℐ . The set 𝑀 = 𝐿 ∪ {𝑆𝑗,ℓ |
𝑆𝑗 ∈ 𝒮ℓ, 1 ≤ ℓ ≤ 𝑘} is a MEG-set of 𝐺.

Proof. Since 𝐿 ⊆ 𝑀 , by Lemma 3, we only need to argue about edges with at least one endvertex
in some 𝐻ℓ, with 1 ≤ ℓ ≤ 𝑘. Let 𝑆𝑗 ∈ 𝒮ℓ, and consider any 𝑥𝑖 ∈ 𝑆𝑗 . Edge (𝑆𝑗,ℓ, 𝑧𝑗) is monitored
by {𝑧′𝑗 , 𝑆𝑗,ℓ}. Edges (𝑆𝑗,ℓ, 𝑥𝑖,ℓ) and (𝑥𝑖,ℓ, 𝑦𝑖) are monitored by {𝑆𝑗,ℓ, 𝑦

′
𝑖}.

The only remaining edges with at least one endvertex in 𝐻ℓ are those incident to vertices
𝑆𝑗,ℓ with 𝑆𝑗 ∈ 𝒮 ∖ 𝒮ℓ. Consider any such 𝑆𝑗 , let 𝑥𝑖 be an item in 𝑆𝑗 , and let 𝑆𝑘 ∈ 𝒮ℓ be any
set such that 𝑥𝑖 ∈ 𝑆𝑘 (notice that both 𝑥𝑖 and 𝑆𝑘 exist since sets are non-empty and 𝒮ℓ is a set
cover). Edge (𝑆𝑗,ℓ, 𝑥𝑖,ℓ) is monitored by {𝑆𝑘,ℓ, 𝑧

′
𝑗}, which also monitors (𝑆𝑗,ℓ, 𝑧𝑗).

We say that a MEG-set 𝑀 is minimal if, for every 𝑣 ∈ 𝑀 , 𝑀 ∖{𝑣} is not a MEG-set. Lemma 2
ensures that any minimal MEG-set 𝑀 does not contain any of the vertices 𝑦𝑖, for 𝑖 = 1, . . . , 𝜂,
or 𝑧𝑗 for 𝑗 = 1, . . . , ℎ. Hence, 𝑀 ∖ 𝐿 contains only vertices in

⋃︀𝑘
ℓ=1 𝑉 (𝐻ℓ).

Lemma 5. Let 𝑀 be a minimal MEG-set of 𝐺. For every 𝑖 = 1, . . . , 𝜂 and every ℓ = 1, . . . , 𝑘,

𝑀 contains at least one among 𝑥𝑖,ℓ and all 𝑆𝑗,ℓ such that 𝑥𝑖 ∈ 𝑆𝑗 .

The proof of Lemma 5 is given in the full version of this work [8].

Lemma 6. Given a MEG-set 𝑀 ′
of 𝐺, we can compute in polynomial time a MEG-set 𝑀 of 𝐺

such that |𝑀 | ≤ |𝑀 ′| and, for every ℓ = 1, . . . , 𝑘, the set 𝒮ℓ = {𝑆𝑗 ∈ 𝒮 | 𝑆𝑗,ℓ ∈ 𝑀} is a set

cover of ℐ .

Proof. Let 𝑀 ′′ be a minimal MEG-set of 𝐺 that is obtained from 𝑀 ′ by possibly discarding
some of the vertices. Clearly |𝑀 ′′| ≤ |𝑀 ′| and 𝑀 ′′ can be computed in polynomial time.
Moreover, by Lemma 5, for every 𝑖 = 1, . . . , 𝜂 and every ℓ = 1, . . . , 𝑘, 𝑀 ′′ contains 𝑥𝑖,ℓ or
some 𝑆𝑗,ℓ such that 𝑆𝑗 covers 𝑥𝑖. We compute 𝑀 from 𝑀 ′′ by replacing each 𝑥𝑖,ℓ ∈ 𝑀 ′′ with
𝑆𝑗,ℓ, where 𝑆𝑗 ∈ 𝒮 is any set that covers 𝑥𝑖. As a consequence, for every ℓ = 1, . . . , 𝑘, the set
𝒮ℓ = {𝑆𝑗 ∈ 𝒮 | 𝑆𝑗,ℓ ∈ 𝑀} is a set cover of ℐ . Moreover, since 𝑀 ′′ contains all vertices in 𝐿 by
Lemma 1, so does 𝑀 . Then, Lemma 4 implies that 𝑀 is a MEG-set of 𝐺.

Lemma 7. Let 𝜀 > 0 be a constant of choice. Any polynomial-time (𝛼 ln𝑛)-approximation

algorithm for the minimum MEG-set problem, where 𝛼 > 0 is a constant, implies the existence of

a polynomial-time ((2𝛼+ 𝜀) ln𝑁)-approximation algorithm for Set Cover.

Proof. Given an instance ℐ = ⟨𝑋,𝒮⟩ of Set Cover and let ℎ* be the size of an optimal set
cover of ℐ . In the rest of the proof we assume w.l.o.g. that 𝑁 ≥ 4 and ℎ* ≥ 4𝛼

𝜀 . Indeed, if any
of the above two conditions does not hold, we can solve ℐ in constant time.



We now construct the graph 𝐺 with 𝑛 = (𝑘 + 2)𝑁 ≤ 𝑁2 vertices by making 𝑘 = 𝑁 − 2
copies of 𝐻 . Next, we run the (𝛼 ln𝑛)-approximation algorithm to compute a MEG-set 𝑀 ′

of 𝐺, and we use Lemma 6 to find a MEG-set 𝑀 with |𝑀 | ≤ |𝑀 ′| that contains 𝑘 set covers
𝒮1, . . . ,𝒮𝑘 in polynomial time. Among these 𝑘 set covers, we output one 𝒮 ′ of minimum size.

To analyze the approximation ratio of the above algorithm, let 𝑀* be an optimal MEG-set of
𝐺. Lemma 4 ensures that |𝑀*| ≤ |𝐿|+ 𝑘ℎ* = 𝑁 + 𝑘ℎ*, and hence

|𝑀 | ≤ |𝑀 ′| ≤ 𝛼(𝑁 + 𝑘ℎ*) ln𝑛 = 𝛼(𝑁 + 𝑘ℎ*) ln𝑁2 = 2𝛼𝑘ℎ* ln𝑁 + 2𝛼𝑁 ln𝑁.

Therefore we have:

|𝒮 ′| ≤ |𝑀 |
𝑘

≤ 2𝛼ℎ* ln𝑁 +
2𝛼𝑁 ln𝑁

𝑘

≤ 2𝛼ℎ* ln𝑁 + 4𝛼 ln𝑁 =

(︂
2𝛼+

4𝛼

ℎ*

)︂
ℎ* ln𝑁 ≤ (2𝛼+ 𝜀)ℎ* ln𝑁.

Let 𝛾 be any positive constant. Since Set Cover cannot be approximated in polynomial time
within a factor of (1− 𝛾) ln |ℐ|, unless P = NP [7], and since an invocation of Lemma 7 with
𝛼 = 1

2−𝛾 and 𝜀 = 𝛾 shows that any polynomial-time ((12−𝛾) ln𝑛)-approximation algorithm for
the minimum MEG-set problem can be turned into a polynomial-time approximation algorithm
for Set Cover with an approximation ratio of (1− 𝛾) ln𝑁 ≤ (1− 𝛾) ln |ℐ|, we have:

Theorem 1. The minimum MEG-set problem cannot be approximated in polynomial time within

a factor of 𝑐 ln𝑛, for any constant 𝑐 < 1
2 , unless P = NP.

4. Conclusion

In this work we present inapproximability results on the minimum MEG-set problem, proving
that the problem is APX-hard and not approximable within a factor of 𝑐 ln𝑛, for any constant
𝑐 < 1

2 . Observe that it is not hard to devise an efficient approximation algorithm for the
minimum MEG-set achieving an approximation ratio of 𝑂(

√
𝑛 · ln𝑛) based on the well-known

approximation algorithm for the Set Cover [9]. It is an open problem to narrow the gap
between the lower and upper bounds on approximability of minimum MEG-set. Moreover, it
could be interesting to study the approximability of the problem on specific classes of graphs.
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