
Global Types for Agent Interaction Protocols
(short paper)⋆

Federico Bergenti1,*, Leonardo Galliera2, Paola Giannini2,*, Stefania Monica3,* and
Riccardo Nazzari2

1DISTI, Università di Parma, Italy
2DISIT & DISSTE, Università del Piemonte Orientale, Italy
3DISMI, Università di Modena e Reggio Emilia, Italy

Abstract
We introduce an extension of global and local types tailored to the description of FIPA agent interaction
protocols, formalize one of such protocols with these types. This paper is the first step of an ongoing
project aimed at the definition of agent systems correctly implementing protocols by construction.

Keywords
Multiparty Sessions, Global Types, Agent Interaction Protocols, Agent Programming Languages

Introduction Dynamic systems are characterized by entities interacting in asynchronous
ways. Software agents are software entities with the ability to [1]: react to environmental
changes; take autonomous decisions and act accordingly to achieve their (explicit) goals; co-
operate in loosely coupled Multi-Agent Systems (MASs). The interest in agent programming
languages [2] dates back to the early proposals of agent technologies [3] and, since then, it
has grown significantly. Agent programming languages represent an important research topic
because they are recognized as important tools [4] to support Agent-Oriented Software Engi-
neering (AOSE) [5] and applications [6]. Jadescript [7, 8] is an Agent-Oriented Programming
(AOP) [3] language that was designed from participants of the current project [7] to support
the construction of effective agents. The near-future development plans for Jadescript include
a dedicated support for a collection of (agent) interaction protocols [9] standardized by the
Foundation for Intelligent Physical Agents (FIPA, www.fipa.org), which is an IEEE Standards
Committee established to promote interoperability among agents. FIPA specifies some general-
purpose interaction protocols and FIPA-compliant agents are requested to support at least some
of them. FIPA encourages designers and programmers to adopt these interaction protocols,
which motivates the need for a dedicated support for them in Jadescript.

The seminal works on session types [10] and typestate have started a surge of research
on behavioral type systems [11] for describing interaction protocols and enforcing various

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy
⋆

This work was partially funded by the MUR project “T-LADIES” (PRIN 2020TL3X8X) and has the financial support
of the Università del Piemonte Orientale.

*Corresponding author.
$ federico.bergenti@unipr.it (F. Bergenti); paola.giannini@uniupo.it (P. Giannini); stefania.monica@unimore.it
(S. Monica)
� 0000-0002-4756-4765 (F. Bergenti); 0000-0003-2239-9529 (P. Giannini); 0000-0001-6254-4765 (S. Monica)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

www.fipa.org
mailto:federico.bergenti@unipr.it
mailto:paola.giannini@uniupo.it
mailto:stefania.monica@unimore.it
https://orcid.org/0000-0002-4756-4765
https://orcid.org/0000-0003-2239-9529
https://orcid.org/0000-0001-6254-4765
https://creativecommons.org/licenses/by/4.0

Federico Bergenti et al. CEUR Workshop Proceedings 1–8

properties including deadlock freedom [12]. A multiparty session (MPS for short) is an interaction
among participants/agents communicating by exchanging messages [13, 14, 15]. The interaction
is specified by a global type of the session. Local or session types may be retrieved as projections
from the global type. Projectability, i.e., the existence of the projection on all participants,
ensures that the protocol can be implemented. Session types give a a decoupled (i.e., distributed)
view of a protocol from the perspective of each participant.

The global types of [15] have several limitations, that make them not suitable to specify the
standard protocols of interaction between agents. In particular, a session involves a fixed set of
participants, whose behaviour is individually specified when the session is first initiated: there
is no notion of specifying the behaviour for a class of participants that share the same behaviour
and no participant can dynamically (i.e., during an ongoing session) leave the interactions which
are, however, basic requests for the FIPA protocols of interaction between agents.

A very expressive enhancement of global types was proposed in [16, 17]. Roles are defined
as classes of local behaviours that an arbitrary number of participants can dynamically join and
leave. This extension is very expressive. However, it is unrealistically implementable with the
communication pattern of agent languages, since it requires some sort of centralized register
handling the association between participants and roles. Other extensions, tailored to specific
application domains, were proposed, most of them targeting a specific programming languages,
[18, 19, 20]. Of the language independent ones we mention Pabble, [21, 22], in which multiple
participants can be grouped in the same role and indexed and there is the possibility of changing
participants in a role by parameterisation, and the one proposed in [23] to ensure good properties
of the interactions in MPSs in spite of failures. It introduces the notions of sub-sessions and role
set (similar to the roles of [16, 17]). Our proposal, inspired by the two mentioned extensions, is
tailored to the goal of specifying FIPA protocols, in which often groups of agents are addressed
by an agent mediating their interaction with the rest of the world. In the following, participant
is a synonym for agent. We call these groups of participants role sets and their coordinator is
the only participant interacting with them. The coordinator can broadcast a message to all
the participants of the role set and there is a construct to execute a sub-protocol on all the
participants in a role set. In addition to projectability, we give some well-formedness restrictions
on the global types that are meant to enforce their realisability by Jadescript agents.

Global and Local Types with Role Sets In the following definitions we use the meta-
variables: p, q, r for single participants; 𝑥, 𝑦, 𝑧 for participant variables (in the scope of a for);
p, q , r for either participants or participant variables; R for role sets; R for either single participants
or role sets; Q for either participants or participant variables or role sets; ℓ for labels (names)
of messages and S for basic types (int, bool,). A global protocol declaration, defined in
Figure 1, specifies the participants and the role sets involved in the protocol and the associated
global type. Each role set is coupled with a participant (from the declared ones) which is its
coordinator. The body of the declaration is a global type G. First a choice of messages may be
sent in addition to single participants also to all the participants in a role set. In this case we
enforce the restriction that the sender be the coordinator of the role set. As usual we have a
choice of different messages and after the communication the protocol continues as prescribed
by the global type corresponding to the selected label. Recursion introduces a recursion variable

2

Federico Bergenti et al. CEUR Workshop Proceedings 1–8

global protocol name(p; ⟨R, p⟩) = G

G ::= p → Q { ℓ𝑖⟨S𝑖⟩.G𝑖 }𝑖∈𝐼

| 𝜇X .G | X
| End
| for 𝑥 : ⟨R, q⟩ G1;G2

| 𝑥 → qQuit

𝐼 ̸= ∅ and ℓℎ ̸= ℓ𝑘 for ℎ ̸= 𝑘.

Figure 1: Global Protocols and Types

local protocol name at R(p; ⟨R, q⟩) = T

T ::= Q !{ ℓ𝑖⟨S𝑖⟩.T𝑖 }𝑖∈𝐼

| p?{ ℓ𝑖⟨S𝑖⟩.T𝑖 }𝑖∈𝐼

| 𝜇X .T | X
| End
| for 𝑥 : ⟨R, q⟩ T1;T2

| 𝑥!Quit | q ?Quit

Figure 2: Local Protocols and Types

X that can be used in its body to return to the beginning of G. As usual we assume recursion to
be guarded. End stands for the end of the protocol, but also the end of a sub-protocol as we
will see shortly. The for construct prescribes that the same protocol G1 be executed by all the
participants in the role set R. In G1 the variable 𝑥 denotes any participant in R. The semicolon
preceding G2 means that the coordinator q of R must have completed the protocol G1 on all
the participants in R before continuing as specified by G2. So End occurring in G1 does not
mean the end of the whole interaction, but just of the sub-protocol G1. In G1 there cannot
occur free recursion variables. We also impose the restriction that for cannot be nested. The
FIPA protocols analysed, so far, can be formalized without nesting of for. However, eventually
we would like to remove this restriction. Finally the last clause of the definition is used by a
participant in a role set to exit from the protocol. This means that subsequent messages sent
from the coordinator to the participants of its role set will not be sent to this participant. The
highlighted constructs are the extension w.r.t. [15] .

The local/session types are the view of a protocol from the perspective of each participant.
A local protocol declaration, , defined in Figure 2, specifies the participants and the role sets
involved in the protocol from the point of view of a participant or role set and the associated
local/session. The body of the declaration is a local/session type T.
For local types, we have the standard constructs: choice of outputs (sending a message) also
called internal choices, choice of inputs (receiving a message) also called external choices and
guarded recursion. Then we have for construct and the request and accept of the message
for exiting from the interaction. The for construct can only occur in the local type of the
coordinator of a role set and similar restrictions apply for the request and accept of the Quit
message. We now show how a FIPA protocol is described with our types. The example illustrates
also how the projection of the global type onto the participants and role sets is defined.

Global and Local Types for the Brokering Interaction Protocol In Figure 3 we formalize,
using our global types, the FIPA Brokering Interaction and in Figures 4 and 5 we give the pro-
jections on its participants and role set. We use the Java-like syntax, coming from Scribble [24],
which differs from our formal syntax mainly in the definition of the choice constructs (both
for global and local types). The choice construct, e.g., line 4 of Figure 3 and lines 5 and 12 of
Figure 4, specifies the leader of the choice, i.e., the sender of the communication. The branches
in case of global types should start with a message from the leader to the same participant and
in case of local types with the corresponding send or receive.

The participants of the protocol are the initiator, the broker and a number of agents in

3

Federico Bergenti et al. CEUR Workshop Proceedings 1–8

1 global protocol myBrokering(role initiator,role broker,roleset Subagents:broker){
2 forward(string) from initiator to broker.
3 choice at broker{
4 refuse() from broker to initiator.
5 stop() from broker to Subagents.End
6 } or {
7 agree() from broker to initiator.
8 findAgent(string) from broker to Subagents.
9 for agent:<Subagents,broker>{

10 choice at agent {
11 notPossible() from agent to broker.
12 QUIT() from agent to broker
13 } or {
14 canDo() from agent to broker.End
15 }

16 } ;

17 choice at broker {
18 failureNoMacth() from broker to initiator.
19 stop() from broker to Subagents. End
20 } or {
21 foundMatches() from broker to initiator.
22 inputData(string) from broker to Subagents.
23 for agent:<Subagents,broker>{
24 choice at agent {
25 result(string) from agent to broker.End
26 } or {
27 someError() from agent to broker.End
28 }
29 }

30 } ;

31 choice at broker {
32 replyFromSubagents(string) from broker to initiator.End
33 } or {
34 failureBrokering() from broker to initiator.End
35 }}}}

Figure 3: Global protocol for Brokering Interaction

the role set Subagents with the broker as their coordinator, line 1 of Figure 3. The interaction
starts with the initiator asking, by sending a message forward to the broker, to forward
its request to the subagents. We specified a simple string as the request, but more complex data
structures maybe exchanged. After this there is a choice made by the broker that may decide
to fulfil the request or to refuse it. So we have a choice, with leader the broker which branches,
starting at lines 4 and 7, begin with a message sent from the broker to the initiator. In
order to have the projection on the role set Subagents, whose participants will behave in a
different manner in the two branches, the broker must send them a different message in two
branches. Our projection use the merge operator of [25] to return a choice of inputs, that we can
see in the local protocol of Subagent of Figure 5 starting at lines 5 and 7. Then the broker
searches for the agents that may perform the request of the initiator using the subprotcol
in the body of the for. For each agent the broker is waiting for a message from agent

which may accept to perform the request, by sending canDo(), line 14, or refusing, by sending
notPossible(), line 11, and leave the interaction with the QUIT() message, line 12. From
now on the subsequent communications between the broker and the role set Subagents will
not involve the agents that quit the protocol. We see the difference between QUIT() and End,
lines 12 and 14 of Figures 3, when projecting on the role set Subagents. The communication at
line 12 in the global protocol is projected to QUIT()to broker, line 10 of Figures 5, whereas
End is replaced with the projection of the protocol following the ; , lines 13-28 of Figures 5.
The projection on the initiator of this subprotocol produces End since no communication
involves the initiator, so for this participant the projection is just the projection of the rest
of the protocol. The projection of a for produces a local for only for the broker, i.e., the

4

Federico Bergenti et al. CEUR Workshop Proceedings 1–8

1 local protocol myBrokering at broker
2 (role initiator,roleset Subagents:broker)
3 {
4 forward(string) from initiator.
5 choice at broker{
6 refuse() to initiator.
7 stop() to Subagents.End
8 } or {
9 agree() to initiator.

10 findAgent(string) to Subagents.
11 for agent:<Subagents,broker>{
12 choice at agent {
13 notPossible() from agent.
14 QUIT() from agent
15 } or {
16 canDo() from agent.End
17 }

18 } ;

19 choice at broker {
20 failureNoMacth() to initiator.
21 stop() to SubAgent. End
22 } or {
23 foundMatches() to initiator.
24 inputData(string) to Subagents.
25 for agent:<Subagents,broker>{
26 choice at agent {
27 result(string) from agent.End
28 } or {
29 someError() from agent.End
30 }
31 }

32 } ;

33 choice at broker {
34 replyFromSubagents(string) to

initiator.End
35 } or {
36 failureBrokering() to initiator.End
37 }}}}

Figure 4: Projection on broker

1 local protocol myBrokering at initiator
2 (role broker,roleset Subagents:broker)
3 {
4 forward(string) to broker.
5 choice at broker{
6 refuse() from broker. End
7 } or {
8 agree() from broker.
9 choice at broker {

10 failureNoMacth() from broker. End
11 } or {
12 foundMatches() from broker.
13 choice at broker {
14 replyFromSubagents(string) from broker.End
15 } or {
16 failureBrokering() from broker.End
17 }}}}

1 local protocol myBrokering Subagents:broker
2 (role initiator,role broker)
3 {
4 choice at broker{
5 stop() from broker. End
6 } or {
7 findAgent(string) from broker.
8 choice at agent {
9 notPossible() to broker.

10 QUIT() to broker
11 } or {
12 canDo() to broker.
13 choice at broker {
14 stop() from broker. End
15 } or {
16 inputData(string) from broker.
17 choice at agent {
18 result(string).End
19 } or {
20 someError() to broker.End
21 }}}}}}

Figure 5: Projections on role set and coordinator

coordinator of the interaction, lines 11-18 of Figures 4. After the subprotocol the broker, if
there are agents that responded positively to the request send a message foundMatches()
to the initiator, sends the inputs of the request to the remaining agents and collects their
responses via the subprotocol in the for the at lines 25-32. After that it sends the results, if there
are any to the initiator. Again, in order to have the projection on the role set Subagents,
whose participants will behave in a different manner in the two branches, the broker must a
message to the agents also in the branch of failure to match, line 21.

Conclusion The work presented is a part of a larger research project, within the PRIN project
“T-Ladies”, [26], one of whose goals is to provide support for development/maintenance, auto-
matic property verification/enforcement and bug detection of loosely connected, distributed,
possibly heterogeneous interacting systems. Our aim is the “correct” implementation of interac-
tion protocols between agents implemented in Jadescript, which is a language developed by
members of the project. More specifically, we want to define Jadescript agents whose interaction
behaviour follows, by construction, a given protocol. We use the MPS type methodology and
define protocols with global types from which we derive by projection the local types of the
agents. The implementation of an editor for the global and local types that checks their pro-
jectability and well-formedness can be found at [27]. We plan to translate these local types into
Jadescript agents involved in the protocol and prove that resulting system have the properties
of Session Fidelity and (possibly) Progress.

5

Federico Bergenti et al. CEUR Workshop Proceedings 1–8

References

[1] S. Franklin, A. C. Graesser, Is it an agent, or just a program?: A taxonomy for autonomous
agents, in: J. P. Müller, M. J. Wooldridge, N. R. Jennings (Eds.), Intelligent Agents III, Agent
Theories, Architectures, and Languages, ECAI ’96 Workshop (ATAL), Budapest, Hungary,
August 12-13, 1996, Proceedings, volume 1193 of Lecture Notes in Computer Science, Springer,
1996, pp. 21–35. URL: https://doi.org/10.1007/BFb0013570. doi:10.1007/BFB0013570.

[2] C. Bădică, Z. Budimac, H.-D. Burkhard, M. Ivanovic, Software agents: Languages, tools,
platforms, Computer Science and Information Systems 8 (2011) 255–298.

[3] Y. Shoham, Agent-oriented programming, Artificial Intelligence 60 (1993) 51–92.
[4] R. H. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J. J. Gomez-Sanz, J. Leite,

G. O’Hare, A. Pokahr, A. Ricci, A survey of programming languages and platforms for
multi-agent systems, Informatica 30 (2006).

[5] F. Bergenti, M.-P. Gleizes, F. Zambonelli (Eds.), Methodologies and Software Engineering
for Agent Systems: The Agent-Oriented Software Engineering Handbook, Springer, 2004.

[6] S. Distefano, G. Merlino, A. Puliafito, D. Cerotti, R. Dautov, Crowdsourcing and stigmergic
approaches for (swarm) intelligent transportation systems, in: Q. Zu, B. Hu (Eds.), Human
Centered Computing, Springer International Publishing, Cham, 2018, pp. 616–626.

[7] F. Bergenti, G. Caire, S. Monica, A. Poggi, The first twenty years of agent-based software
development with JADE, Autonomous Agents and Multi-Agent Systems 34 (2020) 36:1–
36:19.

[8] F. Bergenti, S. Monica, G. Petrosino, A scripting language for practical agent-oriented
programming, in: Proceedings of the 8th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control (AGERE 2018) at ACM
SIGPLAN Conference Systems, Programming, Languages and Applications: Software for
Humanity (SPLASH 2018), ACM, 2018, pp. 62–71.

[9] S. Poslad, Specifying protocols for multi-agent system interaction, ACM Transactions on
Autonomous and Adaptive Systems 2 (2007) 15:1–15:24.

[10] K. Honda, Types for dyadic interaction, in: E. Best (Ed.), CONCUR, volume 715 of LNCS,
Springer, Heidelberg, 1993, pp. 509–523.

[11] D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. Deniélou, S. J. Gay, N. Gesbert,
E. Giachino, R. Hu, E. B. Johnsen, F. Martins, V. Mascardi, F. Montesi, R. Neykova, N. Ng,
L. Padovani, V. T. Vasconcelos, N. Yoshida, Behavioral types in programming languages,
Found. Trends Program. Lang. 3 (2016) 95–230. URL: https://doi.org/10.1561/2500000031.
doi:10.1561/2500000031.

[12] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani, Global progress for dy-
namically interleaved multiparty sessions, Mathematical Structures in Computer Sci-
ence 26 (2016) 238–302. URL: https://doi.org/10.1017/S0960129514000188. doi:10.1017/
S0960129514000188.

[13] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: G. C.
Necula, P. Wadler (Eds.), POPL, ACM Press, New York, 2008, pp. 273–284.

[14] L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, N. Yoshida,
Global progress in dynamically interleaved multiparty sessions, in: F. van Breugel,
M. Chechik (Eds.), CONCUR 2008, volume 5201 of Lecture Notes in Computer Sci-

6

https://doi.org/10.1007/BFb0013570
http://dx.doi.org/10.1007/BFB0013570
https://doi.org/10.1561/2500000031
http://dx.doi.org/10.1561/2500000031
https://doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.1017/S0960129514000188

Federico Bergenti et al. CEUR Workshop Proceedings 1–8

ence, Springer, 2008, pp. 418–433. URL: https://doi.org/10.1007/978-3-540-85361-9_33.
doi:10.1007/978-3-540-85361-9_33.

[15] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, Journal of
ACM 63 (2016) 9:1–9:67.

[16] P. Deniélou, N. Yoshida, Dynamic multirole session types, in: T. Ball, M. Sagiv (Eds.), POPL,
ACM, 2011, pp. 435–446. URL: https://doi.org/10.1145/1926385.1926435. doi:10.1145/
1926385.1926435.

[17] P. Deniélou, N. Yoshida, A. Bejleri, R. Hu, Parameterised multiparty session types, Logical
Methods in Computer Science 8 (2012). URL: https://doi.org/10.2168/LMCS-8(4:6)2012.
doi:10.2168/LMCS-8(4:6)2012.

[18] D. Castro-Perez, R. Hu, S. Jongmans, N. Ng, N. Yoshida, Distributed programming us-
ing role-parametric session types in go: statically-typed endpoint apis for dynamically-
instantiated communication structures, Proc. ACM Program. Lang. 3 (2019) 29:1–29:30.
URL: https://doi.org/10.1145/3290342. doi:10.1145/3290342.

[19] G. Cledou, L. Edixhoven, S. Jongmans, J. Proença, API generation for multiparty session
types, revisited and revised using Scala 3, in: K. Ali, J. Vitek (Eds.), ECOOP 2022, volume
222 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 27:1–27:28. URL:
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27. doi:10.4230/LIPICS.ECOOP.2022.
27.

[20] N. Lagaillardie, R. Neykova, N. Yoshida, Stay safe under panic: Affine Rust programming
with multiparty session types, in: K. Ali, J. Vitek (Eds.), ECOOP 2022, volume 222 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 4:1–4:29. URL: https:
//doi.org/10.4230/LIPIcs.ECOOP.2022.4. doi:10.4230/LIPICS.ECOOP.2022.4.

[21] N. Ng, N. Yoshida, Pabble: Parameterised Scribble for parallel programming, in: PDP
2014, IEEE Computer Society, 2014, pp. 707–714. URL: https://doi.org/10.1109/PDP.2014.20.
doi:10.1109/PDP.2014.20.

[22] N. Ng, N. Yoshida, Pabble: parameterised Scribble, Serv. Oriented Comput.
Appl. 9 (2015) 269–284. URL: https://doi.org/10.1007/s11761-014-0172-8. doi:10.1007/
S11761-014-0172-8.

[23] M. Viering, R. Hu, P. Eugster, L. Ziarek, A multiparty session typing discipline for fault-
tolerant event-driven distributed programming, Proceedings of the ACM on Programming
Languages 5 (2021) 1–30. URL: https://doi.org/10.1145/3485501. doi:10.1145/3485501.

[24] K. Honda, A. Mukhamedov, G. Brown, T. Chen, N. Yoshida, Scribbling interactions
with a formal foundation, in: R. Natarajan, A. K. Ojo (Eds.), Distributed Comput-
ing and Internet Technology - 7th International Conference, ICDCIT 2011, Bhubanesh-
war, India, February 9-12, 2011. Proceedings, volume 6536 of Lecture Notes in Com-
puter Science, Springer, 2011, pp. 55–75. URL: https://doi.org/10.1007/978-3-642-19056-8_4.
doi:10.1007/978-3-642-19056-8_4.

[25] N. Yoshida, L. Gheri, A very gentle introduction to multiparty session types, in: D. V. Hung,
M. D’Souza (Eds.), Distributed Computing and Internet Technology - 16th International
Conference, ICDCIT 2020, Bhubaneswar, India, January 9-12, 2020, Proceedings, volume
11969 of Lecture Notes in Computer Science, Springer, 2020, pp. 73–93. URL: https://doi.org/
10.1007/978-3-030-36987-3_5. doi:10.1007/978-3-030-36987-3_5.

[26] W. C. et alt., Typeful language adaptation for dynamic, interacting and evolving systems,

7

https://doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1145/1926385.1926435
http://dx.doi.org/10.1145/1926385.1926435
http://dx.doi.org/10.1145/1926385.1926435
https://doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1145/3290342
http://dx.doi.org/10.1145/3290342
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
http://dx.doi.org/10.4230/LIPICS.ECOOP.2022.27
http://dx.doi.org/10.4230/LIPICS.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
http://dx.doi.org/10.4230/LIPICS.ECOOP.2022.4
https://doi.org/10.1109/PDP.2014.20
http://dx.doi.org/10.1109/PDP.2014.20
https://doi.org/10.1007/s11761-014-0172-8
http://dx.doi.org/10.1007/S11761-014-0172-8
http://dx.doi.org/10.1007/S11761-014-0172-8
https://doi.org/10.1145/3485501
http://dx.doi.org/10.1145/3485501
https://doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-030-36987-3_5
http://dx.doi.org/10.1007/978-3-030-36987-3_5

Federico Bergenti et al. CEUR Workshop Proceedings 1–8

https://cazzola.di.unimi.it/t-ladies.html, 2024.
[27] L. Galliera, R. Nazzari, Jadescript, https://github.com/LMetal/Jadescript, 2024.

8

https://cazzola.di.unimi.it/t-ladies.html
https://github.com/LMetal/Jadescript

