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Abstract
We introduce Strategy Repair, the problem of finding a minimal amount of modifications to turn a strategy
for a reachability game from losing into winning. The problem is relevant for a number of settings in
Planning and Synthesis, where solutions essentially correspond to winning strategies in a suitably defined
reachability game. We show, via reduction from Vertex Cover, that Strategy Repair is NP-complete and
devise two algorithms, one optimal and exponential and one polynomial but sub-optimal.
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1. Introduction

Reachability Games (RGs) [2] can serve as semantic models for reasoning about dynamic
domains, with the resulting strategy representing the behavior that an agent can execute, in
order to achieve a desired state. Typically, however, at execution time, models deviate from the
actual trajectory that stems from strategy execution, resulting in a situation where the actual
state does not match that of the model. There may also be situations where the goal changes
during strategy execution. In both these examples, the agent is unable to keep executing the
computed strategy (which was originally winning) and take appropriate actions to achieve the
desired goal. Thus, the problem arises of coming up with a new strategy that guarantees goal
achievement.

The original strategy might have been designed to guarantee not only goal achievement,
but also a number of additional properties, such as cost minimization, reward maximization,
or forbidden-state avoidance, which might yield a significant additional computational effort.
Thus, when the unexpected changes are small and yield only a slightly different problem wrt
the original one, i.e., only few target states are added or removed and state mismatches occur
rarely, it is reasonable to seek for a solution obtained as a slight modification of the original one,
under the assumption that the new strategy will retain all (or part of) the properties featured
by the initial strategy, without needing the computational overhead required to achieve such
properties.

This paper investigates this approach from the general perspective of RGs. We introduce a
problem, called Strategy Repair, which requires, given a losing strategy 𝜎0, to find a minimal
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amount of modifications which turn 𝜎0 into a winning strategy.
We make the following contributions. Firstly, we formally define the problem by introducing

a notion of distance between two strategies, which intuitively corresponds to the number of
states over which the strategies differ. Then, based on this notion, we devise a solution algorithm
and characterize its complexity. Specifically, we prove, by reduction from Vertex Cover, that
the decision version of Strategy Repair is NP-complete. We then investigate more efficient,
but sub-optimal, alternatives, devising a polynomial greedy algorithm. The full version of this
paper [1] also reports on an experimental analysis, which shows that the polynomial algorithm
yields impressive results in terms of running time, scalability and accuracy (measured as distance
from the optimal solution).

2. Preliminaries

A 2-player arena, or simply arena is a tuple 𝒜 =⟨𝑉, 𝑉0, 𝑉1,E⟩, where 𝑉 is the set of nodes, or
vertices, with 𝑉 = 𝑉0 ∪ 𝑉1 and 𝑉0 ∩ 𝑉1 = ∅, and E ⊆ 𝑉 × 𝑉 is the set of edges of the arena.
We say that 𝑉0 is the set of nodes controlled by player 0, (𝑃0), whereas 𝑉1 is the set of nodes
controlled by player 1 (𝑃1).

Definition 1 (Reachability game). A Reachability game is a pair 𝒢 =⟨𝒜, 𝒯 ⟩, where 𝒜 is an

arena, and 𝒯 ⊆ 𝑉 is a subset of nodes, sometimes called target.

A path in the arena is a sequence 𝜋 = 𝑣0 · 𝑣1 · 𝑣2 . . . ∈ 𝑉 𝜔 such that (𝑣𝑖, 𝑣𝑖+1) ∈ E for each
𝑖 ∈ N. As usual, by 𝜋𝑖, we denote the 𝑖-th node occurring in the sequence 𝜋, whereas by 𝜋≤𝑖

we denote the prefix of 𝜋 up to node 𝜋𝑖, also called partial path. We say that a path 𝜋 is winning

for player 0 if 𝜋𝑖 ∈ 𝒯 for some 𝑖 ∈ N, otherwise it is winning for player 1. A strategy for player
0 is a function 𝜎0 : 𝑉

* · 𝑉0 → E mapping partial paths to edges, such that 𝜎0(𝑣0 . . . 𝑣𝑛) is an
edge outgoing from 𝑣𝑛, for each partial path in 𝑉 * · 𝑉0. A strategy 𝜎1 for player 1 is defined
accordingly. A path 𝜋 is compatible with strategy 𝜎0 if 𝜎0(𝜋≤𝑖) = (𝜋𝑖, 𝜋𝑖+1) for each 𝜋𝑖 ∈ 𝑉0.
Analogously, it is compatible with strategy 𝜎1 if 𝜎1(𝜋≤𝑖) = (𝜋𝑖, 𝜋𝑖+1) for each 𝜋𝑖 ∈ 𝑉1.

We say that a strategy 𝜎0 is winning for player 0 from 𝑣, if every path 𝜋 starting from 𝑣 and
compatible with 𝜎0 is winning. We say that a node 𝑣 is winning for player 0 if there exists a
strategy 𝜎0 winning from 𝑣. We denote by Win0(𝒢) and Win1(𝒢) the sets of nodes in 𝒢 that
are winning for player 0 and 1, respectively. Finally, a strategy is said to be simply winning

if it is winning from every vertex in Win0(𝒢). It is well known that reachability games are
memoryless determined [3], that is, every node 𝑣 is either winning for player 0 or winning for
player 1 and that there always exists a memoryless winning strategy, i.e., a winning strategy
that is defined as 𝜎0 : 𝑉0 → E mapping each node belonging to an agent to an outgoing edge.
Therefore, from now on we restrict our attention to only memoryless strategies. Such restriction
allows us to define a very natural distance between two player 0 strategies 𝜎0 and 𝜎′

0 over the
same game, that is dist(𝜎0, 𝜎′

0) = |{𝑣 ∈ 𝑉0 | 𝜎0(𝑣) ̸= 𝜎′
0(𝑣)}| Intuitively, we count the number

of nodes on which the two strategies map to a different outgoing edge. This can be proved to
be an actual distance [1].

We conclude this section by introducing some useful notation. For a given game 𝒢 and an
edge 𝑒 = (𝑣1, 𝑣2) ∈ E, by 𝒢𝑒 we denote the game induced from 𝒢 by removing every edge



(𝑣′1, 𝑣
′
2) incompatible with 𝑒, that is, such that 𝑣′1 = 𝑣1 and 𝑣′2 ̸= 𝑣2. This can be extended to

subsets E′ ⊆ E of edges, where 𝒢E′ = (𝒢E′∖{𝑒})𝑒 is recursively defined by projecting the edges
𝑒 of E′ one by one. Notice that a (memoryless) strategy 𝜎0 can be regarded as a subset of edges,
one for each node in 𝑉0, therefore 𝒢𝜎0 denotes the game induced from 𝒢 by removing every
edge (𝑣, 𝑣′) incompatible with 𝜎0, that is, such that 𝑣 ∈ 𝑉0 and (𝑣, 𝑣′) ̸= 𝜎0(𝑣). Note that every
vertex of 𝑉0 has only one successor in 𝒢𝜎0 , which means that player 0 has only strategy 𝜎0
available in the game.

3. The Strategy Repair Problem

We now introduce the strategy repair problem for reachability games. First, for a given reach-
ability game 𝒢 and a player 0 strategy 𝜎0, define Win0(𝒢, 𝜎0) to be the set of nodes from
which 𝜎0 is winning. It is not hard to show that Win0(𝒢, 𝜎0) = Win0(𝒢𝜎0), that is, the nodes
that are winning for player 0 when it is using strategy 𝜎0 can be obtained by considering the
game 𝒢𝜎0 where the choices incompatible with 𝜎0 have already been ruled out. Observe that it
always holds that Win0(𝒢, 𝜎0) ⊆Win0(𝒢), with Win0(𝒢, 𝜎0) = Win0(𝒢) if, and only if, 𝜎0 is
winning for player 0. We define the strategy repair problem as follows.

Definition 2 (Strategy repair problem). For a given reachability game 𝒢 and a strategy 𝜎0,

find a winning strategy 𝜎′
0 such that dist(𝜎0, 𝜎

′
0) ≤ dist(𝜎0, 𝜎

′′
0) for each winning strategy 𝜎′′

0 .

The problem introduced requires to minimize the number of modifications that are required to
turn a strategy 𝜎0 into a strategy 𝜎′

0 winning for a given reachability game 𝒢. The corresponding
decision problem, instead, consists in fixing a given threshold 𝑘 ∈ N and checking whether
some winning strategy 𝜎′

0 exists with dist(𝜎0, 𝜎
′
0) ≤ 𝑘. We now prove that the decision version

of the strategy repair problem for reachability games is NP-complete. To do so, we show a
reduction from the NP-complete problem vertex cover [4]. Given a vertex cover instance, the
idea is to construct a RG with one cycle for each edge in such a way that selecting a vertex 𝑣 onto
the cover corresponds to one change in the strategy that breaks all the cycles corresponding to
adjacent edges of 𝑣.

Theorem 1. The strategy repair problem for reachability games is NP-complete [1].

4. Algorithmic Solutions

We now present two algorithms for Strategy Repair, which we called Opt and Greedy, respec-
tively. The former returns the optimal solution to the problem, but runs in exponential time.
The latter, instead, returns a sub-optimal solution but runs in polynomial time. It is important to
remark that they both produce correct winning strategies for the game. However, the algorithm
Greedy does not provide the best one in terms of distance from the originally specified strategy.

We now proceed with the description of Algorithm Opt. In order to do so, we first introduce
some useful definition. For a given game 𝒢 and a set 𝑋 ⊆ 𝑉 of nodes, the Frontier of 𝑋 ,
denoted Frontier0(𝑋) = ((𝑉0 ∖ 𝑋) × 𝑋) ∩ E, is the set of edges that are outgoing from
a Player 0 node and incoming to a node in 𝑋 . Intuitively, the edges in Frontier0 can be



used by Player 0 to enter in a single step the region 𝑋 . Consider a game 𝒢 and a strategy
𝜎0, and let 𝑋 = Win0(𝒢, 𝜎0) be the set of nodes that are winning for strategy 𝜎0. Observe
that for an edge (𝑣, 𝑣′) ∈ Frontier0(𝑋), it holds that 𝜎0(𝑣) ̸= (𝑣, 𝑣′), otherwise 𝑣 would
have been winning for 𝜎0 in the first place. Moreover, it is trivial to show that the strategy
𝜎′
0 = 𝜎0[𝑣 ↦→ (𝑣, 𝑣′)] is such that Win0(𝒢, 𝜎0) ⊊ Win0(𝒢, 𝜎′

0), with the inclusion being proper
because 𝑣 ∈Win0(𝒢, 𝜎′

0) ∖Win0(𝒢, 𝜎0). Algorithm 1: Opt.

Input: 𝒢 a reachability game, 𝜎0 a strategy
for player 0

Output: Winning strategy for 𝒢
minimizing the distance from 𝜎0

Fix(𝒢, 𝜎0) :
𝑇 ′ ←Win0(𝒢, 𝜎0)
if 𝑇 ′ = Win0(𝒢) then

return (𝜎0, 0)
else

select (𝑣, 𝑣′) from Frontier(𝑇 ′)
(𝜎′

0, 𝛽
′)← Fix(𝒢, 𝜎0[𝑣 ↦→ (𝑣, 𝑣′)])

𝒢′ ← 𝒢𝜎0(𝑣)

if 𝑣 ∈Win0(𝒢′) then
(𝜎′′

0 , 𝛽
′′)← Fix(𝒢′, 𝜎0)

if 𝛽′′ < 𝛽′ + 1 then
return (𝜎′′

0 , 𝛽
′′)

end
end
return (𝜎′

0, 𝛽
′ + 1)

end

We are now ready to present the al-
gorithm Opt, which is reported in Algo-
rithm 1. The algorithm works as follow.
First, it computes the winning region fol-
lowing 𝜎0 denoted Win0(𝒢, 𝜎0), and com-
pares it with the winning region of the
game Win0(𝒢). If the two sets are equal,
it means that 𝜎0 is already winning, so it
returns the optimal solution (𝜎0, 0), with
the second component denoting the cost
of fixing. If that is not the case, the al-
gorithm proceeds by first computing the
frontier of Win0(𝒢, 𝜎0), in order to se-
lect an edge (𝑣, 𝑣′) from it, then it com-
pares two possible solutions. The first is
obtained by solving the problem where
the initial strategy is 𝜎0[𝑣 ↦→ (𝑣, 𝑣′)], ob-
tained from 𝜎0 by diverting the choice on 𝑣
with the frontier edge (𝑣, 𝑣′). The second
is obtained by solving the problem when
Player 0 is forced to select edge 𝜎0(𝑣) in 𝑣.
This is obtained by considering the game
𝒢′ = 𝒢𝜎0(𝑣), where all other outgoing edges from 𝑣 are removed. Both solutions are computed
with their relative costs 𝛽′ and 𝛽′′, which are then compared to select the best between the two.
Note that the latter solution might not exist, as the choice of 𝜎0 in 𝑣 might lead, for instance, out
of the winning region. The algorithm then first checks whether such solution is viable before
making a useless recursive call on (𝒢′, 𝜎0). Observe that in the first case the total modification
cost 𝛽′ must be increased by 1, as the initial strategy 𝜎0[𝑣 ↦→ (𝑣, 𝑣′)] is at distance 1 from 𝜎0
itself. We have the following.

Theorem 2. The algorithm Opt returns the optimal solution to the Strategy Repair problem.

The algorithm Opt presented in the previous section is of exponential complexity, as it
requires two recursive calls at each iteration to compare the distances between the initial
strategy and two candidate best solutions. Also, notice that the recursive call that makes use of
the selected edge in the frontier always computes a correct solution, although it might not be
the optimal one. Therefore, a suboptimal but polynomially computable solution could be found
by just selecting the one obtained from such call, disregarding the other.



Algorithm 2: Greedy.

Input: 𝒢 a reachability game, 𝜎0 a strategy
for player 0

Fix(𝒢, 𝜎0) :
𝑇 ′ ←Win0(𝒢, 𝜎0)
if 𝑇 ′ = Win0(𝒢) then

return (𝜎0, 0)
end
𝐹 ← Frontier0(𝑇

′)
(𝑣, 𝑣′)← argmax{|Repair𝜎0

(𝑣, 𝑣′)|;
(𝑣, 𝑣′) ∈ 𝐹}
(𝜎′

0, 𝛽
′)← Fix(𝒢, 𝜎0[𝑣 ↦→ (𝑣, 𝑣′)])

return (𝜎′
0, 𝛽

′ + 1)

This is how the algorithm Greedy is
conceived. However, in order to improve
the quality of the solution, i.e., the ac-
curacy w.r.t. the optimum, we employ
a selection criterion for the edge in the
frontier set. Indeed, consider an instance
(𝒢, 𝜎0) of Strategy Repair, and an edge
(𝑣, 𝑣′) ∈ Frontier0(Win0(𝒢, 𝜎0)). First,
note that 𝜎0(𝑣) ̸= (𝑣, 𝑣′), otherwise, the
node 𝑣 would be winning for 𝜎0 and
(𝑣, 𝑣′)would not be in the frontier. There-
fore, consider the set Repair𝜎0

(𝑣, 𝑣′) =
Win0(𝒢, 𝜎0[𝑣 ↦→ (𝑣, 𝑣′)])∖Win0(𝒢, 𝜎0),
that is, the set of nodes that are indirectly
repaired by using the frontier edge (𝑣, 𝑣′)
in the solution. Therefore, when selecting the frontier edge, one might decide to greedily max-
imize the number of nodes that are indirectly repaired by such a selection. This is how the
algorithm Greedy works, as it is presented in Algorithm 2.

5. Future Work

This work is an initial investigation into the problem of Strategy Repair and leaves at least
two interesting questions open. Firstly, while the polynomial algorithm exhibits outstanding
experimental performance, no approximation guarantee was obtained. For future work, we aim
at studying such a property. Secondly, it is interesting to go beyond simple reachability and
apply the repair approach to other problems. In particular, one immediate extension would
be to investigate applicability and effectiveness of the approach for strong cyclic [5] solutions.
More in general, the repair approach could be applied to more complex games, such as parity or
Büchi games [2, 3], which would have an immediate impact on more complex forms of planning,
such as Classical or FOND Planning for temporally extended goals.
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