
A Two Player Asynchronous Game with Privacy
Constraints on Petri Nets (short paper)
Federica Adobbati

1,2,*,†
, Luca Bernardinello

2,*,†
and Lucia Pomello

2,*,†

1National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italia
2Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca

Abstract
In this short presentation we propose a formal framework based on a two-player game on Petri nets.

We consider multi-agent systems in which a component, the controller, needs to guarantee a certain

liveness property on the system behaviour, while keeping secret some of its actions to the other system

components, and we discuss the basis for a uniform solution of this problem.

Keywords
Two-player game; non-interference; reveals relations; Petri nets.

1. Introduction

We propose a framework for the formal study of concurrent multi-agent systems, in which a

component (the controller) needs to keep certain services active, and at the same time needs to

keep secret some of its actions.

These two problems are often studied separately; a common way to check whether the

controller is able to guarantee a certain property consists in modelling the problem as a two-

player game, and verifying the existence of a winning strategy for the controller, namely a

selection of moves such that the property is always guaranteed in the system, regardless of

the behavior of the remaining part of the system. Typical goals for the controller consist in

avoiding a set of states [1], performing a given action [2], or satisfying a given temporal logic

formula [3].

To check whether a system satisfies some privacy requirements, several notions of non-

interference and opacity have been introduced [4, 5, 6], aiming to verify that an intruder cannot

be able to recover secret information by just observing the visible behaviour of the system.

Our goal is to put the basis for a unified analysis of these two problems. We define a multi-

agent system as a 1-safe Petri net, where transitions are partitioned into controllable and

uncontrollable, and a subset of controllable transitions needs to remain secret. We define the

privacy requirement through the reveals relation [7], that was used in [6] to provide a non-

interference notion, and we model the interaction of the controller with the rest of the system,

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy
*
Corresponding authors.

†
These authors contributed equally.

$ fe.adobbati@gmail.com (F. Adobbati); luca.bernaridinello@unimib.it (L. Bernardinello); lucia.pomello@unimib.it

(L. Pomello)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:fe.adobbati@gmail.com
mailto:luca.bernaridinello@unimib.it
mailto:lucia.pomello@unimib.it
https://creativecommons.org/licenses/by/4.0


Figure 1: In this Petri net, the set of controllable transitions coincides with the set of high transitions
(in grey). The goal of the controller is to reach place 𝑠 in case a request is done (place req), while keeping
secret the high transitions.

that we will call environment, as a two player game, where players can move asynchronously.

We assume that the controller can base its strategy on the partial observations of the current

state of the system, hence it observes a subset of places, whereas the environment can deduce

information by observing the occurrences of some transitions. We discuss the interactions

between the liveness and the non-interference goals, and different notions of winning strategies

based on different ability assumptions for the environment.

This work builds on [8], where we define an algorithm to check the existence of a winning

strategy when the goal of the controller is a LTL formula and the system is modelled as a 1-safe

net, and on [9], where we propose an algorithm to verify the existence of reveals relations for a

subclass of bounded P/T systems.

The main ideas of our approach are illustrated in the following, extremely simplified, example.

Consider the Petri net in Fig. 1, where transitions in grey belong to the controller. Transition 𝑓
models the request of a service, which can be supplied in two distinct ways (either 𝑎 or 𝑏). The

controller must guarantee that every request is sooner or later satisfied, so that the environment

will reach place 𝑠; at the same time, the environment should not be able to deduce whether 𝑎
or 𝑏 was chosen. Suppose that the environment does not directly observe the grey transitions.

If transition 𝑐 fires, then the environment can deduce that 𝑏 was chosen. Hence, a winning

strategy for the controller consists in never firing 𝑐.

2. Basic definitions

In the following we assume the basic definitions of Petri net theory such as 1-safe net systems

and their unfoldings ([10], [11]).

Let Σ = (𝑃, 𝑇, 𝐹,𝑚𝑖𝑛) be a 1-safe net system and unf(Σ) = (𝐵,𝐸, 𝐹, 𝜇) be its unfolding.

The set 𝑇 is partitioned into two disjoint subsets, 𝑇𝑐, the set of controllable transitions, and

𝑇𝑒𝑛𝑣 , the set of uncontrollable transitions which belong to the environment.



In addition, T can be partitioned into high and low transitions, denoted 𝑇ℎ and 𝑇𝑙, respectively.

We assume 𝑇ℎ ⊆ 𝑇𝑐, being 𝑇ℎ the set of controllable transitions which must remain secret,

i.e.: the set of transitions whose occurrence should not be deduced by the environment. By

consequence, the events in the unfolding will be partitioned into 𝐸𝑐, controllable, and 𝐸𝑒𝑛𝑣 , un-

controllable events, according to their labels; moreover, 𝐸𝑐 will contain the set 𝐸ℎ of occurrence

of secret transitions, the high events.

A run is a prefix 𝜌 = (𝐵𝜌, 𝐸𝜌, 𝐹𝜌, 𝜇𝜌) of the unfolding of Σ, describing a particular history

in which conflicts have been solved, i.e.: the underlying net (𝐵𝜌, 𝐸𝜌, 𝐹𝜌) is conflict-free. A cut
in 𝜌 is a maximal set of pairwise concurrent elements of 𝐵𝜌.

Let 𝑅 be a set of runs in unf(Σ) and 𝑡1, 𝑡2 ∈ 𝑇 ; we say 𝑡1 reveals 𝑡2 in 𝑅, denoted 𝑡1 ◁𝑅 𝑡2 ,

if each run in 𝑅 which contains an occurrence of 𝑡1 also contains at least one occurrence of 𝑡2.

Formally, 𝑡1 ◁𝑅 𝑡2 iff 1) ∀𝜌 ∈ 𝑅 𝑡1 ∈ 𝜇𝜌(𝐸𝜌) ⇒ 𝑡2 ∈ 𝜇𝜌(𝐸𝜌), and 2) there is a run 𝜌 ∈ 𝑅
such that: 𝑡1 ∈ 𝜇𝜌(𝐸𝜌).

We will say that the set of runs 𝑅 satisfies the non-interference property if and only if there

is no pair of transitions 𝑡𝑙 ∈ 𝑇𝑙, 𝑡ℎ ∈ 𝑇ℎ such that 𝑡𝑙 reveals 𝑡ℎ in 𝑅.

3. The game

In this section we define a two-player asynchronous game.

Let Σ = (𝑃, 𝑇, 𝐹,𝑚𝑖𝑛) be a 1-safe net, 𝑇𝑐 the set of controllable transitions, 𝑇𝑒𝑛𝑣 = 𝑇 ∖ 𝑇𝑐;

unf(Σ) = (𝐵,𝐸, 𝐹, 𝜇) its unfolding, with 𝐸𝑐 ⊂ 𝐸 the set of controllable events. A strategy
is a function that returns a subset of controllable transitions, based on the current controller

observation. In this work we assume that the controller can observe a subset of places in the

system, and that has no memory, therefore its observations are subsets of markings.

The game we are defining is asynchronous, in the sense that players do not take turns; any

player can decide to fire one of its transitions, when the transition is enabled, and we assume

that the system is distributed in space. This implies that even if a place is observable by the

controller, in general the controller cannot base its strategy on the information that the place is

marked or unmarked, if a non controllable transition is enabled, and might change the marking

of the place. Hence we introduce the concept of stable part of a marking. Let 𝑚 be a reachable

marking. Its stable part is defined as the set of places in 𝑚 whose tokens cannot be consumed by

any sequence of uncontrollable transitions enabled in 𝑚. We assume that the controller can base

his decisions only upon the observable and stable parts of markings. This is motivated by the

fact that even if the value of a certain local state is not hidden to the controller, its information

may arrive to the controller with a certain delay. By definition, if a place is not in the stable part

of a marking, its value may change due to a transition that is out of the control of the controller,

therefore the information about it may arrive outdated to the controller, that cannot count on

it. If we denote with 𝑀 the set of reachable markings and with obs the function that for each

marking associates its stable and observable part, we can formally define a strategy (abusing

the notation) as 𝛼 : obs(𝑀) → 2𝑇𝑐
.

We assume that the set of the environment transitions 𝑇𝑒𝑛𝑣 ⊆ 𝑇 has a progress constraint,

that is, if a transition 𝑡 ∈ 𝑇𝑒𝑛𝑣 is constantly enabled, it will eventually fire. Let 𝐸𝑒𝑛𝑣 ⊆ 𝐸 be



the set of events corresponding to the occurrence of transitions in 𝑇𝑒𝑛𝑣 . A play is a run 𝜌 of the

unfolding, maximal with respect to 𝐸𝑒𝑛𝑣 , namely 𝜌′ obtained by extending 𝜌 with an 𝑒 ∈ 𝐸𝑒𝑛𝑣

cannot be a run.

A play 𝜌 is consistent with a strategy 𝛼 iff (1) for each 𝑒 ∈ 𝜌 ∩ 𝐸𝑐 there is a cut 𝛾 such that

𝜇(𝛾) = 𝑚 and 𝑒 ∈ 𝛼(obs(𝑚)), i.e. each controllable event was allowed by 𝛼 in the play; (2) no

event belonging to the controller is finally postponed, namely there is no event 𝑒 ∈ 𝐸𝑐 enabled

in 𝜌 but not present in 𝜌, which is constantly selected by 𝛼.

Given a play, to decide whether the controller wins it, we need to formally define its goal. As

stated in the introduction, we consider goals composed by two parts that need to be verified at

the same time. The first is the ability of the controller to eventually guarantee a certain service,

whenever it is required. Let req be the place denoting that the service has been requested and s
the place denoting the service. We express this part of the goal with an LTL formula, specifically

𝐺(𝑟𝑒𝑞 → 𝐹𝑠), where 𝐺 and 𝐹 are, respectively, the globally and the eventually temporal

operators. In words, whenever a request is made, it will eventually be satisfied. The second is

the secrecy property, namely let 𝑇ℎ ⊆ 𝑇𝑐 be the subset of high transitions and 𝑇𝑙 = 𝑇 ∖ 𝑇ℎ the

subset of low transitions. The environment should not be able to discover the occurrence of a

high transition through the observation of low transitions. We model this property through

reveals, namely we require that there is no pair 𝑡ℎ, 𝑡𝑙, in the considered set of runs 𝑅, such

that 𝑡𝑙 ◁𝑅 𝑡ℎ. In the literature [7, 9], reveals is defined with respect to the maximal runs of the

unfolding; however, in our context this seems not the best option, since the set of plays in

the game (hence the runs which can actually occur) do not necessarily coincide with the set

of maximal runs. Here we propose some alternative definitions of set of plays 𝑅 on which

computing reveals can be significant in our context, based on different assumptions on the

knowledge and the ability of the environment. These options are ordered from the larger to

more restrictive 𝑅.

1. 𝑅 could be the set of all the runs on the system maximal with respect to the set 𝐸𝑒𝑛𝑣 . This

is the set of all the runs allowed by the game. This option works if the environment is not

aware of the goal of the controller; if this is the case, it cannot restrict the behaviours of

the system by computing a set of possible strategies, but has to consider that any possible

run allowed in the game can occur.

2. 𝑅 is the set of all the runs on the system, maximal with respect to the set 𝐸𝑒𝑛𝑣 and where

the LTL formula is satisfied. In this case we assume that the environment is aware of the

first goal of the controller, but it is still not able to compute a strategy that the controller

could take.

3. 𝑅 is a set of runs such that for each 𝜌 ∈ 𝑅 there is a strategy 𝛼 such that 𝛼 is winning

with respect to the LTL goal, and 𝜌 is a play consistent with 𝛼. In this case we consider a

partially rational environment, that is able to restrict the behaviours of the controller by

knowing its goal and by computing which behaviours the controller could have in order

to be sure to reach it.

4. 𝑅 is a set of runs such that for each 𝜌 ∈ 𝑅 there is a strategy 𝛼 as follows:

• 𝛼 is winning for the LTL goal;



• for each 𝑡𝑙 ∈ 𝑇𝑙 that can fire by following 𝛼, there is no 𝑡ℎ ∈ 𝑇ℎ that fires by

following 𝛼 such that 𝑡𝑙 ◁𝑅 𝑡ℎ in the runs allowed by 𝛼.

This is the case in which the environment is not only able to compute a strategy for

liveness, but also to compute which strategies should be avoided in order to let it deduce

information about occurrences of high transitions.

When we pursue the last option, we only need to check whether 𝑅 is empty; if it is not, the

controller has a winning strategy. In all the other cases we need to compute the reveals relation

on the set 𝑅.

4. Conclusion and prospects

We have described a framework, based on Petri nets, in which it is possible to combine two

types of problems, that we tackled in recent years: exploiting a kind of asynchronous game in

order to prove certain liveness properties, and studying a relation between events, useful in

formalizing non-interference in distributed systems. The next steps we plan to carry on relate to

the search for algorithms to decide whether a winning strategy for the controller exists. To this

aim, we plan to start from the algorithms that we developed for solving each of these problems

[9, 8], by adapting them to work in the combined case. This step is not trivial, since a strategy

tuned for one goal among liveness and non-interference may not satisfy the other. Longer term

goals include considering generalizations of the 𝑟𝑒𝑣𝑒𝑎𝑙𝑠 relation, using an 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠 relation [6]

in order to define more flexible notions of non-interference, and generalizations of the overall

scheme, by allowing more than two agents.

References

[1] B. Finkbeiner, E.-R. Olderog, Petri games: Synthesis of distributed systems with causal

memory, Information and Computation 253 (2017) 181–203.

[2] L. Bernardinello, G. Kılınç, L. Pomello, Weak observable liveness and infinite games on

finite graphs, in: Application and Theory of Petri Nets and Concurrency: 38th International

Conference, PETRI NETS 2017, Zaragoza, Spain, June 25–30, 2017, Proceedings 38, Springer,

2017, pp. 181–199.

[3] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic, Journal of the

ACM (JACM) 49 (2002) 672–713.

[4] N. Busi, R. Gorrieri, A survey on non-interference with Petri nets, Lectures on Concurrency

and Petri Nets: Advances in Petri Nets 4 (2004) 328–344.

[5] J. W. Bryans, M. Koutny, P. Y. Ryan, Modelling opacity using Petri nets, Electronic Notes

in Theoretical Computer Science 121 (2005) 101–115.

[6] L. Bernardinello, G. Kılınç, L. Pomello, Non-interference notions based on reveals and ex-

cludes relations for Petri nets, Transactions on Petri Nets and Other Models of Concurrency

XI (2016) 49–70.

[7] S. Haar, Unfold and cover: Qualitative diagnosability for Petri nets, in: 2007 46th IEEE

Conference on Decision and Control, IEEE, 2007, pp. 1886–1891.



[8] F. Adobbati, L. Bernardinello, L. Pomello, Looking for winning strategies in two-player

games on Petri nets with partial observability, arXiv preprint arXiv:2204.01603 (2022).

[9] F. Adobbati, L. Bernardinello, G. Kılınç Soylu, L. Pomello, Computing a parametric reveals

relation for bounded equal-conflict Petri nets, in: Transactions on Petri Nets and Other

Models of Concurrency XVII, Springer, 2023, pp. 54–83.

[10] T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE 77

(1989) 541–580. doi:10.1109/5.24143.

[11] J. Engelfriet, Branching processes of Petri nets, Acta Inf. 28 (1991) 575–591. URL: https:

//doi.org/10.1007/BF01463946. doi:10.1007/BF01463946.

http://dx.doi.org/10.1109/5.24143
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/BF01463946
http://dx.doi.org/10.1007/BF01463946

	1 Introduction
	2 Basic definitions
	3 The game
	4 Conclusion and prospects

