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Abstract
The correlation measure is a testimony of the pseudorandomness of a sequence s and provides information
about the independence of some parts of s and their shifts. Combined with the well-distribution measure,
a sequence possesses good pseudorandomness properties if both measures are relatively small. In
combinatorics on words, the famous 𝑏-automatic sequences are quite far from being pseudorandom, as
they have small factor complexity on the one hand and large well-distribution and correlation measures
on the other. This paper investigates the pseudorandomness of a specific family of morphic sequences,
including classical 𝑏-automatic sequences. In particular, we show that such sequences have large even-
order correlation measures; hence, they are not pseudorandom. We also show that even- and odd-order
correlation measures behave differently when considering some simple morphic sequences.
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1. Introduction

Pseudorandom sequences are generated by algorithms and behave similarly to truly random
sequences. To study the pseudorandomness of a sequence, a wide variety of measures have
been introduced, called measures of complexity or measures of pseudorandomness. For instance,
from a purely theoretical point of view, the famous Kolmogorov complexity of a sequence gives
the length of the shortest program that generates it [1]; see also [2, 3]. An infinite sequence is
said to be algorithmically random if its Kolmogorov complexity grows like the length of the
sequence itself. It is well known that Kolmogorov complexity is not a computable function; for
example, see [4] for a formal proof and history behind.

As a consequence, many other measures of complexity can be used, especially for practical
issues. The series of papers [5, 6], initiated by Mauduit and Sárközy in 1997, introduces and
studies several such measures. Among the most important ones, the well-distribution measure
and the correlation measure are considered in various contexts. Let s = (s(𝑛))𝑛≥0 be a sequence
over the alphabet {0, 1}. For 𝑎 ∈ Z and 𝑏,𝑀 ∈ N, write 𝑈(s,𝑀, 𝑎, 𝑏) =

∑︀𝑀−1
𝑗=0 (−1)s(𝑎+𝑗𝑏)

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy
†
These authors contributed equally.
$ pierre.popoli@uliege.be (P. Popoli); m.stipulanti@uliege.be (M. Stipulanti)
� 0000-0002-4243-9180 (P. Popoli); 0000-0002-2805-2465 (M. Stipulanti)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:pierre.popoli@uliege.be
mailto:m.stipulanti@uliege.be
https://orcid.org/0000-0002-4243-9180
https://orcid.org/0000-0002-2805-2465
https://creativecommons.org/licenses/by/4.0


and for 𝑘 ∈ N≥1, 𝐷 = (𝑑1, . . . , 𝑑𝑘) ∈ N𝑘 such that 0 ≤ 𝑑1 < 𝑑2 < · · · < 𝑑𝑘, write

𝑉 (s,𝑀,𝐷) =
𝑀−1∑︁
𝑛=0

(−1)s(𝑛+𝑑1)+s(𝑛+𝑑2)···+s(𝑛+𝑑𝑘).

The Nth well-distribution measure of the sequence s is defined by

𝑊 (s, 𝑁) = max
𝑎,𝑏,𝑀

|𝑈(s,𝑀, 𝑎, 𝑏)| = max
𝑎,𝑏,𝑀

⃒⃒⃒⃒
⃒⃒𝑀−1∑︁
𝑗=0

(−1)s(𝑎+𝑗𝑏)

⃒⃒⃒⃒
⃒⃒ ,

where the maximum is taken over all 𝑎, 𝑏,𝑀 ∈ N such that 0 ≤ 𝑎 ≤ 𝑎+ (𝑀 − 1)𝑏 < 𝑁 , and
the 𝑁 th correlation measure of order 𝑘 of s is given by

𝐶𝑘(s, 𝑁) = max
𝑀,𝐷

|𝑉 (s,𝑀,𝐷)| = max
𝑀,𝐷

⃒⃒⃒⃒
⃒
𝑀−1∑︁
𝑛=0

(−1)s(𝑛+𝑑1)+s(𝑛+𝑑2)···+s(𝑛+𝑑𝑘)

⃒⃒⃒⃒
⃒ ,

where the maximum is taken over all vectors 𝐷 = (𝑑1, . . . , 𝑑𝑘) ∈ N𝑘 and all integers 𝑀 such
that 0 ≤ 𝑑1 < 𝑑2 < · · · < 𝑑𝑘 and 𝑀 + 𝑑𝑘 ≤ 𝑁 .

It is said that the sequence s possesses good properties of pseudorandomness if both its
measures 𝑊 (s, 𝑁) and 𝐶𝑘(s, 𝑁) are relatively small compared to 𝑁 . Indeed, Alon et al. [7],
improving a former result of Cassaigne, Mauduit, and Sárközy [8], prove that the expected
order of 𝑊 (s, 𝑁) and 𝐶𝑘(s, 𝑁) when s is a truly random binary sequence is

√
𝑁(log𝑁)𝑂(1).

Furthermore, it is crucial to simultaneously consider the two measures, since the smallness of
one does not necessarily imply that of the other; see [5] for more details. However, it is sufficient
to show that the correlation measure of a sequence is large to tell it apart from a pseudorandom
sequence. Notice that the combination of the well-distribution and the correlation measures
gives birth to the well-distribution-correlation measure, which is however more complicated to
study.

Usually, the methods to analyze correlation measures are borrowed from number theory;
see [9, 10] and the references therein for general results. However, in this paper, we study a
large family of sequences through the lens of their correlation measures by mixing tools from
automata theory and general numeration systems. Such a family is that of automatic sequences;
see Section 2 for precise definitions. In combinatorics on words, they are classical and have
many beautiful properties. Among others, they are known to be bad pseudorandom sequences
as explained hereafter. First, it is well known that their factor complexity, which counts the
number of different blocks of each length appearing in the whole sequence, is bounded by a
linear function and is, therefore, small. On the other hand, over an alphabet of size ℓ, the 𝑛th
term of the factor complexity of a random sequence is of order ℓ𝑛; see [11, Chapter 10] for more
details. Second, Mérai and Winterhof [12] prove that the order-2 correlation of an automatic
sequence is large, as stated below.

Theorem 1 ([12, Theorem 7]). Let 𝑏 ≥ 2 be an integer and let s be a 𝑏-automatic binary sequence
generated by a DFAO with 𝑚 states. Then 𝐶2(s, 𝑁) ≥ 𝑁

𝑏(𝑚+1) for all 𝑁 ≥ 𝑏(𝑚+ 1).



The focus on correlation measures of automatic sequences dates back to the previous century.
In the late 1920s, Mahler [13] analyzes the sequence ((−1)s2(𝑛))𝑛≥0, where s2 : N → N is the
sum-of-digit function in base 2. In particular, he considers, for any non-negative integer 𝑘, the
quantity

𝑐𝑀 (𝑘) =
1

𝑀
𝑉 (s2,𝑀,𝐷) =

1

𝑀

𝑀−1∑︁
𝑛=0

(−1)s2(𝑛)+s2(𝑛+𝑘)

where 𝐷 = (0, 𝑘), and shows that the sequence (𝑐𝑀 (𝑘))𝑀≥0 converges to some real number
𝑐(𝑘). It turns out that this quantity is related to the order-2 correlation measure of the 2-
automatic Thue–Morse sequence t = (t(𝑛))𝑛≥0 as it is defined by t(𝑛) = s2(𝑛) mod 2 for
all 𝑛 ≥ 0. We also refer to [14] for more historical background on t and specific values of
the quantity 𝑐(𝑘). Later on, Mauduit and Sárközy [6] prove that 𝐶2(t, 𝑁) ≥ 1

12𝑁 for 𝑁 ≥ 5.
However, when Theorem 1 is applied to t, the lower bound is improved as 𝐶2(t, 𝑁) ≥ 1

6𝑁 for
𝑁 ≥ 6; see [12] for more details. In a similar context, Baake and Coons [15] recently study
the correlations of t with specific values of the shifted vector 𝐷, as well as their means with
renormalization techniques. Mazáč [16] carries out an analogous approach for the correlations
of the Rudin–Shapiro sequence, another distinguished automatic sequence. We also mention
the work of Grant, Shallit, and Stoll [17] (and papers following this trend), where correlations
over alphabets of size more than 2 are considered.

It is known that automatic sequences are morphic; see [11, Chapter 6] and Section 2 for
precise definitions. In this more general framework, the factor complexity is bounded by a
quadratic function, which, in turn, again shows that they are far from being pseudorandom;
see [11, Chapter 10]. Consequently, our study is driven by the natural question to know whether
the order-2 correlation measure of any morphic sequence is large. As a first step towards
answering this question, we presently consider a subfamily of morphic sequences based on
Parry–Bertrand numeration systems (see Section 2 for precise definitions). In the theory of
numeration systems, they have gained the attention of the scientific community for the nice
framework they provide and have especially been used in [18, 19, 20, 21, 22].

Our main result is Theorem 2 below (see again Section 2 for precise definitions). It im-
proves Theorem 1 in at least two ways. First, we consider a much larger class of sequences
as classical automatic sequences are 𝑈𝛽-automatic for some integer 𝛽. Second, we deal with
all even-order correlations, whereas only the case of order 2 is considered in [12]. Notice
that we also discuss the case of odd-order correlations for which such a theorem fails to hold;
see Section 3.1. Note that, for two maps 𝑓, 𝑔 such that 𝑔 takes only non-negative values, we
write 𝑓 ≫ 𝑔 (resp., 𝑓 ≪ 𝑔) if there exists a positive constant 𝑐 such that |𝑓(𝑥)| ≥ 𝑐𝑔(𝑥) (resp.,
|𝑓(𝑥)| ≤ 𝑐𝑔(𝑥)) for all sufficiently large 𝑥.

Theorem 2. Let 𝑘 ≥ 1 be an integer, 𝛽 ∈ R>1 be a Parry number and 𝑈𝛽 be the correspond-
ing canonical Parry–Bertrand numeration. For all binary 𝑈𝛽-automatic sequences s, we have
𝐶2𝑘(s, 𝑁) ≫ 𝑁 , where the constant depends on 𝛽, 𝑘, and the size of the automaton generating s.

The present paper is organized as follows. In Section 2, we recall the necessary background
on combinatorics on words, automatic sequences, and numeration systems. Section 3 is divided
into two parts. In Section 3.1, we deal with the case of linearly recurrent sequences. In particular,



we highlight the fact that even- and odd-order correlation measures behave differently, which
will imply that there is no hope of extending Theorem 2 to odd-order correlations. In Section 3.2,
we show with Theorem 2 that our specific morphic sequences have a large correlation measure
of even orders. Finally, Section 4 presents possible future work.

2. Background

2.1. On Combinatorics on Words

As a general reference on words, we point out [23]. An alphabet is a finite set of elements called
letters. A word on an alphabet 𝐴 is a sequence of letters from 𝐴. It is either finite or infinite.
In order to distinguish them, infinite words are written in bold. The length of a finite word,
denoted between vertical bars, is the number of letters it is made of. The empty word is the only
0-length word. For all 𝑛 ≥ 0, we let 𝐴𝑛 denote the set of all length-𝑛 words over 𝐴. We let 𝐴*

denote the set of finite words over 𝐴, including the empty word, and 𝐴𝜔 or 𝐴N that of infinite
words over 𝐴. The first is equipped with the concatenation of words. Let 𝐴 and 𝐵 be finite
alphabets. A morphism 𝑓 : 𝐴* → 𝐵* is a map satisfying 𝑓(𝑢𝑣) = 𝑓(𝑢)𝑓(𝑣) for all 𝑢, 𝑣 ∈ 𝐴*.
In particular, 𝑓(𝜀) = 𝜀. For an integer ℓ ≥ 2, a morphism is ℓ-uniform if it maps each letter
to a length-ℓ word. A 1-uniform morphism is called a coding. An infinite word x is morphic
if there exist a morphism 𝑓 : 𝐴* → 𝐴*, a coding 𝑔 : 𝐴* → 𝐵*, and a letter 𝑎 ∈ 𝐴 such that
x = 𝑔(𝑓𝜔(𝑎)), where 𝑓𝜔(𝑎) = lim𝑛→∞ 𝑓𝑛(𝑎).

2.2. On Generalized Automatic Sequences

Abstract numeration systems were introduced at the beginning of the century by Lecomte and
Rigo [24]; see also [25, Chapter 3] for a general presentation. Such a numeration system is
defined by a triple 𝑆 = (𝐿,𝐴,<) where 𝐴 is an alphabet ordered by the total order < and 𝐿
is an infinite regular language over 𝐴, i.e., accepted by a deterministic finite automaton. We
say that 𝐿 is the numeration language of 𝑆. When we genealogically (i.e., first by length, then
using the dictionary order) order the words of 𝐿, we obtain a one-to-one correspondence rep𝑆
between N and 𝐿. Then, the 𝑆-representation of the non-negative integer 𝑛 is the (𝑛 + 1)st
word of 𝐿, and the inverse map, called the (e)valuation map, is denoted by val𝑆 .

Example 1. Consider the abstract numeration system 𝑆 built on the language 𝑎*𝑏* over the
ordered alphabet {𝑎, 𝑏}with 𝑎 < 𝑏. The first few words in the language are 𝜀, 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑏, 𝑏𝑏, 𝑎𝑎𝑎.
For instance, rep𝑆(5) = 𝑏𝑏 and val𝑆(𝑎𝑎𝑎) = 6.

Let 𝑆 = (𝐿,𝐴,<) be an abstract numeration system. An infinite word x is 𝑆-automatic if
there exists a deterministic finite automaton with output (DFAO) 𝒜 such that, for all 𝑛 ≥ 0,
the 𝑛th term x(𝑛) of x is given by the output 𝒜(rep𝑆(𝑛)) of 𝒜. See [11, 26, 27] for general
references.

2.3. Representation of Real Numbers

We now recall several definitions and results about representations of real numbers; see, for
instance, [25, 28]. Let 𝛽 ∈ R>1 and let 𝐴𝛽 = {0, 1, . . . , ⌈𝛽⌉ − 1}. Every real number 𝑥 ∈ [0, 1)



can be written as a series 𝑥 =
∑︀+∞

𝑗=1 𝑐𝑗𝛽
−𝑗 , where 𝑐𝑗 ∈ 𝐴𝛽 for all 𝑗 ≥ 1. We let 𝑑𝛽(𝑥) denote

the 𝛽-expansion of 𝑥 obtained greedily. In an analogous way, the 𝛽-expansion 𝑑𝛽(1) of 1 is
𝑑𝛽(1) = lim𝑥→1 𝑑𝛽(𝑥). We define the quasi-greedy 𝛽-expansion 𝑑*𝛽(1) of 1 as follows. Write
𝑑𝛽(1) = (𝑡(𝑛))𝑛≥1. If 𝑑𝛽(1) = 𝑡(1) · · · 𝑡(𝑚)0𝜔 with 𝑡(𝑚) ̸= 0, then 𝑑*𝛽(1) = (𝑡(1) · · · 𝑡(𝑚 −
1)(𝑡(𝑚)− 1))𝜔 ; otherwise 𝑑*𝛽(1) = 𝑑𝛽(1). We define the 𝛽-shift 𝑆𝛽 as the topological closure
of the set 𝐷𝛽 = {𝑑𝛽(𝑥) | 𝑥 ∈ [0, 1)}. A real number 𝛽 > 1 is a Parry number if 𝑑𝛽(1) is
ultimately periodic.

Example 2. Any integer 𝛽 > 1 is a Parry number. The golden ratio 𝜙 is a Parry number for
which 𝑑𝜙(1) = 11 and 𝑑*𝜙(1) = (10)𝜔 (since 1 = 1/𝜙 + 1/𝜙2). The square 𝜙2 of the golden
ratio is also a Parry number with 𝑑𝜙2(1) = 21𝜔 = 𝑑*𝜙2(1).

Parry’s theorem [29] notably provides a purely combinatorial condition to check if an infinite
sequence is in 𝑆𝛽 by comparing this sequence to 𝑑*𝛽(1) using the lexicographic order.

Proposition 1 ([28, Corollaries 2.71 and 2.72]). Let 𝛽 ∈ R>1 be a Parry number. Write 𝑑𝛽(1) =
𝑡(1) · · · 𝑡(𝑚)(𝑡(𝑚+1) · · · 𝑡(𝑚+𝑘))𝜔 (where 𝑚, 𝑘 ≥ 0 are taken to be minimal). Then an infinite
word belongs to 𝑆𝛽 if and only if it is the label of a path in the automaton 𝒜𝛽 = (𝑄, 𝑎0, 𝐴𝛽, 𝛿, 𝑄),
where 𝑄 = {𝑎0, . . . , 𝑎𝑚+𝑘−1} and where the transition function 𝛿 is defined as

𝛿(𝑎𝑖−1, 𝑡) = 𝑎0, for all 1 ≤ 𝑖 < 𝑚+ 𝑘 and all 0 ≤ 𝑡 < 𝑡(𝑖);

𝛿(𝑎𝑖−1, 𝑡(𝑖)) = 𝑎𝑖, for all 1 ≤ 𝑖 < 𝑚+ 𝑘;

𝛿(𝑎𝑚+𝑘−1, 𝑡(𝑚+ 𝑘)) = 𝑎𝑚.

Every Parry number is canonically associated with a linear positional numeration system.
We now expose this framework. Let 𝑈 = (𝑈(𝑛))𝑛≥0 be an increasing sequence of integers with
𝑈(0) = 1. Any integer 𝑛 can be decomposed uniquely in a greedy way as 𝑛 =

∑︀𝑡
𝑖=0 𝑐𝑖 𝑈(𝑖)

with non-negative integer coefficients 𝑐𝑖. The finite word rep𝑈 (𝑛) = 𝑐𝑡 · · · 𝑐0 is called the
(greedy) 𝑈 -representation of 𝑛. By convention, the representation of 0 is the empty word 𝜀. The
finiteness of the digit-set 𝐴𝑈 for greedy representations is implied by the boundedness of the
sequence sup𝑖≥0 𝑈(𝑖 + 1)/𝑈(𝑖). A sequence 𝑈 satisfying all the above conditions defines a
positional numeration systems. The numeration language is the set 𝐿𝑈 = {rep𝑈 (𝑛) | 𝑛 ≥ 0}.
For any 𝑐𝑡 · · · 𝑐0 ∈ N*, we let val𝑈 (𝑐𝑡 · · · 𝑐0) denote the integer

∑︀𝑡
𝑖=0 𝑐𝑖 𝑈(𝑖). In addition, a

positional numeration system is linear if 𝑈 satisfies a linear recurrence relation.

Example 3. The Fibonacci sequence 𝐹 = (𝐹 (𝑛))𝑛≥0 with initial conditions 𝐹 (0) = 1 and
𝐹 (1) = 2 and 𝐹 (𝑛+ 2) = 𝐹 (𝑛+ 1) + 𝐹 (𝑛) for all 𝑛 ≥ 0 gives rise to the famous Zeckendorf
or Fibonacci linear positional numeration system [30]. The numeration language is 𝐿𝐹 =
{𝜀} ∪ 1{0, 01}*.

Let 𝛽 ∈ R>1 be a Parry number. We define a particular linear positional numeration
system 𝑈𝛽 = (𝑈𝛽(𝑛))𝑛≥0 associated with 𝛽 as follows. Write 𝑑𝛽(1) = 𝑡(1) · · · 𝑡(𝑚)(𝑡(𝑚 +
1) · · · 𝑡(𝑚 + 𝑘))𝜔 (𝑚, 𝑘 are minimal and might be zero). We define 𝑈𝛽(0) = 1, 𝑈𝛽(𝑖) =
𝑡(1)𝑈𝛽(𝑖− 1) + · · ·+ 𝑡(𝑖)𝑈𝛽(0) + 1 for all 𝑖 ∈ {1, . . . ,𝑚+ 𝑘 − 1} and

𝑈𝛽(𝑛) = 𝑡(1)𝑈𝛽(𝑛− 1) + · · ·+ 𝑡(𝑚+ 𝑘)𝑈𝛽(𝑛−𝑚− 𝑘) + 𝑈𝛽(𝑛− 𝑘)
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Figure 1: A DFAO producing the sum-of-digit function s𝐹 modulo 2 in the Zeckendorf numeration
system 𝐹 .

− 𝑡(1)𝑈𝛽(𝑛− 𝑘 − 1)− · · · − 𝑡(𝑚)𝑈𝛽(𝑛−𝑚− 𝑘)

for all 𝑛 ≥ 𝑚+ 𝑘. We set 𝐿𝛽 = 𝐿𝑈𝛽
for the sake of readability.

Example 4. We resume Example 2. For the golden ratio, we obtain 𝑚 = 2, so 𝑈𝜙(0) = 1,
𝑈𝜙(1) = 1 · 𝑈𝜙(0) + 1 = 2 and 𝑈𝜙(𝑛) = 1 · 𝑈𝜙(𝑛− 1) + 1 · 𝑈𝜙(𝑛− 2) for all 𝑛 ≥ 2. We find
back the Zeckendorf numeration system of Example 3. For its square, we have 𝑚 = 1 = 𝑘, so
𝑈𝜙2(0) = 1, 𝑈𝜙2(1) = 2 · 𝑈𝜙2(0) + 1 = 3 and 𝑈𝜙2(𝑛) = 3 · 𝑈𝜙2(𝑛− 1)− 1 · 𝑈𝜙2(𝑛− 2) for
all 𝑛 ≥ 2. Its first few elements are thus 1, 3, 8, 21, 55, the even-indexed Fibonacci numbers.

The numeration system 𝑈𝛽 has two useful properties. First, it possesses the Bertrand property,
i.e., for all 𝑤 ∈ 𝐴+

𝑈𝛽
, 𝑤 ∈ 𝐿𝛽 ⇔ 𝑤0 ∈ 𝐿𝛽 ; see [31] for the original version and [18] for the

recently corrected one. In that case, any word 𝑤 in the set 0*𝐿𝛽 of all 𝑈𝛽-representations with
leading zeroes is the label of a path in the automaton 𝒜𝛽 from Proposition 1 [18, Theorem 2].
Second, it satisfies the dominant root condition, i.e., there is some complex number 𝑐 such that

lim
𝑛→+∞

𝑈𝛽(𝑛)

𝛽𝑛
= 𝑐; (1)

see, for instance, [18, Theorem 2]. In the following, we will consider Parry–Bertrand automatic
sequences, which are defined as 𝑆-automatic for the abstract numeration system built on the
language 𝐿𝛽 of 𝑈𝛽 for some Parry number 𝛽. For the sake of conciseness, we call them 𝑈𝛽-
automatic. Notice that when 𝛽 is an integer 𝑏, the corresponding sequences are usually called
𝑏-automatic.

Example 5. In the Zeckendorf numeration system 𝐹 from Example 3, if we write rep𝐹 (𝑛) =
𝑛ℓ · · ·𝑛0 for each non-negative integer 𝑛, then the sum-of-digit function s𝐹 : N → N is defined
by s𝐹 (𝑛) =

∑︀ℓ
𝑖=0 𝑛𝑖. When modded out by 2, it is 𝐹 -automatic (or Fibonacci-automatic) as

the DFAO in Fig. 1 produces it. Note that it is [32, A095076].

3. Main Results

As stated in the introduction, the main purpose of this paper resides in Theorem 2, which
extends Theorem 1 to a larger family of morphic sequences by considering all even-order
correlations. Such a result will also imply that this family of morphic sequences cannot be
qualified as pseudorandom, such as classical automatic sequences, from the point of view of
correlations.



3.1. Linearly Recurrent Sequences

Before developing the arguments for Theorem 2, we first deal with so-called linearly recurrent
sequences. A sequence s is recurrent if any factor of s occurs infinitely often in s. It is moreover
uniformly recurrent if the distance between two consecutive occurrences of any factor 𝑥 in s
is bounded by a constant that depends only on 𝑥. For instance, the Thue-Morse sequence is
uniformly recurrent. We say that s is linearly recurrent if the gap between two consecutive
occurrences of any length-𝑛 factor 𝑥 in s is bounded by 𝐶 · 𝑛, where 𝐶 is a constant. See [33]
for more examples.

Theorem 3. Let s be a linearly recurrent sequence. For all 𝑘 ≥ 1, we have 𝐶2𝑘(s, 𝑁) ≫ 𝑁 .

Proof. Let 𝐶 > 0 be such that two consecutive occurrences of any factor 𝑥 of s being at
positions 𝑖, 𝑗 satisfies |𝑗 − 𝑖|< 𝐶|𝑥|. Let 𝑁 ≥ 1 be sufficiently large and consider the prefix
𝑥 = 𝑠(0)𝑠(1) . . . 𝑠(⌊ 𝑁

𝐶+1⌋ − 1) of s. By assumption, there exists 𝑑 ≤ 𝐶⌊ 𝑁
𝐶+1⌋ such that

𝑠(𝑖) = 𝑠(𝑑 + 𝑖) for all 𝑖 ∈ {0, . . . , ⌊ 𝑁
𝐶+1⌋ − 1} and 𝑑 + ⌊ 𝑁

𝐶+1⌋ − 1 ≤ 𝑁 . Therefore, for
𝐷 = (0, 𝑑) and 𝑀 = ⌊ 𝑁

𝐶+1⌋, we have
∑︀𝑀−1

𝑛=0 (−1)𝑠(𝑛)+𝑠(𝑛+𝑑) =
∑︀𝑀−1

𝑛=0 (−1)2𝑠(𝑛) = 𝑀 . This
proves that 𝐶2(s, 𝑁) ≫ 𝑁 .

The case of even-order of correlations can be treated similarly by considering 2𝑘 consecutive
occurrences of the prefix 𝑥 = 𝑠(0)𝑠(1) . . . 𝑠( 1

2𝑘⌊
𝑁

𝐶+1⌋ − 1), 𝑑 ≤ 𝐶
2𝑘⌊

𝑁
𝐶+1⌋ such that 𝑠(𝑖) =

𝑠(𝑗𝑑+ 𝑖) for all 𝑗 ≥ 0 and 𝑖 ∈ {0, . . . , ⌊ 𝑁
𝐶+1⌋ − 1}, and 𝐷 = (0, 𝑑, . . . , (2𝑘 − 1)𝑑).

Remark 1. Surprisingly, the case of odd-order correlations cannot be treated similarly. To
highlight this, we consider the case of periodic sequences, defined as the infinite repetition
𝑢𝜔 = 𝑢𝑢𝑢 · · · of a (finite) pattern 𝑢 and which are automatic in any numeration system. More
specifically, consider the simple periodic sequence s = (01)𝜔 . For all 𝑘 ≥ 1 and all 𝑁 ≥ 1,
we have 𝐶2𝑘+1(s, 𝑁) = 1 since, for 𝐷 = (𝑑1, . . . , 𝑑𝑘), |𝑉 (s,𝑀,𝐷)| equals 1 if 𝑀 is odd, 0
otherwise. Actually, this simple observation explains why the statement of our main result does
not hold for odd-order correlations.

Note that there exist automatic sequences that are not uniformly recurrent (and there-
fore not linearly recurrent). For instance, consider the 3-automatic sequence ca =
𝑎𝑏𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑏𝑎𝑏 · · · defined as the fixed point of the uniform morphism 𝑎 ↦→ 𝑎𝑏𝑎, 𝑏 ↦→
𝑏𝑏𝑏 (sometimes referred to as the Cantor sequence; see, for instance, [34, Section 2.4.6]) and
for which consecutive occurrences of the factor 𝑎𝑏𝑎 are separated by larger and larger gaps.
Therefore, Theorem 2 covers a larger class of sequences than Theorem 3.

3.2. Proof of Theorem 2

Now we attack the proof of Theorem 2 for which we need some additional preparation. First,
we count the number of words of each length in the numeration language with leading zeroes,
since this language will appear later on.

Lemma 1. Let 𝛽 ∈ R>1 be a Parry number and consider the canonical Parry–Bertrand numeration,
𝑈𝛽 whose numeration language is 𝐿𝛽 . For all 𝑛 ≥ 0, the number of length-𝑛 words in 0*𝐿𝛽 is
𝑈𝛽(𝑛).



Proof. First, for all 𝑚 ≥ 1, the length-𝑚 words in 𝐿𝛽 correspond to the integers in [𝑈𝛽(𝑚−
1), 𝑈𝛽(𝑚)), so there are 𝑈𝛽(𝑚)− 𝑈𝛽(𝑚− 1) of them. The number of length-𝑛 words in 0*𝐿𝛽

is thus equal to (︃
𝑛−1∑︁
𝑚=1

𝑈𝛽(𝑚)− 𝑈𝛽(𝑚− 1)

)︃
+ 1 = 𝑈𝛽(𝑛).

Therefore, the lemma is proved.

Since automata producing Parry–Bertrand automatic sequences recognize the language 𝐿𝛽 ,
we build up one from that of Proposition 1.

Lemma 2. Let 𝛽 ∈ R>1 be a Parry number. Then there exists a deterministic finite automaton
recognizing the language 𝐿𝛽 .

Proof. Let𝒜𝛽 = (𝑄, 𝑎0, 𝐴𝛽, 𝛿, 𝑄) be the DFA recognizing the language 0*𝐿𝛽 from Proposition 1
with state-set 𝑄 = {𝑎0, . . . , 𝑎𝑚+𝑘−1}. The automaton 𝒜′

𝛽 = (𝑄′, 𝑎′0, 𝐴𝛽, 𝛿
′, 𝑄′) defined as

follows recognizes 𝐿𝛽 . We set 𝑄′ = {𝑎′0} ∪𝑄 where 𝑎′0 is a new state. We replace the initial
state 𝑎0 of 𝒜𝛽 by 𝑎′0. The new transition function 𝛿′ is defined as 𝛿′(𝑎′0, 𝑐) = 𝛿(𝑎0, 𝑐) for all
non-zero letter 𝑐, and 𝛿′(𝑎𝑖, 𝑐) = 𝛿(𝑎𝑖, 𝑐) for all 𝑖 ∈ {0, . . . ,𝑚+ 𝑘 − 1} and all letter 𝑐.

It is well known due to Cobham that 𝑏-automatic sequences are characterized by 𝑏-uniform
morphisms; see [35] or [11, Theorem 6.3.2]. We have the following generalization for 𝑆-
automatic sequences.

Theorem 4 ([26]). A word is morphic if and only if it is 𝑆-automatic for some abstract numeration
system 𝑆.

The proof of the above theorem is constructive: given the morphisms producing the word s,
one can build an abstract numeration system 𝑆 and a DFAO generating s, and vice versa. As
our proof of Theorem 2 relies on this construction, we develop it now.

Fix a Parry number 𝛽 ∈ R>1 and consider the canonical Parry–Bertrand numeration 𝑈𝛽 . For
the sake of conciseness, let 𝐿 be the numeration language 𝐿𝛽 and let 𝐴 denote the (minimal)
alphabet over which 𝐿 is defined. Order the letters of 𝐴 as 0 < 1 < · · · < 𝑚. Consider
also a binary 𝑈𝛽-automatic sequence s. Let 𝒜 = (𝑄, 𝑎0, 𝐴, 𝛿𝒜, 𝐹 ) be the DFA accepting 𝐿 as
in Lemma 2 and let ℬ = (𝑅, 𝑟0, 𝐴, 𝛿ℬ, 𝜏 : 𝑅 → {0, 1}) be a DFAO generating the sequence s.

We explicitly give a pair of morphisms producing s. Define the Cartesian product automaton
𝒫 = 𝒜 × ℬ, which imitates the behavior of 𝒜 on the first component and ℬ on the second.
Its set of states is 𝑄 × 𝑅, the initial state is (𝑎0, 𝑟0), and the alphabet is 𝐴. Its transition
function Δ: (𝑄×𝑅)×𝐴* → 𝑄×𝑅 is defined by Δ((𝑞, 𝑟), 𝑤) = (𝛿𝒜(𝑞, 𝑤), 𝛿ℬ(𝑟, 𝑤)) for all
𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅 and 𝑤 ∈ 𝐴*. In particular, Δ((𝑞, 𝑟), 𝑤) ∈ 𝐹 × 𝑅 if and only if 𝑤 belongs to
𝐿. Furthermore, if Δ((𝑎0, 𝑟0), rep𝑈𝛽

(𝑛)) = (𝑞, 𝑟), then s(𝑛) = 𝜏(𝑟). Now let 𝛼 be a symbol
not belonging to 𝑄 × 𝑅. Define the morphism 𝜙𝒫 : (𝑄 × 𝑅 ∪ {𝛼})* → (𝑄 × 𝑅 ∪ {𝛼})* by
𝜙𝒫(𝛼) = 𝛼(𝑎0, 𝑟0) and, for all 𝑞 ∈ 𝑄 and 𝑟 ∈ 𝑅,

𝜙𝒫((𝑞, 𝑟)) = Δ((𝑞, 𝑟), 0) · · ·Δ((𝑞, 𝑟),𝑚) =

𝑚∏︁
𝑖=0

Δ((𝑞, 𝑟), 𝑖),



where, if Δ((𝑞, 𝑟), 𝑖) is not defined for some 𝑖, then it is replaced by 𝜀 (note that the product
has to be understood as the concatenation). Observe that 𝜙𝒫 is not necessarily uniform.

Order the words in 𝐿 genealogically as 𝑤0 < 𝑤1 < · · · . Define u𝒫 = 𝜙𝜔
𝒫(𝛼). Then, by [28,

Lemma 2.25], the shifted sequence of u𝒫 is the sequence of states reached in 𝒫 by the words in
𝐿 ordered genealogically, i.e., for all 𝑛 ∈ N, the (𝑛+1)st letter of u𝒫 is equal to Δ((𝑎0, 𝑟0), 𝑤𝑛).
Now define the morphism 𝜈𝒫 : (𝑄 × 𝑅 ∪ {𝛼})* → {0, 1}* by 𝜈𝒫(𝛼) = 𝜀 and, for all 𝑞 ∈ 𝑄
and 𝑟 ∈ 𝑅, 𝜈𝒫((𝑞, 𝑟)) = 𝜏(𝑟). Note that 𝜈𝒫 is non-erasing on 𝑄 × 𝑅. By construction, we
have s = 𝜈𝒫(u𝒫) = 𝜈𝒫(𝜙

𝜔
𝒫(𝛼)). To help the reader with the construction, we illustrate it

in Example 6 below.
We now give the proof of Theorem 2. In particular, one side feature of the proof is a

characterization of the distance between the repeating part in the sequence under study.

Proof of Theorem 2. Let 𝐿 denote the numeration language 𝐿𝛽 and let 𝐴 be the (minimal)
alphabet over which 𝐿 is defined. Let 𝒜 = (𝑄, 𝑎0, 𝐴, 𝛿𝒜, 𝐹 ) be the DFA accepting 𝐿 as
in Lemma 2, ℬ = (𝑅, 𝑟0, 𝐴, 𝛿ℬ, 𝜏 : 𝑅 → {0, 1}) be a DFAO generating the sequence s, 𝒫 =
𝒜×ℬ be the Cartesian product automaton, with transition function Δ: (𝑄×𝑅)×𝐴* → 𝑄×𝑅,
and 𝛼 be a symbol not belonging to 𝑄×𝑅. Consider the morphisms 𝜙𝒫 : (𝑄×𝑅 ∪ {𝛼})* →
(𝑄×𝑅 ∪ {𝛼})* and 𝜈𝒫 : (𝑄×𝑅 ∪ {𝛼})* → {0, 1}* as defined above and write u𝒫 = 𝜙𝜔

𝒫(𝛼).
Let 𝑁,𝑀 ≥ 1 where 𝑀 is chosen later accordingly to 𝑁 . Consider two distinct words

𝑢, 𝑣 such that Δ((𝑎0, 𝑟0), 𝑢) = Δ((𝑎0, 𝑟0), 𝑣). Then, for all length-𝑀 words 𝑤 ∈ 0*𝐿,
the states Δ((𝑎0, 𝑟0), 𝑢𝑤) and Δ((𝑎0, 𝑟0), 𝑣𝑤) are equal. The word 𝜙𝑀

𝒫 (Δ((𝑎0, 𝑟0), 𝑢)) =
𝜙𝑀
𝒫 (Δ((𝑎0, 𝑟0), 𝑣)) is made of the sequence of such states. Indeed, for 𝑥 ∈ {𝑢, 𝑣}, we have

𝜙𝑀
𝒫 (Δ((𝑎0, 𝑟0), 𝑥)) =

∏︁
𝑤∈0*𝐿
|𝑤|=𝑀

Δ((𝑎0, 𝑟0), 𝑥𝑤).

Applying the morphism 𝜈𝒫 then gives back the original sequence s. As 𝜈𝒫 is non-erasing on
𝑄×𝑅, |𝜙𝑀

𝒫 (Δ((𝑎0, 𝑟0), 𝑥))| = 𝑈𝛽(𝑀) by Lemma 1.
Order 2. Firstly, we study the case of the order-2 correlation, for the sake of simplicity and
since the case of even-order correlations will follow the same lines. Consider two distinct
words 𝑢, 𝑣 ∈ 𝐿 such that Δ((𝑎0, 𝑟0), 𝑢) = Δ((𝑎0, 𝑟0), 𝑣). By the pigeonhole principle, we may
choose 𝑢, 𝑣 among the first |𝑄| · |𝑅| words of 𝐿. Without loss of generality, we may assume
that 𝑢 is lexicographically smaller than 𝑣 and that 𝑢 is non-empty (recall Lemma 2). Then
in the sequence s we have two identical blocks of length 𝑈𝛽(𝑀) starting at positions 𝑝𝑢, 𝑝𝑣
respectively associated with the word 𝑢0𝑀 and 𝑣0𝑀 in 𝐿, i.e., 𝑝𝑥 = val𝑈𝛽

(𝑥0𝑀 ) for 𝑥 ∈ {𝑢, 𝑣}.
The situation is depicted in Fig. 2. Therefore, we have

s(𝑝𝑢 + 𝑛) = s(𝑝𝑣 + 𝑛) (2)

for all 0 ≤ 𝑛 < 𝑈𝛽(𝑀). We now make several observations. First, notice that the largest index
in Eq. (2) is smaller than 𝑝𝑣 + 𝑈𝛽(𝑀) by assumption on 𝑢, 𝑣. Then, note that, for 𝑥 ∈ {𝑢, 𝑣},
we have 𝑝𝑥 = val𝑈𝛽

(𝑥0𝑀 ) and val𝑈𝛽
(𝑥) ≤ |𝑄| · |𝑅| by choice of 𝑥.

Let𝑁 ≥ 1 be sufficiently large. Choose𝑀 ≥ 1 such that 𝑝𝑣+𝑈𝛽(𝑀) ≤ 𝑁 < 𝑝𝑣+𝑈𝛽(𝑀+1)



and set 𝐷 = (𝑝𝑢, 𝑝𝑣). Therefore, using Eq. (2), we have

𝐶2(s, 𝑁) ≥ |𝑉 (s, 𝑁, 𝑈𝛽(𝑀), 𝐷)| =
𝑈𝛽(𝑀)−1∑︁

𝑛=0

(−1)s(𝑝𝑢+𝑛)+s(𝑝𝑣+𝑛) = 𝑈𝛽(𝑀). (3)

On the other hand, we have 𝑈𝛽(𝑀) = Θ(𝛽𝑀 ) by Eq. (1), which yields

𝑝𝑣 + 𝑈𝛽(𝑀 + 1) ≤ ⌈𝛽⌉𝑀+1 · |𝑄| · |𝑅|+ 𝑈𝛽(𝑀 + 1) ≪ 𝑐𝛽𝑀+1 (4)

for some non-zero constant 𝑐 depending on 𝛽 and the sequence s. Then Eqs. (3) and (4) lead to

𝐶2(s, 𝑁) ≥ 𝑈𝛽(𝑀) ≫ 𝛽𝑀 ≫
𝑝𝑣 + 𝑈𝛽(𝑀 + 1)

𝑐𝛽
≫ 𝑁

by choice of 𝑀 . This concludes the case of the order-2 correlation.

u𝒫
𝑢 𝑣

𝜙𝑀
𝒫

u𝒫

s

𝜈𝒫

𝑝𝑢 𝑝𝑣

𝑈𝛽(𝑀) 𝑈𝛽(𝑀)

Figure 2: A representation of the situation depicted in the proof of Theorem 2.

Even orders. The general case of even-order correlations can be treated similarly. Indeed,
let 𝑘 ≥ 1. Consider 2𝑘 pairwise distinct words 𝑢1, . . . , 𝑢2𝑘 ∈ 𝐿 such that Δ((𝑎0, 𝑟0), 𝑢𝑖) =
Δ((𝑎0, 𝑟0), 𝑢𝑗) for all 𝑖, 𝑗 ∈ {1, . . . , 2𝑘}. By the pigeonhole principle, we may choose them
among the first (2𝑘 − 1) · |𝑄| · |𝑅| words of 𝐿. Without loss of generality, we may assume that
they are increasingly nested lexicographically speaking (and non-empty). Then in the sequence
s we have 2𝑘 identical blocks of length 𝑈𝛽(𝑀) starting at positions 𝑝𝑢𝑖 = val𝑈𝛽

(𝑢𝑖0
𝑀 ) for

𝑖 ∈ {1, . . . , 2𝑘}. Therefore, we have s(𝑝𝑢𝑖 + 𝑛) = s(𝑝𝑢𝑗 + 𝑛) for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 2𝑘 and
0 ≤ 𝑛 < 𝑈𝛽(𝑀). We now finish up the proof by following the same argument as in the
previous case.

4. Discussion and Future Work

We can actually obtain a lower bound on correlations using the factor complexity, i.e., the map
counting the number of different factors of each length within a given sequence. Consider a
sequence s that is not ultimately periodic. Let 𝑝s : N → N denote its factor complexity. Let 𝑘,𝑁
be integers with 𝑘 ≥ 1. Then, using Morse and Hedlund’s famous result [36], one can show that,
within the prefix of length 𝑘𝑝s(𝑁) of s, there exists a length-𝑁 factor that occurs at least 𝑘 times.
Therefore, we obtain the lower bound 𝐶2𝑘(s, 2𝑘𝑝s(𝑁)) ≥ 𝑁 . In particular, for Parry–Bertrand
automatic sequences, [20, Theorem 3.4] allows to obtain the behavior emphasized in Theorem 2.



However, the aforementioned lower bound does not reflect the expected behavior of 𝐶𝑘 when
the studied sequence is random, or in some other simple cases. For instance, for the binary
Champernowne sequence ch = 011011100101110111 · · · , we have 𝐶2(ch, 𝑁) > 1

48𝑁 (see [6,
Theorem 1]), whereas 𝑝ch(𝑁) = 2𝑁 for all sufficiently large 𝑁 .

Furthermore, Theorem 2 extends to numeration systems that are not Parry-Bertrand. In fact,
scrutinizing its proof, we need a good control on the proportion of letters erased under the
morphism 𝜈𝒫 . Indeed, the proportion of non-erased letters is precisely the length of the block
that is represented in Fig. 2. So, in turn, a good knowledge on the growth rate of the numeration
numeration language, i.e., the number of words of each length within the language, is required.
In the next example, using the method presented in the proof of Theorem 2, we exhibit an
automatic sequence having a quadratic factor complexity but a linear order-2 correlation.

Example 6. Consider the linear positional numeration system 𝑈 = (𝑈(𝑛))𝑛≥0 defined by
𝑈(0) = 1 and 𝑈(𝑛 + 1) = 3𝑈(𝑛) + 1 for all 𝑛 ≥ 0. It has several useful properties: its
numeration language is given by the DFA in Fig. 3 and 𝑈 is Bertrand but not Parry; see [20,
Example 2 and Lemma 2.5], as well as [37, page 131]. We also have 𝑈(𝑛) = Θ(𝛽𝑛) where
𝛽 = 1

2(3 +
√
13) ≈ 3.30278. Consider the fixed point x of the morphism 𝑎 ↦→ 𝑎𝑎𝑎𝑏, 𝑏 ↦→ 𝑏

and the coding 𝜏 : 𝑎 ↦→ 0, 𝑏 ↦→ 1. The sequence 𝜏(x) is produced by the DFAO in Fig. 3. It is
binary and 𝑈 -automatic. In addition, its factor complexity is known to be quadratic (see [20,
Theorem 3.3]).

𝑎/0

𝑏/1

0, 1, 2

3

0

𝑎′0 𝑎0 𝑎1
1, 2

3

0, 1, 2

3

0

𝐴/0 𝐵/0

𝐶/1

1, 2

3

0, 1, 2

3 0

Figure 3: The product 𝒫 between a DFA for 𝐿𝑈 (top) and a DFAO for the morphic sequence 𝜏(x) (right)
where 𝑈 , x, and 𝜏 are all defined in Example 6.

Using the notation of Section 3.2, the morphism 𝜙𝒫 is defined by 𝛼 ↦→ 𝛼𝐴,
𝐴 ↦→ 𝐵𝐵𝐶 , 𝐵 ↦→ 𝐵𝐵𝐵𝐶 , 𝐶 ↦→ 𝐶 . Note that it is not uniform. We
get 𝜙𝜔

𝒫(𝛼) = 𝛼𝐴𝐵𝐵𝐶𝐵𝐵𝐵𝐶𝐵𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐶 · · · , whose shift indeed corresponds
to the sequence 𝐴,𝐵,𝐵,𝐶,𝐵,𝐵,𝐵,𝐶, . . . of states reached by the words of 𝐿𝑈 =
{𝜀, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 100, 101, 102, . . .} in the product automaton 𝒫
of Fig. 3. The morphism 𝜈𝒫 is defined by 𝛼 ↦→ 𝜀, 𝐴,𝐵 ↦→ 0, and 𝐶 ↦→ 1. Applying 𝜈𝒫
to 𝜙𝜔

𝒫(𝛼) gives the sequence 𝜏(x). To illustrate the method of the proof of Theorem 2, we can



consider 𝑢 = 10 and 𝑣 = 100 for which 𝛿(𝐴, 𝑢) = 𝐵 = 𝛿(𝐴, 𝑣). Now we also conclude that
𝐶2(𝜏(x), 𝑁) ≫ 𝑁 .

As a consequence, we raise the following more general and natural question: Is any morphic
sequence not pseudorandom as far as the correlation measures is concerned, i.e., is the correlation
of any morphic sequence large or small? In the near future, we hope to revisit the method of
the proof of Theorem 2 to extend it to a larger class of morphic sequences. In particular, as a
first step, we will need to find the appropriate conditions to describe this particular class. On
the other hand, as shown in [12], a lower bound on the state complexity of binary sequences in
terms of the order-2 correlation measure can be straightforwardly derived from Theorem 1. In
our setting, can a refinement of the proof of Theorem 2, involving only the number of states of
some automata, lead to similar bounds?
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