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Abstract
We consider the problem of identifying failure nodes in networks under the Boolean Network Tomography
(BNT) approach, which is based on end-to-end measurements routed in a network along paths and
producing a boolean (failure/not-failure) outcome1. Such end-to-end measurements paths are usually
described by an incidence boolean matrix M with 𝑚 rows (the measurements paths) and 𝑛 columns
(the nodes of the network). A key notion used in practice in this approach is that of 𝑘-identifiability.
Loosely speaking, a set of 𝑚 boolean measurements paths over 𝑛 nodes is 𝑘-identifiable, where 𝑘 is a
non-negative integer, if, whenever there are fewer than 𝑘 + 1 failures, it is always possible to identify
unambiguously and uniquely which nodes are failing.

Following the focus of some recent results analyzing maximal identifiability from a theoretical point
of view [1, 2, 3, 4], this work establishes the complexity of the optimization problem that determines the
maximal 𝑘 for which a set of measurement paths is 𝑘-identifiable (MID). We prove that such a problem
is NP-hard by a reduction from the Minimum Hitting Set problem. To our knowledge the NP-hardness
of MID and the relation with the Minimum Hitting Set problem are new and not known before.

We further consider the following extremal combinatoric question: given the number 𝑛 of nodes of
the network and a non-negative integer value 𝑘 for the identifiability, what is the minimal number 𝑚 of
measurement paths over the 𝑛 nodes to consider in such a way that the maximal identifiability value is at
least 𝑘? A folklore result shows that to have maximal identifiability at least 1, then 𝑚 ≥ log(𝑛+ 1) (or,
equivalently, that if 𝑛 > 2𝑚 − 1, then the maximal identifiability is less than or equal 0). In this work
we answer this question for each 𝑛 ∈ N and for each 𝑘 ≥ 2, proving that, there exists a constant 𝐶 such
that if 𝑛 > 𝐶𝑚1+ 𝑚

𝑘−1 , then the maximal identifiability value is strictly smaller than 𝑘 (and when 𝑘 = 2,
𝑛 > 𝐶𝑚𝑚 suffices). To show these results we consider two notions that we prove to be equivalent to
𝑘-identifiability: one is from the field of non-adaptive group testing (NAGT) and the other is the notion
of union-free set families [5]. The connection between identifiability and group testing was mentioned in
[6]; we make this connection precise towards a solution of our problem.
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1. Introduction

Network Tomography is a general inference technique based on end-to-end measurements aimed
to extract not only internal network characteristics such as link delays and link loss rates but
also defective items. In Boolean Network Tomography (BNT) the outcome of the measurements

1In this paper we consider only identifying failure nodes but all the results work for links as well.
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is a Boolean value. Duffield in [7], introduced the Boolean network tomography approach
to identify sets of failure links in networks and later this was also applied for node failure
identification, in the works [8, 9, 10, 1, 3, 2, 4]. The BNT approach is rather simple: each
measurement path is routed with a suitable data packet and the received data at the end of the
path is one bit capturing the presence or the absence of failures along the path: for a failure the
output bit is intended to be 1 and for a properly working path the output bit is 0. Such a method
can be applied to detect both node and link failures in a network. In this work we always deal
with nodes, but all the results can be similarly applied to capture defective links.

Since in each path the outcome of a measurement indicates only whether a failure occurred
somewhere in the path, in the BNT approach the position of the nodes in the paths is not taken
into account and paths are regarded as sets of nodes.

The problem of identifying failing nodes is approached by studying the solutions �⃗� of a
Boolean system M�⃗� = �⃗�, where M is the incidence {0, 1}-matrix of the 𝑚 measurement paths
over the 𝑛 nodes, �⃗� is the vector of length 𝑚 of the Boolean outcomes of the measurement
paths and �⃗� is the Boolean vector of length 𝑛 indicating whether each node is failing or not.
To be consistent with the BNT terminology, in this work we keep the names nodes and paths
respectively for the 𝑛 columns and the 𝑚 rows of M. The challenge of localizing failure nodes
is that different sets of failure nodes can produce the same measurement along the paths and
so are indistinguishable from each other with only using the measurements. This led to the
following question: given the set of paths, what is the maximal set of defective nodes one can
hope to identify unambiguously?
𝑘-identifiability (for a set M of 𝑚 paths over 𝑛 nodes) states that any two distinct node sets

𝑈 and 𝑊 of size at most 𝑘 can be separated by at least one path in M, that is, there is at least
one path touching nodes of only one of them. It was observed in [9] that having maximal
𝑘-identifiability for a set of paths M ensures that if there are at most 𝑘 failing nodes, then these
nodes can be identified unambiguously using the BNT approach: this was exactly what was
needed towards node failure identification. Concretely, we are interested in understanding
the maximal 𝑘 such that M is 𝑘-identifiable. This measure - which we call 𝜇(M, 𝑛,𝑚) - was
introduced and investigated especially from an applied perspective in the works [8, 9, 10].
The book [6] presents a comprehensive treatment of 𝑘-identifiability and boolean network
tomography.

Identifiability however is a precise combinatorial definition and therefore it was interesting
to research it also from a theoretical and combinatorial perspective complementing the applied
results. In a series of recent works [1, 2, 3, 4] focusing on theoretical aspects of identifiability
we studied the relations of maximal 𝑘-identifiability with the topology of the network and some
of its structural properties, like vertex connectivity.

This work contributes to the research line of boolean network tomography and maximal
𝑘-identifiability. We consider two problems: the first question we approach is that of under-
standing the computational complexity of maximal 𝑘-identifiability. We consider the following
optimization problem: given a set M of 𝑚 measurement paths over 𝑛 nodes, determine the
maximal 𝑘 for which M is 𝑘-identifiable (MID).

We consider the question of proving that MID is NP-hard. In Theorem 3.4 we prove this result
using a reduction from the well-known Minimum Hitting Set problem (MHS). The complexity
of MID was not known before and to our knowledge this is the first time that the optimization



problem of maximizing 𝑘-identifiability is shown to be strictly related to the Minimum Hitting
Set problem. We complement the MID hardness result: first we prove that the problem of
deciding whether a set of paths is not 𝑘-identifiable, for a given 𝑘 ∈ N, is in NP (Theorem 3.7).
Second we prove that if MHS is computable in polynomial time, then also MID is computable
in polynomial time (Theorem 3.6). Together with the hardness result this establish a strict
relationships between Minimum Hitting Set problem and the MID problem. This relation might
be interesting from an applied point view for algorithms approximating 𝑘-identifiability: indeed
it is known that there are 𝑐-approximation algorithms for the Minimum Hitting Set problem
where edges have cardinality at most 𝑐 [11, 12], which is the case of our reduction in theorem
3.6 when the paths in M has length at most 𝑐. The reduction used in Theorem 3.6 to prove the
hardness result works by first reducing MID to a maximal 𝑘-identifiability problem scaled to
each single node: a node 𝑢 is 𝑘-identifiable in M if any two node sets 𝑈 and 𝑊 of size at most
𝑘 and differing on 𝑢 (that is such that 𝑢 is only in one of them) are separated by at least a path
in M (that is there exists a path intersecting one of them but not the other).

The second problem we face is an extremal combinatoric question: imagine a network
topology with 𝑛 nodes is given, and let us say we establish a non-negative integer value 𝑘
for the number of defective nodes we aim to identify: what is the minimal number 𝑚 of
measurement paths over the 𝑛 nodes we have to consider in such a way that the maximal
identifiability is at least 𝑘 ? This is an extremal question on the incidence matrix M. The answer
to this question for 𝑘 = 1 follows immediately by the pigeonhole principle argument: if we
have more than 2𝑚 binary strings of length 𝑚 there are at least two identical strings. The result
for 𝑘 = 1 can be formalized as follows (see Lemma 4.1 for the details): if 𝜇(M,𝑚, 𝑛) ≥ 1, then
𝑚 ≥ log(𝑛+ 1), or, equivalently, saying that if 𝑛 > 2𝑚 − 1, then 𝜇(M,𝑚, 𝑛) < 1. Nothing is
known for a generic 𝑘 > 1 and here we answer this question for any 𝑛 ∈ N and for any 𝑘 ∈ N,
1 < 𝑘 ≤ 𝑛 in Theorem 4.7.

It is not difficult to see, and it is also explicitly mentioned in [6], that 𝑘-identifiability is
related to similar concepts in Group Testing [13]. Approaching our second question we first
make this connection precise to solve our question. We identify precisely in [13] a central notion
defined in non-adaptive group testing (NAGT) (the so-called 𝑘-separability) which we prove to
be equivalent to 𝑘-identifiability (see Definition 2.3 and Lemma 2.4 for the precise definition of
𝑘-separability and the proof of the equivalence). Using a known theorem in NAGT (Theorem
2.6) we can answer our question but only for 𝑘 + 1 (Theorem 4.2). However to prove the result
for 𝑘, using known results in NAGT is not sufficient, and new techniques are needed. Towards
this goal and looking again at M as a hypergraph, we observe that 𝑘-identifiability is strictly
related to the combinatorial notion called union-free families of sets. This was a combinatorial
notion on sets introduced in [5] and studied in [5, 14] which we observe to be strictly related to
𝑘-identifiability (Theorem 4.4). Using a recent result on uniform union-free families, proved in
[14], we can eventually fully answer to our question: Theorem 4.7 states that there is a constant
𝐶 such that

𝑛 > 𝐶𝑚1+ 𝑚
𝑘−1 ⇒ 𝜇(M,𝑚, 𝑛) < 𝑘 if 𝑘 ≥ 3 and 𝑛 > 𝐶𝑚𝑚 ⇒ 𝜇(M,𝑚, 𝑛) < 2.

Finally, in the last subsection, we use these results to provide bounds on the maximal number
of 𝑘-identifiable nodes, for each 𝑘 ∈ N.



2. Preliminary definitions and results

Let 𝑛, 𝑘 ∈ N, 𝑘 ≤ 𝑛. [𝑛] = {1, . . . , 𝑛} and
(︀[𝑛]
𝑘

)︀
is the set of subsets of [𝑛] of size 𝑘. 2𝐴 is the

set of subsets of the set 𝐴.
Let 𝑛 and 𝑚 be positive integers. Following previous works on Boolean network tomography

[6] we see a set M of 𝑚 paths over nodes in [𝑛] as a {0, 1}-matrix of 𝑚 rows and 𝑛 columns1.
On M we use the following notations:

1. We see M as a collection of 𝑛 𝑚-bit vectors, that is the columns of the matrix M, that are
vectors of length 𝑚, all different from the 𝑚-bit zero vector2.

2. For 𝑢 ∈ [𝑛], M(𝑢) is the set of rows 𝑟 ∈ [𝑚], such that 𝑢 belongs to 𝑟, that is such that
M[𝑟, 𝑢] = 1. In the simpler BNT terminology, we say that M(𝑢) is the set of paths in
[𝑚] passing through (or intersecting) the node 𝑢. If 𝑈 ⊆ [𝑛], then M(𝑈) =

⋃︀
𝑢∈𝑈M(𝑢)

so, if 𝑈 ⊆ 𝑊 , then M(𝑈) ⊆ M(𝑊 ). In the following we will use the BNT terminology
talking of nodes and paths in M to mean columns and rows of M and see them simply as
sets of Boolean values.

2.1. Identifiability and non-adaptive group testing

We consider the following definition given in [8].

Definition 2.1. (Identifiability) A Boolean matrix M over 𝑚 rows and 𝑛 columns is 𝑘-identifiable
if for all 𝑈,𝑊 ⊆ [𝑛] such that |𝑈 |, |𝑊 | ≤ 𝑘 and 𝑈 ̸= 𝑊 , it holds that M(𝑈) ̸= M(𝑊 ). We
denote by 𝜇(M) = 𝜇(M,𝑚, 𝑛) the maximal 𝑘 ≤ 𝑛 such that M is 𝑘-identifiable.

We observe next that 𝑘-identifiability is strictly related to some notions in non-adaptive
group testing. Consider the following definitions given in [13]. First, notice that the union
(or Boolean sums) of any 𝑘 columns in a Boolean matrix M is, the bitwise OR that is a binary
operation that takes two bit patterns of equal length and performs the logical inclusive OR
operation on each pair of corresponding bits. The result in each position is 0 if both bits are 0,
while otherwise the result is 1. Moreover, in terms of the union (or Boolean sums) of columns
in a Boolean matrix M over 𝑚 rows and 𝑛 columns, in the definition 2.1 we have for 𝑈 ⊆ [𝑛]
with |𝑈 | ≤ 𝑘, M(𝑈) =

⋃︀
𝑢∈𝑈M(𝑢) which is the union (or Boolean sums) of up to 𝑘 columns.

Definition 2.2. (Disjunctness) A Boolean matrix M with 𝑚 rows and 𝑛 columns is called 𝑘-
disjunct if the union (or Boolean sums) of any 𝑘 columns in M does not contain any other column
in M. Notice that this also implies that the union of any up to 𝑘 columns does not contain any
other column.

Definition 2.3. (𝑘-separability and 𝑘-separability) A Boolean matrix M of 𝑚 rows and 𝑛 columns
is called 𝑘-separable (respectively 𝑘-separable) if the unions (or Boolean sums) of 𝑘 columns
(respectively of up to 𝑘 columns) are all distinct.

1Notice that this encoding does not keep track of the order of the nodes in the path, but this is usual in Boolean
network tomography approaches for identifying failing nodes since the position of the nodes in the paths is not
taken into account and hence paths are regarded as sets of nodes.

2Notice that when M is a real set of paths, the condition means that each node is used in at least one path.



Lemma 2.4. A Boolean matrix M with 𝑚 rows and 𝑛 column is 𝑘-separable if and only if it is
𝑘-identifiable

Proof. First assume that M is 𝑘-identifiable. Then for all 𝑈,𝑊 ⊆ [𝑛] such that |𝑈 |, |𝑊 | ≤ 𝑘 and
𝑈 ̸= 𝑊 , we have M(𝑈) ̸= M(𝑊 ). Moreover M(𝑈) =

⋃︀
𝑢∈𝑈M(𝑢) which is the union of up to

𝑘 columns. The unions of up to 𝑘 columns are thus all distinct and M is 𝑘-separable. Similarly
if M is 𝑘-separable, the unions of up to 𝑘 columns are all distinct i.e., for all 𝑈,𝑊 ⊆ [𝑛] such
that |𝑈 |, |𝑊 | ≤ 𝑘 and 𝑈 ̸= 𝑊 ,

⋃︀
𝑢∈𝑈M(𝑢) = M(𝑈) ̸= M(𝑊 ) =

⋃︀
𝑤∈𝑊M(𝑤). Therefore M

is 𝑘-identifiable.

A close relation between disjunctness and separability of M was proved in [13] (Lemma 7.2.2
and Lemma 7.2.4)

Lemma 2.5 ([13]). For a {0, 1}-matrix M of 𝑚 rows and 𝑛 columns:

1. if M is 𝑘-disjunct, then M is 𝑘-separable.
2. if M is (𝑘 + 1)-separable, then M is a 𝑘-disjunct.

Let 𝑡(𝑘, 𝑛) denotes the minimum number of rows for a 𝑘-disjunct matrix with 𝑛 columns.
We have the following theorem (Theorem 7.2.13 in [13]):

Theorem 2.6 ([13]). For 𝑘 fixed and 𝑛 → ∞, there is a constant 𝐶𝑘 such that

𝑡(𝑘, 𝑛) ≥ 𝐶𝑘(1 + 𝑜(1)) log 𝑛.

3. NP-Hardness of maximal 𝑘-identifiability

We have seen that 𝑘-identifiability is a reasonable combinatorial notion. In this section we
clarify what is its computational complexity. We consider the following optimization problem:

MID:
Input: A Boolean 𝑚× 𝑛 matrix M.
Output: The maximal 𝑘 ≤ 𝑛 such that M is 𝑘-identifiable.

Let M be a 𝑚× 𝑛 Boolean matrix. We say that two sets of nodes 𝑈,𝑊 ⊆ [𝑛] differ on 𝑢 if 𝑢
belongs to exactly one of them, that is 𝑈 ∩ {𝑢} ≠ 𝑊 ∩ {𝑢}. Furthermore we say that a path
𝑝 ∈ [𝑚] separates 𝑈 and 𝑊 in M if 𝑝 belongs to exactly one between M(𝑈) and M(𝑊 ). The
definition of 𝑘-identifiability can be scaled to nodes 𝑢 ∈ [𝑛] as follows:

Definition 3.1. (𝑘-identifiable nodes) A node 𝑢 ∈ [𝑛] is 𝑘-identifiable in M, if for all 𝑈,𝑊 ⊆ [𝑛]
of size at most 𝑘 differing on 𝑢, it holds that M(𝑈) ̸= M(𝑊 ).

Scaling identifiability to nodes does not affect the 𝑘-identifiability of the whole M. The
next theorem has been proven in [9], but we decide to show the proof again for the sake of
completeness.

Theorem 3.2. ([9]) Let M be a set of 𝑚 paths over 𝑛 nodes. M is 𝑘-identifiable if and only if
every node in [𝑛] is 𝑘-identifiable in M.



Proof. First assume that M is 𝑘-identifiable and let 𝑢 ∈ [𝑛]. Since M is 𝑘-identifiable, for all
𝑈,𝑊 ⊆ [𝑛] of size at most 𝑘 such that 𝑈 ̸= 𝑊 , M(𝑈) ̸= M(𝑊 ) holds. Therefore for all
𝑈,𝑊 ⊆ [𝑛] such that |𝑈 |, |𝑊 | ≤ 𝑘 and differing on 𝑢, we also have M(𝑈) ̸= M(𝑊 ). This
proves that 𝑢 is 𝑘-identifiable.

Now let every node in [𝑛] be 𝑘-identifiable in M. Assume by contradiction that M is not
𝑘-identifiable. This means that there exist two subsets 𝑈,𝑊 ⊆ [𝑛] of size at most 𝑘 such that
𝑈 ̸= 𝑊 and M(𝑈) = M(𝑊 ). Since 𝑈 ̸= 𝑊 , without loss of generality we can say that there
is a node 𝑢 ∈ 𝑈 ∖𝑊 (or in 𝑊 ∖ 𝑈 if 𝑈 ⊂ 𝑊 ). Hence, for node 𝑢, we have the two subsets
𝑈,𝑊 ⊆ [𝑛] such that |𝑈 |, |𝑊 | ≤ 𝑘 and differing on 𝑢 and we also have M(𝑈) = M(𝑊 ) which
means the node 𝑢 is not 𝑘-identifiable and this is a contradiction.

Let ID𝑘(M) be the set of 𝑘-identifiable nodes in M.

Lemma 3.3. ID𝑘(M) ⊆ ID𝑘′(M) for 𝑘′ ≤ 𝑘 ≤ 𝑛.

Proof. From Definitions 2.1 and 3.1 it is immediate to see that 𝑘-identifiability implies 𝑘′-
identifiability for any 𝑘′ < 𝑘. Hence the claim.

We can now prove the main theorem of this section.

Theorem 3.4. MID is NP-hard.

Proof. We consider the following optimization problem

NID:
Input: A Boolean 𝑚× 𝑛 matrix M, an element 𝑢 ∈ [𝑛].
Output: The maximal 𝑘 ≤ 𝑛 such that 𝑢 ∈ ID𝑘(M).

By Theorem 3.2MID andNID are polynomially equivalent (MID ≡𝑝 NID, that is polynomially
reducible to each other). So to prove the NP-hardness of MID it is sufficient to prove the NP-
hardness of NID.

As noticed before ID𝑘(M) ⊆ ID𝑘′(M) for any 𝑘′ ≤ 𝑘, hence to solve NID it is sufficient to
know the minimal ℓ such 𝑢 ̸∈ IDℓ(M): indeed, given such an ℓ, it is sufficient to set 𝑘 = ℓ− 1
to get a solution 𝑘 for NID. We call this problem NID⊤.

NID⊤:
Input: A Boolean 𝑚× 𝑛 matrix M, an element 𝑢 ∈ [𝑛].
Output: The minimal ℓ ≤ 𝑛 such that 𝑢 ̸∈ IDℓ(M).

NID and NID⊤ are clearly polynomially equivalent and to prove the NP-hardness of NID,
we work with the problem NID⊤.

Consider a hypergraph (a set-system) ℋ = ([𝑛], 𝐸), where 𝐸 ⊆ 2[𝑛] with |𝐸| = 𝑚. A set
𝑇 ⊆ [𝑛] is a hitting set for ℋ if 𝑇 ∩ 𝑒 ̸= ∅ for all 𝑒 ∈ 𝐸. 𝑇 is minimal if no other subset 𝑇 ′ of
[𝑛] smaller than 𝑇 has the same property.

The optimization problem Minimum Hitting Set, MHS, is



MHS:
Input: A hypergraph ℋ = ([𝑛], 𝐸).
Output: A minimal hitting set 𝑇 of ℋ.

MHS is a well-known NP-hard problem [15, 16]. The next claim concludes the proof of the
theorem.

Claim 3.5. MHS ≤𝑝 NID
⊤.

Proof. Let ℋ = ([𝑛], 𝐸) be a hypergraph. We define an instance (Mℋ, 𝑢ℋ) for NID⊤ as follows:

• Mℋ has 𝑛+ 1 columns,
• the set of rows of Mℋ is 𝐸,
• 𝑢ℋ = 𝑛+ 1 and M(𝑢ℋ) = 𝐸, namely every path touches the node 𝑢ℋ.

We prove that ℋ ∈ MHS if and only if (Mℋ, 𝑢ℋ) ∈ NID⊤. We first prove the soundness
of the reduction, that is (Mℋ, 𝑢ℋ) ∈ NID⊤. Let 𝑇 be a minimal hitting set of size 𝑘 for the
instance ℋ of MHS. We need to prove that

1. 𝑢ℋ ̸∈ ID𝑘(Mℋ), and
2. 𝑢ℋ ∈ ID𝑟(Mℋ) for all 𝑟 ≤ 𝑘 − 1.

To show 𝑢ℋ ̸∈ ID𝑘(Mℋ), by the definition of 𝑘-identifiability we have to find two subsets
𝑈 and 𝑊 of [𝑛 + 1] and of size at most 𝑘 differing on 𝑢ℋ such that M(𝑈) = M(𝑊 ). So
we fix 𝑈 = 𝑇 and 𝑊 = {𝑢ℋ}. Since 𝑈 = 𝑇 and 𝑇 is an hitting set in ℋ = ([𝑛], 𝐸), then
𝑈 ⊆ [𝑛] and since 𝑢ℋ = 𝑛 + 1, 𝑈 and 𝑊 differ on 𝑢ℋ, but by construction of (Mℋ, 𝑢ℋ),
M(𝑈) = M(𝑊 ) = 𝐸. Hence 𝑢ℋ ̸∈ ID𝑘(M). To prove the optimality condition, that is,
𝑢ℋ ∈ ID𝑟(Mℋ) for all 𝑟 ≤ 𝑘−1, assume by contradiction that there exist two subsets of [𝑛+1],
𝑈 ′ and 𝑊 ′ of size 𝑟 ≤ 𝑘 − 1 differing on 𝑢ℋ such that M(𝑈 ′) = M(𝑊 ′). Since 𝑈 ′ and 𝑊 ′

differ on 𝑢ℋ, 𝑢ℋ is in exactly one of them, say 𝑈 ′. Given that M(𝑢ℋ) = 𝐸, it follows that
M(𝑊 ′) = 𝐸. Hence 𝑊 ′ ⊆ [𝑛] is a hitting set for ℋ of size strictly smaller than 𝑘 = |𝑇 |, and
this is a contradiction.

To prove the completeness of the reduction, given (Mℋ, 𝑢ℋ) ∈ NID⊤ we prove that ℋ ∈
MHS. Since (Mℋ, 𝑢ℋ) ∈ NID⊤, we know that:

1. in (Mℋ, 𝑢ℋ), there exist two subsets of [𝑛+ 1], 𝑈 and 𝑊 of size at most 𝑘 differing on
𝑢ℋ such that M(𝑈) = M(𝑊 ) (i.e., 𝑢ℋ ̸∈ ID𝑘(Mℋ)), and

2. for any pair of distinct subsets 𝑈 ′ and 𝑊 ′ of size 𝑟 ≤ 𝑘 − 1 differing on 𝑢ℋ we have
M(𝑈 ′) ̸= M(𝑊 ′) (namely 𝑢ℋ ∈ ID𝑟(Mℋ) for all 𝑟 ≤ 𝑘 − 1).

Observe that since 𝑈 and 𝑊 differ on 𝑢ℋ, 𝑢ℋ belongs to only one of them, say 𝑈 . Hence
𝑊 ⊆ [𝑛]. Furthermore, since 𝐸 = M(𝑢ℋ) and 𝑢ℋ ∈ 𝑈 , thus 𝐸 = M(𝑈) = M(𝑊 ). Therefore,
if we fix 𝑇 = 𝑊 , we have that 𝑒 ∩ 𝑇 ̸= ∅ for all 𝑒 ∈ 𝐸 and 𝑇 is a hitting set in ℋ. To prove the
optimality of 𝑇 , assume by contradiction that there exists a set 𝑇 ′ ⊆ [𝑛], with |𝑇 ′| < |𝑇 | ≤ 𝑘
such that 𝑇 ′ is also a hitting set in ℋ. Let 𝑊 ′ = 𝑇 ′ and 𝑈 ′ = {𝑢ℋ}. These are two subsets of
[𝑛+ 1] of size at most 𝑘 − 1 such that 𝐸 = M(𝑈 ′) = M(𝑊 ′) and this contradicts Condition
(2). Hence 𝑇 is a minimal hitting set.



3.1. Further observations on the complexity ofMID

We conclude this section investigating the inverse reduction between MHS and MID. First we
show that an algorithm solving MHS raises an algorithm to solve NID⊤ and therefore MID.

Theorem 3.6. Let 𝒜 be an algorithm solving MHS. Then, there is an algorithm ℬ solving NID⊤.
Furthermore if 𝒜 works in polynomial time then ℬ works in polynomial time too.

Proof. The algorithm ℬ solving NID⊤ works in this way:

Algorithm 1 Algorithm ℬ
Input: a Boolean 𝑚× 𝑛 matrix M and a node 𝑢 ∈ [𝑛]

1. Define ℋM = (𝑉 ∖ {𝑢},M(𝑢)), where M(𝑢) = {𝑝 ∈ [𝑚] | 𝑢 ∈ 𝑝}
2. Run 𝒜 on ℋM and let 𝑇 be its output
3. Output: 𝑘 = |𝑇 |

The algorithm ℬ works clearly in polynomial time if 𝒜 works in polynomial time. To prove
its correctness we need to prove that 𝑘 is the minimal ℓ such that 𝑢 ̸∈ IDℓ(M). First we argue
that 𝑢 ̸∈ ID𝑘(M). By Definition 3.1 we have to find two sets 𝑈,𝑊 differing on 𝑢 and of size at
most 𝑘 such that M(𝑈) = M(𝑊 ). Define 𝑊 = 𝑇 and 𝑈 = {𝑢}. Since 𝑇 is a hitting set in ℋM,
it contains all the edges in ℋM, which are exactly M(𝑢). Hence M(𝑊 ) = M(𝑢) = M(𝑈).

To prove that 𝑘 is the minimal value with that property, assume by contradiction that
𝑢 ̸∈ IDℓ(Mℋ) for some ℓ < |𝑇 | = 𝑘. Since 𝑢 ̸∈ IDℓ(M), there exist two subsets 𝑈 and 𝑊 of
size at most ℓ differing on 𝑢 such that M(𝑈) = M(𝑊 ). Say without loss of generality that
𝑢 ∈ 𝑈 . Hence M(𝑢) ⊆ M(𝑈) = M(𝑊 ). Therefore 𝑊 is covering M(𝑢) which is the set of
edges in ℋM. Hence 𝑊 is a hitting set of ℋM. But |𝑊 | < |𝑇 | where 𝑇 was the minimal hitting
set. A contradiction.

Finally we consider the decision version DMID of the problem MID, that is - given a Boolean
𝑚× 𝑛 matrix M and an integer 𝑘, 0 ≤ 𝑘 ≤ 𝑛, decide whether M is 𝑘-identifiable. We prove
that DMID in coNP.

Theorem 3.7. DMID is in coNP. Therefore the problem of deciding, given a set of 𝑚 paths over
𝑛 nodes M and an integer 𝑘 ≤ 𝑛, whether M is not 𝑘-identifiable is in NP.

Proof. We have to prove that DMID ∈ coNP. A certificate for this problem is any pair of sets
𝑈,𝑊 ⊆ [𝑛] with |𝑈 |, |𝑊 | ≤ 𝑘 and such that 𝑈 ̸= 𝑊 . This certificate is linear in the size of the
input of DMID. According to Definition 2.1 to decide DMID, an algorithm has to verify whether
M(𝑈) ̸= M(𝑊 ). Given 𝑈 and 𝑊 , this task can can be clearly accomplished in polynomial
time in the size of M and 𝑘. Notice that DMID is ∀-problem: it follows that DMID ∈ coNP. Of
course the dual of this problem, that is decide if M is not 𝑘-identifiable is, by the same proof, in
NP.



4. Minimal number of paths for 𝑘-identifiability

In this section we consider the following question: given a network on 𝑛 nodes and a non-
negative integer value 𝑘 for the identifiability, what is the minimal number 𝑚 of measurement
paths over the 𝑛 nodes we have to consider in such a way that we will be able to identify
uniquely and unambiguously at least 𝑘 failing nodes (or in other words, in such a way that the
maximal identifiability value is at least 𝑘)?

Let us consider first a toy example for 𝑘 = 1.

Lemma 4.1. Let M be a Boolean 𝑚× 𝑛 matrix. If 𝑚 < log(𝑛+ 1) then 𝜇(M,𝑚, 𝑛) < 1.

Proof. We prove the equivalent statement that if 𝑛 > 2𝑚 − 1, then 𝜇(M,𝑚, 𝑛) < 1. Since
𝑛 > 2𝑚 − 1 and the 0-column (i.e., the column with all entries equal to zero) cannot be in
M, in M there are at least two identical columns, that is two distinct nodes 𝑢,𝑤 ∈ [𝑛] which
belong to the same set of paths. Therefore there are 𝑈 = {𝑢} and 𝑊 = {𝑤} of size 1 such that
M(𝑈) = M(𝑊 ). It follows that 𝜇(M,𝑚, 𝑛) < 1.

In this subsection we generalize this result for a generic integer 𝑘, with 1 < 𝑘 ≤ 𝑛. First
notice that some partial result can be obtained from Theorem 2.6 but only for 𝑘 + 1.

Theorem 4.2. Let M be a Boolean matrix with 𝑚 rows and 𝑛 columns. Let 𝐶𝑘 be the constant in
Theorem 2.6. If 𝑚 < 𝐶𝑘(1 + 𝑜(1)) log 𝑛, then 𝜇(M,𝑚, 𝑛) < (𝑘 + 1).

Proof. Assume by contradiction that forMwe have𝑚 < 𝐶𝑘(1+𝑜(1)) log 𝑛 and thatM is (𝑘+1)-
identifiable. By Lemma 2.4 this means M is (𝑘 + 1)-separable, which implies that M is 𝑘-disjunct
by Lemma 2.5. Now by Theorem 2.6 for a 𝑘-disjunct matrix we have 𝑡(𝑘, 𝑛) ≥ 𝐶𝑘(1 + 𝑜(1))
log 𝑛. Since 𝑡(𝑘, 𝑛) is the minimum number of rows we need for M to be a 𝑘-disjunct, therefore
𝑚 ≥ 𝐶𝑘(1 + 𝑜(1)) log 𝑛, which is a contradiction.

Proving the result for 𝑘 instead of 𝑘 + 1, cannot be obtained from Theorem 2.6. This
requires a different approach. We start by giving some preliminary definitions following [14].
A hypergraph ℱ on the set [𝑚] is a family of distinct subsets of [𝑚], called (hyper-)edges of ℱ .
If each edge is of fixed size 𝑟 ≤ 𝑚, then ℱ is said to be 𝑟-uniform, i.e., ℱ ⊂

(︀
[𝑚]
𝑟

)︀
.

Definition 4.3. ([5, 14]) For a positive integer 𝑘, ℱ is called 𝑘-union-free if for any two distinct
subsets of edges 𝒜,ℬ ⊆ ℱ , with 1 ≤ |𝒜|, |ℬ| ≤ 𝑘, it holds that ∪𝐴∈𝒜𝐴 ̸= ∪𝐵∈ℬ𝐵.

Union-free uniform hypergraphs are investigated in extremal combinatorics [5].
A set M of 𝑚 paths over 𝑛 nodes defines a hypergraph ℱM with vertices in [𝑛] and hyper-

edges included in [𝑚] in the following way: for 𝑖 ∈ [𝑛] let 𝐴𝑖 be the set of paths 𝑗 ∈ [𝑚] the
node 𝑖 belongs to, that is 𝐴𝑖 = {𝑗 ∈ [𝑚]|M[𝑖, 𝑗] = 1}. Define ℱM = {𝐴𝑖, | 𝑖 ∈ [𝑛]}.

Given a set of nodes 𝑈 ⊆ [𝑛] in M, let 𝒰 the subset of ℱM, made by the 𝐴𝑖 such that 𝑖 ∈ 𝑈 ,
that is 𝒰 = {𝐴𝑖 ∈ ℱM|𝑖 ∈ 𝑈}. Notice that, by definition of M(𝑈), M(𝑈) =

⋃︀
𝑖∈𝑈 𝐴𝑖 which

can be written as
⋃︀

𝐴∈𝒰 𝐴.

Theorem 4.4. If M is a set of 𝑚 paths over 𝑛 nodes and 𝜇(M,𝑚, 𝑛) ≥ 𝑘, then ℱM is 𝑘-union
free.



Proof. Assume that 𝜇(M,𝑚, 𝑛) ≥ 𝑘. Let 𝒰 and 𝒲 be two distinct subsets of ℱM of size at most
𝑘. Let 𝑈 and 𝑊 such that 𝒰 = {𝐴𝑖 ∈ ℱM|𝑖 ∈ 𝑈} and 𝒲 = {𝐴𝑖 ∈ ℱM|𝑖 ∈ 𝑊}. Since 𝒰 and
𝒲 are distinct, then also 𝑈 and 𝑊 are distinct and furthermore 𝑈 and 𝑊 are of cardinality
at most 𝑘 by the cardinality constraint on 𝒰 and 𝒲 . That means that M(𝑈) ̸= M(𝑊 ) since
𝜇(M,𝑚, 𝑛) ≥ 𝑘. But

⋃︀
𝐴∈𝒰 𝐴 = M(𝑈) ̸= M(𝑊 ) =

⋃︀
𝐴∈𝒲 𝐴. The claim is proved.

Notice that ℱM is not necessarily a uniform hypergraph. Let 𝑟 ∈ [𝑚], then the subfamily of
ℱM defined by ℱM(𝑟) = {𝐴 ∈ ℱM||𝐴| = 𝑟} is trivially a 𝑟-uniform hypergraph on [𝑚] for any
𝑟 ∈ [𝑚]. Notice that if 𝑟1, 𝑟2 ∈ [𝑚] with 𝑟1 ̸= 𝑟2, then ℱM(𝑟1) ∩ ℱM(𝑟2) = ∅. Therefore the
subfamilies ℱM(1), . . .ℱM(𝑚) form a partition of ℱM and therefore |ℱM| =

∑︀
𝑟∈[𝑚] |ℱM(𝑟)|.

Since |ℱM| = 𝑛, it follows that:

Lemma 4.5.
∑︀

𝑟∈[𝑚] |ℱM(𝑟)| = 𝑛.

Furthermore notice that if ℱM is 𝑘-union free, then ℱM(𝑟) for each 𝑟 ∈ [𝑚] will also be
𝑘-union free.

Let 𝑚 > 𝑟 and 𝑘 ∈ [𝑚] with 𝑘 ≥ 2, and let 𝑓(𝑘, 𝑟,𝑚) denote the maximum cardinality of a
𝑘-union-free 𝑟-uniform hypergraph over [𝑚]. The next theorem for 𝑘 ≥ 3 is Theorem 1.3 in
[14] and for the case 𝑘 = 2 in [5, 14].

Theorem 4.6 ([5, 14]). For fixed integers 𝑘, 𝑟 ≥ 3 it holds that 𝑓(𝑘, 𝑟,𝑚) ≤ 𝑂(𝑚⌈ 𝑟
𝑘−1

⌉).

Furthemore 𝑓(2, 𝑟,𝑚) = Θ(𝑚
⌈4𝑟/3⌉

2 ).

Theorem 4.7. There exist two constants 𝑚0 ∈ N and 𝐶 , such that for all 𝑚 ≥ 𝑚0 if M is a set
of 𝑚 paths over 𝑛 nodes, then

1. for 𝑘 ≥ 3, if 𝑛 > 𝐶𝑚1+ 𝑚
𝑘−1 then 𝜇(M) < 𝑘, and

2. if 𝑛 > 𝐶𝑚𝑚, then 𝜇(M) < 2.

Proof. Let 𝑚0 ∈ N be the integer and let 𝐶 be the constant obtained from the 𝑂(·)-notations
of the previous theorem such that for all 𝑚 ≥ 𝑚0, we have both 𝑓(𝑘, 𝑟,𝑚) ≤ 𝐶𝑚⌈ 𝑟

𝑘−1
⌉ and

𝑓(2, 𝑟,𝑚) ≤ 𝐶𝑚
⌈4𝑟/3⌉

2 .
Let us prove the case 𝑘 ≥ 3. Assume by contradiction that 𝑛 > 𝐶𝑚1+ 𝑚

𝑘−1 and 𝜇(M) ≥ 𝑘.
Since

∑︀
𝑟∈[𝑚]𝐶𝑚⌈ 𝑟

𝑘−1
⌉ ≤ 𝐶𝑚𝑚

𝑚
𝑘−1 , therefore 𝑛 >

∑︀
𝑟∈[𝑚]𝐶𝑚⌈ 𝑟

𝑘−1
⌉. By Theorem 4.4 ℱM is

𝑘-union free. Hence, by definition of 𝑘-identifibility and 𝑘-union freeness (see observation after
Lemma 4.5) it follows that for each 𝑟 ∈ [𝑚], ℱM(𝑟) is a 𝑟-uniform 𝑘-union free hypergraph and
hence by the previous theorem |ℱM(𝑟)| ≤ 𝐶𝑚⌈ 𝑟

𝑘−1
⌉. The ℱM(𝑟) partition ℱM and by Lemma

4.5 we have 𝑛 =
∑︀

𝑟∈[𝑚] |ℱM(𝑟)| ≤
∑︀

𝑟∈[𝑚]𝐶𝑚⌈ 𝑟
𝑘−1

⌉ < 𝑛 and this is a contradiction.

The case 𝑘 = 2 follows exactly the same reasoning observing that 𝐶𝑚
⌈4𝑟/3⌉

2 ≤ 𝐶𝑚𝑚.



4.1. Upper bounds on the number of 𝑘-identifiable nodes

In many practical applications it might be useful to know an upper bound on the maximal
number of failure nodes we can hope to identify unambiguously by Boolean methods based on
𝑘-identifiability. Previous results in this section can be used to obtain upper bounds on ID𝑘(M).

Corollary 4.8. Let 𝐶 and 𝑚0 be as in Theorem 4.7. For all 𝑚 ≥ 𝑚0, let M be a set of 𝑚 paths
over 𝑛 nodes. Then

1. | ID𝑘(M)| ≤ min{𝑛,𝐶𝑚1+ 𝑚
𝑘−1 }, for all 𝑘 ≥ 3;

2. | ID2(M)| ≤ min{𝑛,𝐶𝑚𝑚}.

Proof. Let us prove the result for 𝑘 = 1 using Lemma 4.1. The claims for 𝑘 > 1 follow the same
argument using Theorem 4.7.
| ID1(M)| ≤ 𝑛 since it is a set of nodes. Assume that 𝑛 > 2𝑚 − 1, hence by Lemma 4.1

𝜇(M) = 0, hence there are at least two nodes 𝑢1 ̸= 𝑢2 not 1-identifiable. Hence | ID1(M)| ≤
2𝑚 − 1.

Notice that our results can be expressed also in terms of the number of paths as follows: for
example for 𝑘 = 2 we observe that if 𝑛 > 𝐶𝑚𝑚, then 𝑚 < 1+𝜖

√︀
log(𝑛/𝐶) for any 𝜖 > 0. Here

we use the bound that 𝑚 log𝑚 < 𝑚1+𝜖 for any 𝜖 > 0. A similar result can be easily obtained
for the case 𝑘 ≥ 3.
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