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Abstract
Comparing labeled trees has applications in various domains, particularly in the study of cancer phylo-
genies.

In this paper, we address the problem of comparing fully labeled unordered trees, focusing on their
structural and label similarities. We define a novel class of distance measures by exploiting the eXtended
Burrows-Wheeler Transform (XBWT), an extension to labeled trees of the well-known Burrows-Wheeler
Transform. The XBWT, introduced in [Ferragina et al., FOCS 2005], produces a linearization of the tree
that is both compressible and efficiently searchable. We extend the definition of this linearization to pairs
of trees, and we produce a partition based on the prefixes of a given length 𝑘 ≥ 1 of the parent-to-root
paths of the nodes.

We define, for any 𝑘 ≥ 1, the distance measure 𝑑𝑘 by applying the Jaccard distance to each element
of this partition. We prove that all the measures 𝑑𝑘 are pseudometrics, i.e. they assume non-negative
values, are zero when applied to identical trees, are symmetric, and satisfy the triangle inequality. These
measures become metrics when all the labels within each tree are distinct.

Furthermore, we show that these distances are sensitive to some operations on trees, such as the
removal and insertion of subtrees, swapping of subtrees, and label swapping.

Finally, to show the effectiveness of our approach, we have analyzed experimentally the behavior of
the distances when operations on trees are applied to a randomly generated fully labeled tree. Here, we
present the results obtained in the case 𝑘 = 1.
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1. Introduction

Trees are fundamental and well-studied combinatorial structures in computer science since
their structure can encode, in a natural way, hierarchical relations in many domains.

Comparing trees is a key problem that arises in various fields like computational biology,
structured text databases, image analysis, automated theorem proving, and compiler optimiza-
tion, where it can be crucial to have effective distance measures able to capture different types
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of operations or transformations on the trees used to model data. A survey on the methods for
comparing labeled trees based on simple local operations of deleting, inserting, and relabeling
nodes can be found in [1]. In Bioinformatics, the trees are also used to model cancer phylogenies.
In this context comparing trees typically means analyzing and comparing the genetic mutations
and progression of cancer cells over time. In fact, according to the clonal theory of cancer
[2], each node in these trees is labeled to represent a distinct genetic mutation or a group of
mutations, and the edges represent the evolutionary pathways that these mutations have taken.
The comparison between these trees aims to understand the evolutionary history of the cancer,
identify common pathways of mutation, and potentially uncover patterns that could lead to
better treatment strategies [3, 4, 5]. Several distance measures have been recently introduced
with the aim to compare the topology of the trees and the mutations involved (see [6, 7, 8, 9, 10]
and references therein). Other recent approaches are based on metaheuristics [11].

Motivated by the application in the study of cancer phylogeny, in this paper we focus our
attention on the comparison between fully labeled trees, i.e. assuming that each node, whether
internal or a leaf, has a label over a finite alphabet. However, the methodology we present in
this paper can also be extended to the case of multi-labeled trees.

Here we address the problem of comparing unordered labeled trees by exploiting a lineariza-
tion of the trees produced by the eXtended Burrows-Wheeler Transform (XBWT) [12, 13]. The
XBWT is an elegant transformation that extends to trees the functionalities of the well-known
Burrows-Wheeler Transform (denoted as BWT [14]), which is instead defined on strings and
has been introduced in the context of data compression. The XBWT is applied to a labeled tree
and emits, in addition to a permutation of the labels of the tree (tree linearization), a sequence
of bits that makes the transformation reversible. This output is compressible and efficiently
searchable. This is particularly useful for applications in Bioinformatics and XML document
processing.

In this paper, we are not interested in the aspects related to compression and indexing. For
this reason, here we will not use the full output of the XBWT, but only the tree linearization
it produces. More in detail, we extend to a pair of trees the linearization computed by XBWT
with the aim of measuring how the labels of the nodes of the two trees are mixed in the output
of this transformation. We therefore define a novel class of distances 𝑑𝑘 between two trees
through a partition of the linearization induced by the lexicographically sorted prefixes of
length 𝑘 ≥ 1 of the parent-to-root paths of the nodes of the tree, eventually extended to length
𝑘 with an appropriate special character. To define these measures, the Jaccard distance is used
in each element of such partition. We prove that such measures are pseudometrics. Note that
the measures 𝑑𝑘 become metrics when all the labels within each tree are distinct.

Furthermore, we study the sensitivity of the 𝑑𝑘 measures with respect to some operations
on trees, such as the insertion or deletion of a subtree, subtree swapping, and the exchange of
labels between two nodes.

Finally, to show the robustness and effectiveness of our method, we have also analyzed
the behavior of the 𝑑𝑘 measures on simulated datasets obtained by applying a sequence of
operations on randomly generated trees. Here we present the results obtained for the case
𝑘 = 1 and when trees with distinct labels are considered.

In this paper, we do not focus on implementation aspects, but rather on methodological issues.
The problems related to space and time complexity will be addressed in a subsequent full version



of the paper. To our knowledge, this approach is innovative compared to the measures used in
the literature for labeled tree comparison. The idea of comparing two combinatorial structures
by measuring how they mix within a common structure has been used in the context of string
comparison through the use of an extension to a collection of sequences of the Burrows-Wheeler
Transform [15] but with different output partitioning strategies [16, 17]. Such an extension
has been largely applied for comparing biological sequences (see [18] and references therein).
Moreover, it has been recently used in [19] to reconstruct the phylogenetic tree of a collection
of biological sequences. We believe that the methodology introduced in this paper can also
provide new insights in the context of string comparison.

2. Preliminaries

Let Σ = {𝑎1, 𝑎2, . . . , 𝑎𝜎} be a finite ordered alphabet with 𝑎1 < 𝑎2 < . . . < 𝑎𝜎 , where <
denotes the standard lexicographic order. We denote by Σ* the set of words over Σ. Given
a finite word 𝑤 ∈ Σ*, let 𝑛 be the length of 𝑤, denoted |𝑤|. We also denote by 𝑤[𝑖] the 𝑖-th
letter in 𝑤 for any 1 ≤ 𝑖 ≤ 𝑛 , therefore 𝑤 = 𝑤[1]𝑤[2] . . . 𝑤[𝑛], and we denote by 𝑤[𝑖, 𝑗] the
substring 𝑤[𝑖]𝑤[𝑖+1] · · ·𝑤[𝑗]. A prefix is a substring of the form 𝑤[1, 𝑖] for some 𝑖, and a suffix
one of the form 𝑤[𝑖, |𝑤|]. Given two strings 𝑤 and 𝑣, we denote by 𝑙𝑐𝑝(𝑤, 𝑣) the length of the
longest common prefix (LCP) of 𝑤 and 𝑣, i.e., 𝑙𝑐𝑝(𝑤, 𝑣) = max{𝑖 | 𝑤[1, 𝑖] = 𝑣[1, 𝑖]}.

A rooted tree 𝑇 = (𝑉,𝐸), with 𝑉 set of nodes and 𝐸 ⊆ 𝑉 × 𝑉 set of edges, is a directed
connected acyclic graph where: 1. all the nodes have one in-edge, except the root that has no
in-edges; 2. all nodes have zero (leaves) or more (internal nodes) out-edges. The size of a tree
𝑇 , denoted by |𝑇 |, is equal to the number |𝑉 | of its nodes. Given a tree 𝑇 , we denote by 𝐿(𝑇 )
the set of its leaves. If there is an edge from node 𝑢 to node 𝑣, then 𝑢 is the parent of 𝑣 and 𝑣 is
the child of 𝑢. A path in the tree is a sequence of nodes 𝑣1, 𝑣2, . . . 𝑣𝑛 where 𝑣𝑖 is parent of 𝑣𝑖−1

for all 1 ≤ 𝑖 ≤ 𝑛− 1. If 𝑖 < 𝑗 then 𝑣𝑖 is ancestor of 𝑣𝑗 , and 𝑣𝑗 is descendent of 𝑣𝑖. The depth of
a node is the length of the path from its parent to the root. The depth of the root is 0. For a
given 𝑘 > 0, we denote by 𝑇≤𝑘 the subtree of 𝑇 from the root up to the nodes at depth 𝑘. Two
nodes that are children of the same node are called siblings. The tree 𝑇 is an ordered tree if a
left-to-right order among siblings in 𝑇 is given, otherwise it is unordered. A tree 𝑇 = (𝑉,𝐸)
is labeled over the alphabet Σ if it is defined a labeling function ℓ : 𝑉 → Σ that associates a
letter from Σ to each node of 𝑇 . For each node x of a labeled tree, we denote by 𝜋(x) the string
obtained as the concatenation of the labels in the path from the parent node of x to the root of
the tree. Let us denote by 𝑆𝜋(𝑇 ) the multiset of all the strings 𝜋(x) for every node x ∈ 𝑇 . If 𝑇
is an ordered tree, 𝑆𝜋 is populated with the parent-to-root string paths of the tree nodes visited
in pre-order.

The eXtended Burrows-Wheeler Transform (XBWT) of an ordered labeled tree 𝑇 , denoted
by xbw(𝑇 ), linearizes the tree with a string, denoted as 𝑆𝛼(𝑇 ), obtained as a concatenation of
the labels of all nodes, ordered according to the lexicographical sorting of their parent-to-root
string paths in 𝑆𝜋(𝑇 ).

In this paper, we will consider labeled trees where either all the nodes have different labels,
or nodes with equal labels are allowed, but only if they are not siblings and appear in different
root-to-leaf paths. Moreover, for a technical reason, we add a child to each leaf, labeled with a



special symbol $ ̸∈ Σ. We exclude these nodes to count the size |𝑇 |. Observe that for each tree
𝑇 extended in this way, the set 𝐿(𝑇 ) consists solely of nodes labeled with $. We denote by 𝒜Σ

the set of all such trees.
Let 𝑋 and 𝑌 be two sets. The Jaccard distance 𝐷𝐽 between 𝑋 and 𝑌 is defined from the

Jaccard coefficient 𝐽 of similarity for 𝑋 and 𝑌 , as follows:

𝐽(𝑋,𝑌 ) =
|𝑋 ∩ 𝑌 |
|𝑋 ∪ 𝑌 |

, 𝐷𝑗(𝑋,𝑌 ) = 1− 𝐽(𝑋,𝑌 ) =
|𝑋 ∪ 𝑌 | − |𝑋 ∩ 𝑌 |

|𝑋 ∪ 𝑌 |
.

We further assume that whenever 𝑋 = 𝑌 = ∅, 𝐽(𝑋,𝑌 ) = 1, and 𝐷𝐽(𝑋,𝑌 ) = 0. Observe
that the measure 𝐷𝐽 is a metric. Obviously, 0 ≤ 𝐷𝐽(𝑋,𝑌 ) ≤ 1 and 𝐷𝐽(𝑋,𝑌 ) = 0 iff 𝑋 = 𝑌 ,
and 𝐷𝐽(𝑋,𝑌 ) = 1 iff 𝑋 ∩ 𝑌 = ∅ and 𝑋 ∪ 𝑌 ̸= ∅.

3. Linearization of Pairs of Trees via XBWT

In this section, we aim to define a linearization for pairs of ordered trees using an XBWT-based
approach. Specifically, we define xbw(𝑇1, 𝑇2) as the string over the alphabet Σ×{1, 2} defined
in the following. Note that such a linearization can be defined for every pair of trees. However,
motivated by practical applications, we assume here that each tree contains distinct labels or
that it may contain repeated labels but only in different root-to-leaf paths and not for nodes
with the same parent. Let us denote by 𝑆𝜋(𝑇1, 𝑇2) the multiset of all the strings 𝜋(x) for every
node x in the trees 𝑇1 and 𝑇2. Let us denote by 𝑆𝛼(𝑇1, 𝑇2) the string obtained by concatenating
the labels of all the nodes of 𝑇1 and 𝑇2 ordered according to the lexicographical sorting of the
paths in 𝑆𝜋(𝑇1, 𝑇2).

The output xbw(𝑇1, 𝑇2) is a sequence of pairs (ℓ(x), 𝑡), where ℓ(x) ∈ 𝑆𝛼 and 𝑡 is the flag
assuming value 1 or 2 if x comes from 𝑇1 or 𝑇2, respectively. However, for simplicity of
exposition, in the figures and tables, we replace the flags with the full names of the trees
considered.

We enrich the definition of XBWT of the two trees 𝑇1 and 𝑇2 with the LCP array, defined as
𝐿𝐶𝑃 [1] = 0 and𝐿𝐶𝑃 [𝑖] = 𝑙𝑐𝑝(𝑆𝜋[𝑖], 𝑆𝜋[𝑖− 1]) for any 1 < 𝑖 < |𝑇1|+|𝑇2|+|𝐿(𝑇1)|+|𝐿(𝑇2)|.

Example 1. Let 𝑇1 and 𝑇2 be the pair of trees depicted in Fig. 1a and in Fig. 1b, respectively. The
output of xbw(𝑇1, 𝑇2) is represented in the table showed in Fig. 1c. We remark that, by construction,
the first two lines in the table contain the roots of 𝑇1 and 𝑇2, respectively. The last column in the
table contains the values of the LCP array.

Note that the parent-to-root string paths of two sibling nodes are equal. If the trees are
ordered, the relative order of such paths is determined by the left-to-right order of the nodes.
However, the distance measures we will introduce in the next section consider the labels of
such nodes as a set, thus their relative order is not relevant. Then, they could be applied to
unordered trees as well.

4. A new Class of Distance Measures between Trees

In this section, we introduce a new measure for comparing two unordered trees, 𝑇1 and 𝑇2,
and we will prove that this measure is a pseudometric. To compute this measure, for a given
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Index Flag 𝑆𝛼 𝑆𝜋 LCP

1 𝑇1 C 𝜖 0
2 𝑇2 E 𝜖 0
3 𝑇2 $ ADE 0
4 𝑇1 $ AFC 1
5 𝑇1 $ BFC 0
6 𝑇2 $ BGE 1
7 𝑇1 D C 0
8 𝑇1 E C 1
9 𝑇1 F C 1
10 𝑇2 F CE 1
11 𝑇2 P CE 2
12 𝑇1 H DC 0
13 𝑇2 H DE 1
14 𝑇2 A DE 2
15 𝑇2 G E 0
16 𝑇2 D E 1
17 𝑇2 C E 1
18 𝑇1 G EC 1
19 𝑇1 I EC 2
20 𝑇1 A FC 0
21 𝑇1 B FC 2
22 𝑇2 $ FCE 2
23 𝑇2 B GE 0
24 𝑇1 $ GEC 2
25 𝑇1 $ HDC 0
26 𝑇2 $ HDE 2
27 𝑇1 $ IEC 0
28 𝑇2 $ PCE 0

(c) xbw(𝑇1, 𝑇2) and LCP array

Figure 1: Given the trees 𝑇1 and 𝑇2 shown in (a) and (b), the output of xbw(𝑇1, 𝑇2) is shown in (c) and
consists of the two columns 𝑆𝛼 and 𝐹𝑙𝑎𝑔. The LCP array is contained in the last column of the table.

𝑘 > 0 we map each word in 𝑆𝜋 of length < 𝑘 into a new word over the right-padded alphabet
Σ𝑘
# =

⋃︀
𝑘′∈[0,𝑘]

{︁
Σ𝑘′ · {#}𝑘−𝑘′

}︁
. To improve readability, we omit 𝑘 whenever it is clear from

the context.
In defining the measure, we refer to a partition of 𝑆𝛼(𝑇1, 𝑇2) according to the values of the

LCP array, defined as follows.

Definition 1. LCP-based partition of order 𝑘. Given a positive integer 𝑘, let us consider the
list of strings 𝑆(𝑘)

𝜋 (𝑇1, 𝑇2) obtained by extending all the strings in 𝑆𝜋(𝑇1, 𝑇2) to the length 𝑘 with
the # fill character, where # is smaller than all the characters in Σ∪ {$}. Let us denote by 𝐿𝐶𝑃𝑘

the LCP array for 𝑆(𝑘)
𝜋 (𝑇1, 𝑇2). We denote by 𝒫𝑘 the partition of the interval [1, |𝑇1| + |𝑇2| +

|𝐿(𝑇1)|+ |𝐿(𝑇2)|] obtained as union of the following intervals:

•
⋃︀

1≤𝑖≤𝑗<𝑛 {[𝑖, 𝑗] | 𝐿𝐶𝑃𝑘[𝑖] < 𝑘, 𝐿𝐶𝑃𝑘[𝑗 + 1] < 𝑘, 𝐿𝐶𝑃𝑘[𝑡] ≥ 𝑘,∀𝑡 ∈ [𝑖+ 1, 𝑗]};



• [𝑖, |𝑇1| + |𝑇2| + |𝐿(𝑇1)| + |𝐿(𝑇2)|] | 𝐿𝐶𝑃𝑘[𝑖] < 𝑘, 𝐿𝐶𝑃𝑘[𝑡] ≥ 𝑘, ∀𝑡 ∈ [𝑖 + 1, |𝑇1| +
|𝑇2|+ |𝐿(𝑇1)|+ |𝐿(𝑇2)|].

Note that each interval [𝑖, 𝑗] in the partition 𝒫𝑘 can be uniquely associated with a word in
Σ𝑘 , which is a 𝑘-length prefix of the longest common prefix of the strings, possibly extended to
length 𝑘 with the padding character #, in the list 𝑆𝜋(𝑇1, 𝑇2) contained in the interval [𝑖, 𝑗].

We denote by 𝜆([𝑖, 𝑗]) such a word, and the indexes 𝑖 and 𝑗 are denoted by 𝑓(𝜆[𝑖, 𝑗]) and
𝑙(𝜆[𝑖, 𝑗]), respectively. For each pair of trees 𝑇1 and 𝑇2, we denote by Λ(𝑇1, 𝑇2) = {𝜆[𝑖, 𝑗] |
[𝑖, 𝑗] ∈ 𝒫𝑘}, that is the set of 𝑘-length words from Σ𝑘

# that appear as prefix of some word

in 𝑆
(𝑘)
𝜋 (𝑇1, 𝑇2). Moreover, for 𝑡 ∈ {1, 2}, we denote by 𝑆𝑡([𝑖, 𝑗]) = {𝑐 ∈ Σ ∪ {$} | (𝑐, 𝑡) ∈

xbw(𝑇1, 𝑇2)[𝑖, 𝑗]}, that is the set of labels in 𝑆𝛼[𝑖, 𝑗] coming from the tree 𝑇𝑡. Analogously, for
each tree and word 𝑤 ∈ Σ𝑘

#, we define the set Γ(𝑘)
𝑇 (𝑤) = {𝑐 ∈ Σ∪{$} | 𝑐 ·𝑤 ∈ 𝑆

(𝑘)
𝜋 (𝑇 )}, that

is the set of letters 𝑐 in xbw(𝑇 )[𝑖, 𝑗] such that 𝜆[𝑖, 𝑗] = 𝑤.

Definition 2. The distance measure 𝑑𝑘 is defined as:

𝑑𝑘(𝑇1, 𝑇2) =
∑︁

[𝑖,𝑗]∈𝒫𝑘

𝐷𝐽(𝑆1[𝑖, 𝑗], 𝑆2[𝑖, 𝑗]),

where 𝐷𝐽 is the Jaccard distance.

Example 2. Let us consider the two trees 𝑇1 and 𝑇2 depicted in Figure 2. The partition of𝑆𝛼(𝑇1, 𝑇2)
induced by 𝒫𝑘 (with 𝑘 = 1 and 𝑘 = 2) is shown in Table 1. By applying the Jaccard distance 𝐷𝐽

to each element of the partition,

𝑑1(𝑇1, 𝑇2) =
∑︁

[𝑖,𝑗]∈𝒫1

𝐷𝐽(𝑆1[𝑖, 𝑗], 𝑆2[𝑖, 𝑗]) = 0 + 0 + 0 + 0 + 0 + 0 = 0,

and
𝑑2(𝑇1, 𝑇2) =

∑︁
[𝑖,𝑗]∈𝒫2

𝐷𝐽(𝑆1[𝑖, 𝑗], 𝑆2[𝑖, 𝑗]) = 0 + 0 + 0 + 1 + 1 + 0 + 0 = 2.

Proposition 1. The distance measure 𝑑𝑘 is a pseudometric on 𝒜Σ. In fact, the following statements
hold:

1. for each pair of trees 𝑇1, 𝑇2, 𝑑𝑘(𝑇1, 𝑇2) ≥ 0

2. 𝑑𝑘(𝑇, 𝑇 ) = 0 for every tree 𝑇 ;

3. for each pair of trees 𝑇1, 𝑇2, 𝑑𝑘(𝑇1, 𝑇2) = 𝑑𝑘(𝑇2, 𝑇1);

4. for each triplets of trees 𝑇1, 𝑇2, 𝑇3, 𝑑𝑘(𝑇1, 𝑇2) ≤ 𝑑𝑘(𝑇1, 𝑇3) + 𝑑𝑘(𝑇2, 𝑇3).

Proof. 1. The statement follows from the definition.

2. From the definition, we have that 𝑑𝑘(𝑇, 𝑇 ) = 0 since 𝐷𝐽(𝑆1[𝑖, 𝑗], 𝑆2[𝑖, 𝑗]) = 0 for all
[𝑖, 𝑗] ∈ 𝒫𝑘.
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Figure 2: Two labeled trees with the nodes 𝑋 and 𝑌 swapped. The tree on the right 𝑇2 (b) is obtained
from the tree on the left 𝑇1 (a) by swapping the subtrees rooted in 𝑋 and 𝑌 , respectively.

Index Flag 𝑆𝛼 𝑆𝜋 𝐿𝐶𝑃 𝑆
(1)
𝜋 𝐿𝐶𝑃1 𝑆

(2)
𝜋 𝐿𝐶𝑃2

1 𝑇1 A 𝜖 0 # 0 ## 0
2 𝑇2 A 𝜖 0 # 1 ## 2
3 𝑇1 B A 0 A 0 A# 0
4 𝑇2 B A 1 A 1 A# 2
5 𝑇1 C A 1 A 1 A# 2
6 𝑇2 C A 1 A 1 A# 2
7 𝑇1 C BA 0 BA 0 BA 0
8 𝑇2 C BA 2 BA 2 BA 2
9 𝑇1 Y CA 0 CA 0 CA 0
10 𝑇2 X CA 2 CA 2 CA 2
11 𝑇1 X CBA 1 CBA 1 CBA 1
12 𝑇2 Y CBA 3 CBA 3 CBA 3
13 𝑇2 $ XCA 0 XCA 0 XCA 0
14 𝑇1 $ XCBA 2 XCBA 2 XCBA 2
15 𝑇1 $ YCA 0 YCA 0 YCA 0
16 𝑇2 $ YCBA 2 YCBA 2 YCBA 2

Table 1
The table shows how the partition 𝒫𝑘 relative to the two trees depicted in Fig. 2 can vary as 𝑘 changes.
Specifically, the partitions 𝒫1 and 𝒫2 are illustrated. In the columns 𝑆(1)

𝜋 and 𝑆
(2)
𝜋 we highlight in bold

the letters of the prefixes which define the partitions 𝒫1 and 𝒫2 respectively. Partition 𝒫2 contains the
same intervals as 𝒫1, except for two intervals obtained as a refinement of the interval [9, 12] from 𝒫1.
This refinement is indicated with a dashed line. The table also shows the output 𝑆𝛼 of XBWT applied
to the two trees and LCP arrays.

3. The statement follows from the fact that the Jaccard distance is a metric and then the
symmetric property holds.

4. Since the Jaccard distance is a metric and the triangle inequality holds, for each 𝑤 ∈ Σ𝑘



holds that

𝑑𝑘(𝑇1, 𝑇2) =
∑︁

[𝑖,𝑗]∈𝒫𝑘

𝐷𝑗(𝑆1[𝑖, 𝑗], 𝑆2[𝑖, 𝑗])

=
∑︁

𝑤∈Λ(𝑇1,𝑇2)

𝐷𝐽(Γ
(𝑘)
𝑇1

(𝑤),Γ
(𝑘)
𝑇2

(𝑤))

=
∑︁

𝑤∈Σ𝑘
#

𝐷𝐽(Γ
(𝑘)
𝑇1

(𝑤),Γ
(𝑘)
𝑇2

(𝑤))

≤
∑︁

𝑤∈Σ𝑘
#

(︁
𝐷𝐽(Γ

(𝑘)
𝑇1

(𝑤),Γ
(𝑘)
𝑇3

(𝑤)) +𝐷𝐽(Γ
(𝑘)
𝑇2

(𝑤),Γ
(𝑘)
𝑇3

(𝑤))
)︁

=
∑︁

𝑤∈Σ𝑘
#

𝐷𝐽(Γ
(𝑘)
𝑇1

(𝑤),Γ
(𝑘)
𝑇3

(𝑤)) +
∑︁

𝑤∈Σ𝑘
#

𝐷𝐽(Γ
(𝑘)
𝑇2

(𝑤),Γ
(𝑘)
𝑇3

(𝑤))

=
∑︁

𝑤∈Λ(𝑇1,𝑇3)

𝐷𝐽(Γ
(𝑘)
𝑇1

(𝑤),Γ
(𝑘)
𝑇3

(𝑤)) +
∑︁

𝑤∈Λ(𝑇2,𝑇3)

𝐷𝐽(Γ
(𝑘)
𝑇2

(𝑤),Γ
(𝑘)
𝑇3

(𝑤))

= 𝑑𝑘(𝑇1, 𝑇3) + 𝑑𝑘(𝑇2, 𝑇3).

This concludes the proof.

Remark 1. Note that, in general, 𝑑𝑘 is not a metric. In fact, for a given 𝑘 there could exist pairs of
distinct trees 𝑇1 and 𝑇2 with 𝑑𝑘(𝑇1𝑇2) = 0, i.e. 𝑑𝑘 is not able to distinguish 𝑇1 and 𝑇2. Despite this,
one can always find a 𝑘′ > 𝑘 such that 𝑑𝑘′(𝑇1𝑇2) > 0, i.e. 𝑑𝑘′ makes 𝑇1 and 𝑇2 distinguishable.
This fact is shown in Fig. 2, where the trees (a) and (b) are indistinguishable for 𝑑1, i.e. their 𝑑1
distance is 0, but they become distinguishable when 𝑑2 distance is applied.

By using a similar argument as in the proof of Proposition 1, it is possible to prove the
following corollary.

Corollary 1. Let 𝒯 be the set of all unordered trees whose nodes are labeled by distinct symbols.
Then 𝑑𝑘 is a metric over 𝒯 for each 𝑘 ≥ 1, i.e. for each pair of trees 𝑇1, 𝑇2 ∈ 𝒯 , 𝑑𝑘(𝑇1, 𝑇2) = 0 if
and only if 𝑇1 = 𝑇2.

What we have stated in the previous remark can be more generally formalized in the following
proposition.

Proposition 2. Given two trees 𝑇1 and 𝑇2 in 𝒜Σ, 𝑑𝑘(𝑇1, 𝑇2) ≤ 𝑑𝑘+1(𝑇1, 𝑇2), for each 𝑘 ≥ 1.

Note that if we consider the set 𝒜Σ of all labeled trees, the 𝑑𝑘 measures can be used to define
a class of dissimilarity measures normalized with respect to the number of words in Σ𝑘

#, i.e.
1 +

∑︀
𝑖∈[1,𝑘] |Σ𝑖|.

5. Sensitivity to Operations on Trees

In this section, we evaluate how the distance 𝑑𝑘 changes when a swap of subtrees, label
exchanges, insertion, or removal of nodes are applied to a tree. Other operations will be
considered in the full version of the paper.



Proposition 3. Let 𝑇1 and 𝑇2 be two unordered trees such that 𝑇2 is obtained from 𝑇1, by
swapping two disjoint subtrees 𝑇v1 and 𝑇v2 , rooted in the nodes v1 and v2, respectively. Then,
𝑑1(𝑇1, 𝑇2) ≤ 2, and 𝑑𝑘(𝑇1, 𝑇2) ≤ 2(|𝑇≤𝑘−2

v1
| + |𝑇≤𝑘−2

v2
|) + 2 for all 𝑘 > 1, where |𝑇≤𝑘−1

v1
|

and |𝑇≤𝑘−1
v2

| denote the number of nodes at depth at most 𝑘 − 1 in the subtrees 𝑇v1 and 𝑇v2 ,
respectively.

Proof. Let v1 and v2 be the two nodes in 𝑇1 that are the roots of the subtrees swapped
to obtain 𝑇2, and let 𝒫𝑘 be the LCP-based partition of order 𝑘 for 𝑇1 and 𝑇2. Let us de-
note by 𝜋(v1) and 𝜋(v2) the parent-to–root string path of v1 and v2, respectively, both
possibly padded up to length 𝑘 by using the character #. The upper bound for the dis-
tance 𝑑𝑘(𝑇1, 𝑇2) is obtained when all the labels in 𝑇1 are distinct (and therefore in 𝑇2

as well) and if each of the two nodes is the only child of their respective parent. In
this case, for all 𝑘 > 0, 𝐷𝐽(𝑆

(1)[𝑓(𝜋(v1)), 𝑙(𝜋(v1))], 𝑆
(2)[𝑓(𝜋(v1)), 𝑙(𝜋(v1))]) = 1 and

𝐷𝐽(𝑆
(1)[𝑓(𝜋(v2)), 𝑙(𝜋(v2))], 𝑆

(2)[𝑓(𝜋(v2)), 𝑙(𝜋(v2))]) = 1. Moreover, for all 𝑘 > 1, each
node z in the subtrees 𝑇v1 and 𝑇v2 at depth at most 𝑘 − 2 from the root increases by 2 the
distance 𝑑𝑘. All the other intervals in the partition 𝒫𝑘 give a zero contribution to the distance.
Then, the thesis follows.

The following proposition provides an evaluation of the distance between two trees when
one is obtained from the other by removing or inserting an entire subtree.

Proposition 4. Let 𝑇1 and 𝑇2 be two unordered trees such that 𝑇2 is obtained by removing from
𝑇1 a subtree 𝑇x ̸= 𝑇1 with root x. Then, 𝑑𝑘(𝑇1, 𝑇2) ≤ |𝑇x|+ 1.

Proof. Let 𝑇x be the subtree rooted in x removed from 𝑇1 to obtain 𝑇2. Let 𝒫𝑘 be the LCP-based
partition of order 𝑘 for 𝑇1 and 𝑇2. Let us denote by 𝜋(x) the parent-to–root string path of x
possibly padded up to length 𝑘 by using the character #.

The upper bound for the distance 𝑑𝑘(𝑇1, 𝑇2) is obtained when x has no sibling nodes and
𝜋(x) does not have any common 𝑘-length prefix with other parent-to-root string paths. In this
case, the parent of x and each node of 𝑇x, leaves excluded, increases by 1 the distance 𝑑𝑘.

The following proposition considers the operation of swapping the labels of two nodes. Note
that the label swap does not involve any descendants of the nodes we are considering.

Proposition 5. Let 𝑇1 and 𝑇2 be two unordered trees such that 𝑇2 is obtained from 𝑇1, by swapping
the label of the nodes v1 and v2. Let us denote by 𝑇v1 and 𝑇v2 the subtrees rooted in the nodes
v1 and v2, respectively. Then, 𝑑1(𝑇1, 𝑇2) ≤ 4, and 𝑑𝑘(𝑇1, 𝑇2) ≤ 2(|𝑇≤𝑘−1

v1
|+ |𝑇≤𝑘−1

v2
|) + 2 for

all 𝑘 > 1, where |𝑇≤𝑘−1
v1

| and |𝑇≤𝑘−1
v2

| denote the number of nodes at depth at most 𝑘 − 1 in the
subtrees 𝑇v1 and 𝑇v2 , respectively.

Proof. Let v1 and v2 be the two nodes in 𝑇1 whose labels are swapped in 𝑇1 to obtain 𝑇2. This
means that in 𝑇2 we can find the subtrees 𝑇 ′

v1
and 𝑇 ′

v2
obtained by swapping the roots of the

subtrees 𝑇v1 and 𝑇v2 in 𝑇1 respectively. Let 𝒫𝑘 be the LCP-based partition of order 𝑘 for 𝑇1 and
𝑇2. Let us denote by 𝜋(v1) and 𝜋(v2) the parent–to–root string path of v1 and v2, respectively,
both possibly padded up to length 𝑘 by using the character #. In order to obtain the upper bound
for the distance 𝑑𝑘(𝑇1, 𝑇2) we assume that all the labels in 𝑇1 are distinct (and therefore in 𝑇2 as
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Figure 3: The trees 𝑇2, 𝑇3, and 𝑇4 are obtained from 𝑇1 by applying respectively a swap of the subtrees
rooted in 𝑋 and 𝑌 , removing the subtree rooted in 𝑋 , and swapping the labels 𝑋 and 𝑌 .

well), each of the two nodes is the only child of their respective parent and the subtrees 𝑇v1 and
𝑇v2 have distinct labels. In this case, 𝐷𝐽(𝑆

(1)[𝑓(𝜋(v1)), 𝑙(𝜋(v1))], 𝑆
(2)[𝑓(𝜋(v1)), 𝑙(𝜋(v1))]) =

1, and symmetrically 𝐷𝐽(𝑆
(1)[𝑓(𝜋(v2)), 𝑙(𝜋(v2))], 𝑆

(2)[𝑓(𝜋(v2)), 𝑙(𝜋(v2))]) = 1. For 𝑘 =
1, observe that 𝐷𝐽(𝑆

(1)[𝑓(ℓ(v1)), 𝑙(ℓ(v1))], 𝑆
(2)[𝑓(ℓ(v1)), 𝑙(ℓ(v1))]) = 1, and equivalently

𝐷𝐽(𝑆
(1)[𝑓(ℓ(v2)), 𝑙(ℓ(v2))], 𝑆

(2)[𝑓(ℓ(v2)), 𝑙(ℓ(v2))]) = 1. On the other hand, for all 𝑘 > 1,
each node z in the subtrees 𝑇v1 and 𝑇v2 (equivalently in 𝑇 ′

v1
and 𝑇 ′

v2
) at depth at most 𝑘 − 2

from the root increases by 2 the distance 𝑑𝑘. All the other intervals in the partition 𝒫𝑘 give a
zero contribution to the distance. Then, the thesis follows.

Flag 𝑆𝛼 𝑆𝜋 𝑆
(2)
𝜋 𝐿𝐶𝑃2 𝐷𝐽

1 𝑇1 A 𝜀 ## 0
0

2 𝑇2 A 𝜀 ## 2
3 𝑇1 B A A# 0

0
4 𝑇2 B A A# 2
5 𝑇1 C A A# 2
6 𝑇2 C A A# 2
7 𝑇1 X BA BA 0

1
8 𝑇2 Y BA BA 2
9 𝑇1 Y CA CA 0

1
10 𝑇2 X CA CA 2
11 𝑇1 $ DXBA DXBA 0

0
12 𝑇2 $ DXCA DXCA 2
13 𝑇1 $ EXBA EXBA 0

0
14 𝑇2 $ EXCA EXCA 2
15 𝑇2 $ FYBA FYBA 0

0
16 𝑇1 $ FYCA FYCA 2
17 𝑇1 D XBA XBA 0

1
18 𝑇1 E XBA XBA 3
19 𝑇2 D XCA XCA 1

1
20 𝑇2 E XCA XCA 3
21 𝑇2 F YBA YBA 0 1
22 𝑇1 F YCA YCA 1 1

Flag 𝑆𝛼 𝑆𝜋 𝑆
(2)
𝜋 𝐿𝐶𝑃2 𝐷𝐽

1 𝑇1 A 𝜀 ## 0
0

2 𝑇3 A 𝜀 ## 2
3 𝑇1 B A A# 0

0
4 𝑇3 B A A# 2
5 𝑇1 C A A# 2
6 𝑇3 C A A# 2
7 𝑇1 X BA BA 0

1
8 𝑇3 $ BA BA 2
9 𝑇1 Y CA CA 0

0
10 𝑇3 Y CA CA 2
11 𝑇1 $ DXBA DXBA 0 1
12 𝑇1 $ EXBA EXBA 0 1
13 𝑇1 $ FYCA FYCA 0

0
14 𝑇3 $ FYCA FYCA 2
15 𝑇1 D XBA XBA 0

1
16 𝑇1 E XBA XBA 3
17 𝑇1 F YCA YCA 0

0
18 𝑇3 F YCA YCA 3

Flag 𝑆𝛼 𝑆𝜋 𝑆
(2)
𝜋 𝐿𝐶𝑃2 𝐷𝐽

1 𝑇1 A 𝜀 ## 0
0

2 𝑇4 A 𝜀 ## 2
3 𝑇1 B A A# 0

0
4 𝑇4 B A A# 2
5 𝑇1 C A A# 2
6 𝑇4 C A A# 2
7 𝑇1 X BA BA 0

1
8 𝑇4 Y BA BA 2
9 𝑇1 Y CA CA 0

1
10 𝑇4 X CA CA 2
11 𝑇1 $ DXBA DXBA 0 1
12 𝑇4 $ DYBA DYBA 1 1
13 𝑇1 $ EXBA EXBA 0 1
14 𝑇4 $ EYBA EYBA 1 1
15 𝑇4 $ FXCA FXCA 0 1
16 𝑇1 $ FYCA FYCA 1 1
17 𝑇1 D XBA XBA 0

1
18 𝑇1 E XBA XBA 3
19 𝑇4 F XCA XCA 1 1
20 𝑇4 D YBA YBA 0

1
21 𝑇4 E YBA YBA 2
22 𝑇1 F YCA YCA 1 1

Table 2
The tables show the phases of computation of 𝑑2(𝑇1, 𝑇2) = 6, 𝑑2(𝑇1, 𝑇3) = 4, 𝑑2(𝑇1, 𝑇4) = 12, where
𝑇1, 𝑇2, 𝑇3, 𝑇4 are depicted in Figure 3.

In Fig. 3 and Table 2 is displayed a worst–case example for each of the cases described in
Propositions 3, 4, and 5, showing that the three upper–bounds are tight.
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Figure 4: Behaviour of the distance 𝑑1 when different operations on trees are applied to a randomly
generated fully labeled tree with 26 nodes with distinct labels.

We have analyzed the behavior of the 𝑑𝑘 measures on simulated data, by evaluating the
distance values after the application of perturbations, which consist of subtree removal and
subtree swapping operations, on randomly generated trees. We conclude this section by showing
in Fig. 4a the results obtained by considering the values of the 𝑑1 measure after applying a
maximum of 10 subtree removals, chosen randomly, on randomly generated trees having distinct
labels and such that each internal node has at most three children. We also show the behavior
of the 𝑑1 measure when the operation applied on a randomly generated tree is the subtree
swapping. In Fig. 4b, we consider the case where each subtree can be swapped at most once,
and in Fig. 4c, successive swapping operations on the same subtree are allowed.

A more extensive description of the experiments will be presented in a subsequent extended
version of the paper.

6. Conclusions and Further Work

In this paper, we introduced a new class of distances for unordered fully labeled trees. Theoretical
results, as well as preliminary experimental analyses on simulated data, show that these measures
can effectively capture some operations on trees such as removal and insertion of subtrees,
subtree swapping, and label swapping. These distances are defined using an LCP-based partition
of a linearization of trees, defined by a generalization of the XBWT. We have proven that the



measures in this class are pseudometrics and become metrics when trees having distinct labels
are considered. In the general case in which repeated labels are allowed, we have observed
that for any given collection of trees, there exists an integer 𝑘 for which 𝑑𝑘 is a metric over the
dataset. It would be interesting to experimentally determine for any given dataset of trees the
smallest value of 𝑘 for which 𝑑𝑘 is a metric.

We have focused on combinatorial aspects related to the extension of XBWT to compare
pairs of trees. The algorithmic issues related to the efficiency of computing these measures, as
well as the use of this transformation for finding common subtrees, will be explored in the full
paper.

Our preliminary experimental evaluation shows that our method is able to capture structural
differences and similarities between unordered trees, with significant possible implications for
computational biology, XML data processing, and hierarchical clustering. We intend to evaluate
the behavior of the 𝑑𝑘 measures concerning a more comprehensive set of tree operations, as
well as to test these measures on real datasets for the study of cancer phylogenies. To this
end, we plan to extend the methodology introduced in this paper to the more general case
of multi-labeled trees, by using the Jaccard distance defined on multisets, and compare our
approach with others existing in the literature.
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