
Low-space Quantum Algorithms for

Estimate-Mark-Amplify Tasks

Debajyoti Bera1,2, Tharrmashastha SAPV1,*

1

Department of Computer Science, IIIT-Delhi, New Delhi, India.

2

Center for Quantum Technologies, IIIT-Delhi, New Delhi, India.

Abstract

Amplitude filtering is concerned with identifying basis-states in a superposition whose amplitudes are
greater than a specified threshold; probability filtering is defined analogously for probabilities. Given the
scarcity of qubits, the focus of this work is to design log-space algorithms for them.

Both algorithms follow a similar pattern of estimating the amplitude (or the probability for the latter
problem) of each state in superposition, then comparing each estimate against the threshold for marking
a flag qubit upon success, finally followed by amplitude amplification of states in which the flag is set. We
show how to implement each step using very few qubits. The main technical ingredient is an amplitude
amplification algorithm that amplifies the “good state” even when the “good state” operator has a small
probability of being incorrect. We provide an algorithm to perform this amplification, and we improve
upon the space complexity of the previously known algorithms.

As an immediate reward, the above algorithms for the filtering problems directly improve the upper
bounds on the space-bounded query complexity of problems such as non-linearity estimation of Boolean
functions and a version of 𝑘-distinctness.

In addition, we present the query lower bounds of the amplitude and probability filtering problems
where we show that our algorithms are tight with respect to each of the individual parameters.

Keywords

Quantum Algorithm, Quantum Complexity, Amplitude Estimation, Amplitude Amplification

1. Introduction

A quantum circuit is always associated with a distribution, say 𝒟, over the observed outcomes
that can, in principle, encode complex information. Given a threshold 𝜏 , and a blackbox to
run the circuit, it may be useful to know if there is an outcome with a probability of at least 𝜏 .
We call this problem Probability Filtering (denoted ProFil). We also introduce Amplitude
Filtering (denoted AmpFil) that determines if the absolute value of the amplitude of any basis
state is above a given threshold; even though this problem appears equivalent to ProFil, an
annoying difference crawls in if we allow absolute or relative errors with respect to the threshold.
We are unaware of prior algorithms for these problems. The most interesting takeaway from
this work is 𝑂̃(1)-qubit algorithms for the ProFil and the AmpFil problems whose query
complexities, measured as the number of calls to the circuit, are independent of the domain size
of 𝒟. Here by 𝑂̃(1) we mean 𝑂(log𝑐 𝑛) for some constant 𝑐 > 0.

ICTCS’24: Italian Conference on Theoretical Computer Science, September 11–13, 2024, Torino, Italy

*Corresponding author.
$ dbera@iiitd.ac.in (D. Bera); tharrmashasthav@iiitd.ac.in (T. SAPV)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:dbera@iiitd.ac.in
mailto:tharrmashasthav@iiitd.ac.in
https://creativecommons.org/licenses/by/4.0

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

The framework offered by these problems supports interesting tasks. For example, a binary
search over 𝜏 (tweaked to handle the above annoyance) can be a way to compute the largest
probability among all the outcomes and can be used to find the modal outcome. We have observed
that several combinatorial problems can be reduced to finding the mode of a distribution or
identifying if the mode is greater than something. For instance, the 𝑘-Distinctness problem
generalizes the well-studied element-distinctness problem: whether an array has at least 𝑘
repetitions of any element. Consider the distribution over the domain of the array elements. If
any element appears at least 𝑘 times, then its mode will be at least 𝑘/𝑁 (𝑁 denoting the size
of the array), and vice versa. Our algorithm for probability filtering can be used to design an
algorithm for 𝑘-Distinctness that makes an optimal number of queries (up to logarithmic
factors) when 𝑘 = Ω(𝑁), and that too using 𝑂̃(1) qubits. Previous quantum algorithms for
large 𝑘 have an exponential query complexity and require a larger number of qubits [1]. We
hope the ProFil and AmpFil will be useful for designing more quantum algorithms.

When space is not a constraint, the query complexity of a discrete problem with 𝑛-sized
inputs is 𝑂(𝑛), achievable by querying and caching the entire input at the beginning. However,
this is not feasible when space is limited. In contrast, our algorithms are allowed only constant
many logarithmic-sized registers. Thus, it should not appear as a surprise that we sometime
end up making super-linear queries in an attempt to restrict the number of qubits to 𝑂̃(1).

1.1. Summary of Results

The ProFil and AmpFil problems can be solved using an intuitively simple idea of doing
amplitude estimation for each basis state in superposition, using the threshold as a marking
function, and then doing amplitude amplification with respect to the marking. Doing this while
ensuring that the errors inherent in the estimation step do not increase significantly in the
amplification step can be reduced to the problem of biased-oracle amplitude amplification.

Biased Amplitude Amplification in Log-space (section 2) In the above mentioned am-
plification problem, the oracle to mark “good” states is allowed to err with some probability
1− 𝑝. Hoyer et al. [2] studied this problem earlier for 𝑝 = 9/10. They proposed an algorithm
that uses 𝑂(

√︀
1/𝜆) queries to obtain a marked element with high probability where 𝜆 is the

probability of obtaining any marked element out of 𝑁 elements. This algorithm performs an
“error reduction step” after each amplification step, which uses one new qubit to reduce the
error. However, in the worst case, the number of qubits required is as much as 𝑂(

√︀
1/𝜆).

To reduce the qubit footprint of our algorithms, we designed our own algorithm for biased
oracle amplitude amplification based on Grover’s algorithm which has a space complexity of
𝑂(log(𝑁)) qubits. For arbitrary 𝑝 > 1/2, our algorithm uses𝑂

(︁
𝑝

(𝑝− 1
2
)2
√
𝜆
log
(︀

1
𝜆𝛿

)︀)︁
queries and

just log(𝑁) +𝑂
(︁

2𝑝
(𝑝−1/2)2

log(1/𝜆𝛿)
)︁

qubits (which is 𝑂̃(1) for 𝑝 > 2/3 and 𝜆 = 1/𝑝𝑜𝑙𝑦(𝑁)).

It is to be noted that the performance of our algorithm worsens when 𝑝 ≈ 1/2. In addition to
use in algorithms for ProFil and AmpFil, our biased amplitude amplification algorithm can
be used in the NISQ era, where the marking oracles are generally erroneous; this could be of
independent interest to the community.

2

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

Algorithms for ProFil and AmpFil (section 3) Our objective was to design a 𝑂̃(1
𝜖𝜏)-query

algorithm to decide if there is any state with amplitude (rather, its absolute value) crosses the
threshold 𝜏 , given the promise that either there is some such state or all states have amplitude at
most 𝜏 − 𝜖 for some 𝜖 > 0. We designed our AmpFil algorithm by combining the idea of parallel
estimation with our algorithm for biased amplitude amplification, where we first use amplitude
estimation in parallel to estimate the amplitude and follow it with a biased-oracle amplitude
amplification. We show that this algorithm uses 𝑂̃(1

𝜖𝜏) queries. While the quantum amplitude
estimation algorithm is widely known for obtaining an 𝜖-estimate of a probability in 𝑂(1/𝜖)
queries 1, a closer look at its analysis reveals that it directly returns an 𝜖-estimate of the absolute
value of an amplitude using 𝑂(1/𝜖) queries. The 𝑂̃(1

𝜖
√
𝜏
)-complexity algorithm for ProFil was

obtained by reducing it to AmpFil. One should note that the ProFil and AmpFil problems can
also be solved if we were to replace our algorithm for biased amplitude amplification with the
one proposed by Hoyer et al; however, the space complexity increases significantly.

For the ProFil problem, we show that our algorithm is tight with respect to the parameters
𝜖 and 𝜏 individually, i.e., we show a lower bound of Ω(1𝜖 + 1√

𝜏
) queries. Further, we show

an almost tight lower bound of Ω(1𝜖 + 1
𝜏) queries for the AmpFil problem. Both the lower

bounds use standard approaches like the adversary method [3] and reduction from a counting
problem [4]. The details on the lower bounds are presented in Section 4.

Applications of ProFil and AmpFil (section 5) The results in this work can be used to
design low-space algorithms for several problems which have received recent attention. These
problems can now be solved using a logarithmic number of qubits — often exponentially less
compared to the existing approaches, and have a better query complexity, thus leading to
better space-time complexities. The reductions are mostly straightforward, and some have been
omitted due to space constraints, but the implications are interesting, as discussed below.

• Our algorithm for 𝑘-Distinctness makes an optimal number of queries (up to logarithmic
factors) when 𝑘 = Ω(𝑛), and that too using 𝑂̃(1) qubits (see section 5). Previous quantum
algorithms for large 𝑘 have an exponential query complexity in limited space [1] or require
a polynomial number of qubits [5, 6, 7].

• Our algorithm for ProFil can be used to identify the presence of high-frequency items
in an array (those above a given threshold — this problem is also known as “heavy
hitters”) using 𝑂̃(log 1

𝜖) qubits; it also generates a superposition of such items along
with estimates of their frequencies. The best algorithms for identifying heavy hitters in
low space classical algorithms are of streaming nature but require 𝑂̃(1𝜖) space [8]. Here
𝜖 ∈ (0, 1] indicates the inaccuracy in frequency estimation.

• Our ProFil and AmpFil algorithms can be used to binary search for the largest threshold,
which essentially yields the largest probability and the largest amplitude, respectively.

• Valiant and Valiant showed that 𝑂̃(𝑚
𝜖2
) samples of an 𝑚-valued array are sufficient to

classically estimate common statistical properties of the distribution of values in the
array [9]. Recently it was shown that samples of the order of 𝑂̃(1

𝑔2
) could be used if we

1If this is used indirectly to estimate the absolute value of the amplitudes, then the query complexity would scale as
1
𝜖2

instead of the desired 1
𝜖

.

3

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

want to identify the item with the largest probability (denoted 𝑝max) [10]; here 𝑔 denotes
the gap between 𝑝max and the largest probability strictly less than 𝑝𝑚𝑎𝑥. A binary search
using ProFil makes only 𝑂̃(1

𝑔
√
𝑝max

) queries and can locate such an item.

• The non-linearity of a Boolean function can also be calculated in terms of the amplitude
with the largest norm in the output state of the Deutsch-Jozsa circuit. We present an algo-
rithm based on AmpFil for non-linearity estimation with query complexity𝑂(𝑂̃(1

𝜆𝑓𝑚𝑎𝑥
)),

improving a previous work of Bera et al. with complexity 𝑂̃(1
𝜆2𝑓𝑚𝑎𝑥

), where 𝑓𝑚𝑎𝑥 denotes
the largest absolute value of any Walsh coefficient of the function. It should be noted that
the best known lower bound for non-linearity estimation is Ω(1𝜆) (Appendix H).

To summarize, our techniques yield the current best algorithms for non-linearity estimation
of Boolean functions, 𝑘-Distinctness for 𝑘 = Ω(𝑛), and 𝑘-Distinctness for constant 𝑘 with
𝑂̃(1)-qubits; further, these algorithms almost match their lower bounds.

2. Amplitude Amplification using Biased Oracle

Given an oracle 𝒪 that marks a state of interest (say |𝑥⟩) and an algorithm 𝐴 such that 𝐴 |0⟩ =
|𝜓⟩, we know that the amplitude amplification algorithm allows us to obtain |𝑥⟩ w.h.p. from
|𝜓⟩ quadratically faster as compared to classical approaches using 𝐴 as a black-box. We use
𝐴𝐴𝐴,𝒪 to denote such an amplitude amplification algorithm, the key ingredient of which is the
Grover iterator 𝐺𝐴,𝒪 = −𝐴𝑅|0⟩𝐴

†𝒪. Here, 𝑅|𝑖⟩ denotes the reflection operator 2 |𝑖⟩ ⟨𝑖| − I.
The standard assumption is that, with probability 1, the oracle 𝒪 marks only the ‘good’ state |𝑥⟩
with probability 1, i.e., 𝒪 |𝑥⟩ |𝑏⟩ = |𝑥⟩ |𝑏⊕ 1⟩ if 𝑥 is ‘good’ and 𝒪 |𝑥⟩ |𝑏⟩ = |𝑥⟩ |𝑏⟩ if 𝑥 is ‘bad’.

However, if we replace the oracle 𝒪 with a bounded-error oracle 𝒪̂𝑝 which marks |𝑥⟩ but
with some probability 𝑝 ∈ (1/2, 1), then the naive amplitude estimation algorithm does not
work as intended since 𝒪̂𝑝 would also mark the ‘bad’ states with probability at most 1−𝑝. With
each iteration of the amplification algorithm, the probability of these false positives will also
increase, thus potentially giving an erroneous output.
Previous Works: Hoyer et al. [2] first investigated this setting for 𝑝 = 9/10 and proposed

two different algorithms. We outline them below. The central idea of the first algorithm is to
interleave the amplitude amplification and error reduction recursively. They showed that by
following each amplification step with an error reduction step, which uses 𝑂(𝑘) extra qubits in
the 𝑘𝑡ℎ iteration, it is possible to solve the bounded-error search problem using 𝑂(

√
𝑁) queries

to oracle 𝒪̂𝑝 for a search of 1 good element over 𝑁 elements. However, the space complexity
increases with each iteration. At the end of each iteration, the qubits in the first and second
registers are highly entangled due to computing the majority. So it is impossible to cleanly
uncompute the 𝑂(𝑘) qubits to get |0⟩. This blows up the space complexity after each iteration.
Although the algorithm is query-optimal, i.e., 𝑂(

√
𝑁), its space complexity shoots to 𝑂(

√
𝑁).

Hoyer et al. hinted at another approach to solve the bounded-error search problem. In this
approach, a single call to the oracle 𝒪̂𝑝 in the Grover iterator is replaced by 𝑂(log(1/𝛿))-many
independent calls to 𝒪̂𝑝 and using the majority value over those copies for marking the state
of interest. For any 𝑝 > 1/2 that is at least constant away from 1

2 , the majority value of
𝑂(log(1/𝛿)) outputs of 𝒪̂𝑝 would reduce the marking error to 𝛿. Thus, the error accumulates to

4

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

*
*

*

*

*

*
*

*

*

*
*

*

....

*

*

Iteration 1 Iteration 2
....

*

*

*

*

*

*

*

*
*

*

...

(a) The interleaving algorithm proposed by Hoyer et al. in [2].

Iteration 1 Iteration 2
....

*
*

*

*

*

*

... *
*

*
*

....

*

*

*

*

*

*

... *
*

*
*

....

(b) The biased oracle amplitude amplification algorithm suggest by Hoyer et al. in [2].

....

Iteration 1
of FPAA

....

Iteration 2
of FPAA

(c) Our Algorithm.

Figure 1: Comparison of the biased amplitude amplification algorithms. Please refer to [11] for the

exact description of 𝐺𝐴(𝛼𝑖, 𝛽𝑖) operators. Note that the number of working qubits increases with each

iteration in the algorithms proposed in [2], whereas the number of qubits is fixed in our algorithm.

𝑂(𝛿
√
𝑁) after𝑂(

√
𝑁) iterations of the Grover iterate. 𝑂(log(1/𝛿)) ancillæ qubits are required

for performing the majority in each iteration. However, due to their entanglement with the
workspace qubits, it is not possible to uncompute all the ancillæ qubits cleanly to |0⟩. Hence,
the space complexity would asymptotically remain 𝑂(

√
𝑁). We present a detailed description

5

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

Algorithm 1 Constructing the algorithm 𝐴𝐴,𝒪̂𝑝,𝑘

Require: Bounded-error oracle 𝒪̂𝑝, the initial algorithm 𝐴 and 𝑘.
1: Initialize 𝑅1 to |0𝑛⟩. Next 𝑘 + 1 registers 𝑅21𝑅22 · · ·𝑅2𝑘𝑅𝑚𝑎𝑗 are initialized to |0⟩.
2: Apply 𝐴 to 𝑅1.
3: for 𝑖 in 1 to 𝑘 do
4: Apply 𝒪̂𝑝 to 𝑅1𝑅2𝑖.
5: end for
6: Apply a conditional majority gate, using 𝑅1 as the control, using the registers 𝑅21𝑅22 . . . 𝑅2𝑘 as inputs to the

majority circuit, and storing the majority value in 𝑅𝑚𝑎𝑗 .

of these two algorithms in Appendix B.
Our Work: Now we describe our technique that uses just log-space to solve the bounded-

error search problem using𝑂(
√
𝑁 log(1/𝛿)) queries to 𝒪̂𝑝

2. The idea is to replace the operator
𝐴 in the amplification iterator with a newly constructed operator 𝐴 that internally uses 𝒪̂𝑝

to enhance 𝐴. The role of 𝐴 will be to generate a state in which the good and the bad states
are explicitly marked using an additional register whose state is |1⟩ or |0⟩, accordingly, and
furthermore, the probability of marking a bad state can be made arbitrarily low. The algorithm
for constructing such an 𝐴 is presented as Algorithm 1.

Lemma 1. Suppose that we are given an algorithm 𝐴 that generates the initial state 𝐴 |0𝑛⟩ =∑︀
𝑥 𝛼𝑥 |𝑥⟩, a bounded-error oracle 𝒪̂𝑝 as defined above and an error parameter 𝛿; further, let

𝐺 denote the set of good states, and 𝐵 the set of bad states. Choose an appropriate 𝑘 =

𝑂
(︁

2𝑝
(𝑝−1/2)2

log
(︀
1
𝛿

)︀)︁
, and construct a quantum circuit 𝐴 as described in Algorithm 1. Then,

𝐴
⃒⃒⃒
0𝑛+𝑘+1

⟩
=
∑︁
𝑥∈𝐺

𝛼𝑥 |𝑥⟩
[︁
𝜂𝑔𝑥0 |. . .⟩ |0⟩+𝜂

𝑔
𝑥1 |. . .⟩ |1⟩

]︁
+
∑︁
𝑥∈𝐵

𝛼𝑥 |𝑥⟩
[︁
𝜂𝑏𝑥0 |. . .⟩ |0⟩+𝜂𝑏𝑥1 |. . .⟩ |1⟩

]︁
,

such that |𝜂𝑔𝑥0|2 ≤ 𝛿 and |𝜂𝑏𝑥1|2 ≤ 𝛿 (we have ignored the ancillæ).

The result can be understood by taking 𝛿 → 0 and analysing the observation upon measuring
the output of 𝐴

⃒⃒
0𝑛+𝑘+1

⟩︀
. For 𝑥 ∈ 𝐺, we are more likely to observe |𝑥⟩ |. . .⟩ |1⟩ as compared to

|𝑥⟩ |. . .⟩ |0⟩, and for 𝑥 ∈ 𝐵, |𝑥⟩ |. . .⟩ |0⟩ is the more likely outcome, i.e., the information about
𝑥 being good or bad is encoded in the final qubit, w.h.p.. We present the proof of Lemma 1 in
Appendix C.

The next step is straightforward. We run one of the amplification routines using 𝐴 as the
state preparation oracle and amplifying the probability of states of the form |𝑥⟩ |. . .⟩ |1⟩ as
presented in Algorithm 2. Note that, apart from amplifying states corresponding to 𝑥 ∈ 𝐺,
this would also amplify states corresponding to 𝑥 ∈ 𝐵. However, if we choose 𝛿 sufficiently
small, we can ensure that the probability of states of the form |𝑥⟩ |. . .⟩ |1⟩ for 𝑥 ∈ 𝐵, would be
extremely small, and hence, would be within tolerable limits as the algorithm terminates. We
present a pictorial comparison between the three algorithms in Figure 1. One can easily note
that the number of qubits in the workspace increases with each iteration for the algorithms
proposed in [2] in contrast to our algorithm, where the number of qubits is fixed.

2Careful readers will observe a logarithmic overhead in the query complexity.

6

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

The details of Algorithm 2 and the proof of Theorem 2 are included in Appendix D; here, we
briefly discuss its query complexity. Let 𝜆 be the probability of obtaining some good state on
measuring |𝜓⟩ if some good state is present in |𝜓⟩; formally, 𝜆 = min𝑥(|𝛼𝑥|2) over all “good”
𝑥. We will use the fact that FPAA [11] employed by the algorithm can amplify an unknown
success probability, lower bounded by 𝜆, to any desired 1 − 𝛿 within 𝑂(1√

𝜆
log 1

𝛿) iterations

of Line 2. When 𝑝 is a constant, the number of queries is 𝑂̃(1√
𝜆
) and 𝑂̃(1) additional qubits

are used. We use FPAA as our choice of amplification algorithm because of its ability to output
the correct answer with at most 𝛿 error by running the algorithm once. However, one can use
the naive amplification algorithm ([12]) instead of FPAA. In that case, the naive amplification
algorithm might have to be run multiple times to obtain the correct answer with error at most
𝛿 for any 0 < 𝛿 < 1/2.

Theorem 2. Given an 𝑛-qubit algorithm 𝐴 that generates the initial state 𝐴 |0⟩ = |𝜓⟩ =∑︀
𝑥∈{0,1}𝑛 𝛼𝑥 |𝑥⟩, a bounded-error oracle 𝒪̂𝑝 as defined above and an error parameter 𝛿,

there exists an algorithm that uses 𝑂
(︁

𝑝

(𝑝− 1
2
)2
√
𝜆
log
(︀

1
𝜆𝛿

)︀)︁
queries to 𝒪̂𝑝 along with 𝑛 +

𝑂
(︁

2𝑝
(𝑝−1/2)2

log(1/𝜆𝛿)
)︁

qubits and outputs a good state with probability at least 1 − 𝛿, if one

exists and outputs “No Solution” with probability at least 1− 𝛿 if there is no good state in |𝜓⟩.

Algorithm 2 Amplitude amplification using a biased oracle

Require: Bounded-error oracle 𝒪̂𝑝, the initial algorithm 𝐴 and 𝑘.
1: Initialize 𝑘 + 2 registers such that the first register 𝑅1 is initialize to |0𝑛⟩ and the next 𝑘 + 1 registers

𝑅21𝑅22 · · ·𝑅2𝑘𝑅𝑚𝑎𝑗 are initialized to |0⟩.
2: Use Algorithm 1 to construct 𝐴𝐴,𝒪̂𝑝,𝑘

. Then, apply 𝐴𝐴,𝒪̂𝑝,𝑘
on 𝑅1𝑅21𝑅22 · · ·𝑅2𝑘𝑅𝑚𝑎𝑗 .

3: Apply the fixed point amplitude amplification algorithm (FPAA) on 𝑅𝑚𝑎𝑗 using the good state as |1⟩ and with
error at most 𝛿/2. Stop if the number of iterations crosses the limit of 𝑂̃(1√

𝜆
) set by the FPAA algorithm.

4: Measure 𝑅𝑚𝑎𝑗 as 𝑚. If 𝑚 = |0⟩, output “No Solution”. Else, measure 𝑅1 as 𝑦 and output 𝑦.

3. Probability and Amplitude Filtering

The filtering problems are formally defined as follows:

Problem 1 (Amplitude and Probability Filtering). Suppose that we are given a quantum algorithm

𝑂𝐷 that generates a distribution 𝐷 : (𝑝𝑥 = |𝛼𝑥|2)𝑚𝑥=1 on measuring the first log(𝑚) qubits of

𝑂𝐷

⃒⃒⃒
0log(𝑚)+𝑎

⟩
=

∑︁
𝑥∈{0,1}log(𝑚)

𝛼𝑥 |𝑥⟩ |𝜓𝑥⟩ = |Ψ⟩ (say)

in the standard basis. In addition, we are also provided a threshold 𝜏 and a parameter 0 < 𝜖 < 𝜏 .

• The amplitude filtering problem, denoted AmpFil(𝐷, 𝜏, 𝜖), is to decide if |𝛼𝑥| < 𝜏 − 𝜖 for

all 𝑥 ∈ {0, 1}log(𝑚)
or there exists some 𝑥 such that |𝛼𝑥| ≥ 𝜏 given the promise that it is

one of the two cases.

7

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

• The probability filtering problem, denoted ProFil(𝐷, 𝜏, 𝜖), is to decide if 𝑝𝑥 = |𝛼𝑥|2 < 𝜏 − 𝜖
for all 𝑥 ∈ {0, 1}log(𝑚)

or there exists some 𝑥 such that 𝑝𝑥 ≥ 𝜏 given the promise that it is

one of the two cases.

We first present an algorithm for the amplitude filtering problem. The first step is to design
an appropriate biased oracle, AmpFilBOrcl, for amplitude filtering as described in algorithm 3.
The oracle is used for marking a basis state to be good if its amplitude, as required, is more
than 𝜏 . Then, use our amplitude amplification algorithm for biased-oracle (see Section 2) to
amplify the probability of finding a marked state if one exists. We summarise the behaviour of
the amplitude filtering algorithm in the following theorem.

Theorem 3 (Additive-error algorithm for AmpFil). For any choice of parameters 0 < 𝜖 < 𝜏
for additive accuracy and 𝛿 for error, there exists a quantum algorithm that uses 𝑂

(︀
(log(𝑚) +

log
(︀
1
𝜖

)︀
+ 𝑎) log

(︀
1
𝛿𝜏

)︀)︀
qubits and makes 𝑂(1

𝜖𝜏 log
1
𝛿𝜏) queries to 𝑂𝐷 such that when its final state

is measured in the standard basis, we observe the following.

1. If |𝛼𝑥| < 𝜏 − 𝜖 for all 𝑥 then the output register is observed in the state |0⟩ with probability

at least 1− 𝛿.

2. If |𝛼𝑥| ≥ 𝜏 for any 𝑥, then with probability at least 1− 𝛿 the output register is observed in

the state |1⟩ and some 𝑥 such that |𝛼𝑥| ≥ 𝜏 is returned as output.

Algorithm 3 Constructing biased-oracle AmpFilBOrcl for amplitude filtering
Require: Oracle 𝑂𝐷 (with parameters 𝑚, 𝑎), threshold 𝜏 , and accuracy 𝜖.
Require: Input register 𝑅1 set to some basis state |𝑥⟩ and output register 𝑅5 set to |0⟩.
1: Set 𝑟 = log(𝑚) + 𝑎, 𝜏 ′ = 1

2
(1 + 𝜏 − 𝜖

8
), 𝑞 = ⌈log

(︀
1
𝜖

)︀
⌉+ 5 and 𝑙 = 𝑞 + 3.

2: Set 𝜏1 =
⌊︁

2𝑙

𝜋
sin−1(𝜏 ′)

⌋︁
.

3: Initialize ancillæ registers 𝑅2𝑅3𝑅4 of lengths 𝑟, 𝑙 and 1, respectively, and set 𝑅3 = |𝜏1⟩.
4: Stage 1: Apply EQAmpEst (sans measurement) with 𝑅2 as the input register, 𝑅4 as the output register and 𝑂𝐷

is used as the state preparation oracle. 𝑅1 is used in 𝐸𝑄 to determine the “good state”. EQAmpEst is called
with error at most 1− 8

𝜋2 and additive accuracy 1
2𝑞

.
5: Stage 2: Set 𝑅5 to 1 if the estimate, calculated using 𝑅4, is at least 𝜏1.
6: Use HD𝑙 on 𝑅3 and 𝑅4 individually.
7: Use CMP on 𝑅3 = |𝜏1⟩ and 𝑅4 as input registers and 𝑅5 as output register.
8: Use HD†𝑙 on 𝑅3 and 𝑅4 individually.

Now, we explain how we implemented the biased oracle (listed in Algorithm 3). The role of
the oracle is to mark the basis states whose amplitude is at least 𝜏 , with at most some small error
probability. Its construction involves two stages: an estimation stage followed by a marking
stage. For the AmpFilBOrcl, we use EQAmpEst to estimate the amplitudes of each basis state
in superposition. EQAmpEst is an extension of the well-known amplitude estimation where
the basis state whose amplitude (or probability) we want to estimate is provided in a separate
register instead of as an oracle. We have presented a more detailed treatment of EQAmpEst in
Appendix A.2. In the marking stage, the algorithm uses straight-forward quantum operations
to compare the estimate in one register with 𝜏 , hardcoded in a suitable encoding in another
register. Since EQAmpEst performs an estimation with error probability that is at most 1− 8

𝜋2 ,
AmpFilBOrcl marks the good basis states with probability at least 8/𝜋2.

8

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

The query complexity arising from biased-oracle amplitude amplification (see Section 2)
scales as 𝑂̃(1√

𝜆
) where 𝜆 = min |𝛼𝑥|2 among all 𝑥 that are good. For amplitude filtering, we

want to amplify any state |𝑥⟩ such that |𝛼𝑥| ≥ 𝜏 , so, 𝜆 ≥ 𝜏2. Thus, amplitude amplification
will call AmpFilBOrcl 𝑂̃(1𝜏) times, each of which requires 𝑂(1𝜖) calls to 𝑂𝐷 . The details of the
AmpFilBOrcl algorithm are discussed in Appendix G.

Probability filtering can be easily reduced to amplitude filtering with very little overhead.

Lemma 4. Any instance of ProFil(𝐷, 𝜏, 𝜖) can be reduced to an instance of AmpFil(𝐷,
√
𝜏 , 𝜖/2).

A proof is explained in Appendix F. This reduction gives us an algorithm for ProFil.

Corollary 5 (Additive-error algorithm for ProFil). For any choice of parameters 0 < 𝜖 < 𝜏
for additive accuracy and 𝛿 for error, there exists a quantum algorithm that uses 𝑂

(︀
(log(𝑚) +

log
(︀
1
𝜖

)︀
+ 𝑎) log

(︀
1
𝛿𝜏

)︀)︀
qubits and makes 𝑂(1

𝜖
√
𝜏
log 1

𝛿𝜏) queries to 𝑂𝐷 such that when its final

state is measured in the standard basis, we observe the following.

1. If 𝑝𝑥 < 𝜏 − 𝜖 for all 𝑥 then the output register is observed in the state |0⟩ with probability

at least 1− 𝛿.

2. If 𝑝𝑥 ≥ 𝜏 for any 𝑥, then with probability at least 1− 𝛿 the output register is observed in

the state |1⟩ and some 𝑥 such that |𝛼𝑥| ≥ 𝜏 is returned as output.

With access to unbounded space, it is easy to see that one can estimate the distribution 𝒟𝑝

with 𝜖 additive accuracy using𝑂(1/𝜖2) and𝑂(1/𝜖) queries to the oracle𝑂𝐷 in the classical and
quantum settings respectively which can then be used to solve the ProFil problem. However, in
the case of 𝑂̃(1) space, classically, one would be required to make𝑂(𝑛/𝜖2) queries to answer the
ProFil problem. In contrast, our algorithm solves the same in 𝑂̃(1) space using just 𝑂̃(1/𝜖

√
𝜏)

queries to 𝑂𝐷 . Notice that for constant 𝜏 , our algorithm is optimal up to some log factors.

4. Lower bounds for ProFil and AmpFil

The CountDecision problem takes as input a binary string of length 𝑛 and decides if the number
of ones in𝑋 , denoted |𝑋|, is 𝑙1 or 𝑙2 > 𝑙1, given a promise that one of the two cases is true. Nayak
and Wu proved that any quantum algorithm takes Ω(

√︀
𝑛/Δ+

√︀
(𝑙2 −Δ)(𝑛− (𝑙2 −Δ))/Δ)

queries to solve the CountDecision problem [4] in which Δ = 1
2(𝑙2 − 𝑙1).

Theorem 6. Any quantum algorithm that solves ProFil (𝒟, 𝜖, 𝜏) requires Ω(1𝜖 +
1√
𝜏
) queries.

To prove that ProFil requires Ω(1𝜖) queries, we reduce an instance of CountDecision on a
𝑛-bit string 𝑋 with 𝑙1 = 𝑛

2 and 𝑙2 = 𝑛
2 + 𝜀𝑛 to ProFil. Observe that the frequencies of 0 and 1

in the string 𝑋 induce a distribution 𝒟. So, an oracle to 𝑋 can be used to implement an oracle
𝑂𝐷 to the distribution 𝒟. By Corollary 1.2 of [4], the query complexity to decide the above
CountDecision instance is Ω(1𝜀). If |𝑋| = 𝑛

2 then Pr𝐷[0] = Pr𝐷[1] =
1
2 , and if |𝑋| = 𝑛

2 + 𝜀𝑛,
then Pr𝐷[1] =

1
2 + 𝜀. Thus, the output of a ProFil algorithm with 𝜏 = 1

2 + 𝜀 and additive
accuracy 𝜖 = 𝜀 can be used to decide our CountDecision instance, proving the Ω(1𝜀) bound.

Next we prove a bound of Ω(1√
𝜏
). For proving this lower bound, instead of the CountDeci-

sion problem, we use the quantum adversary method. We first use this method to obtain a lower

9

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

bound on the mode decision problem: Given an array 𝐴 of size 𝑛 and a threshold 𝜏 ′ ∈ [1, 𝑛] we
have to decide if there exists any element whose frequency is greater than 𝜏 ′. We then show a
reduction from mode decision problem to ProFil to get a lower bound on it.

The main theorem of the quantum adversary method can be stated as below [3]:

Theorem 7. Let 𝐹 be a 𝑛-bit Boolean function and 𝑋 and 𝑌 be two sets of inputs such that

𝐹 (𝑥) ̸= 𝐹 (𝑦) for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Let 𝑅 ⊆ 𝑋 × 𝑌 be a relation such that

1. for every 𝑥 ∈ 𝑋 , ∃ at least 𝑚 different 𝑦 ∈ 𝑌 and for every 𝑦 ∈ 𝑌 , ∃ at least 𝑚′
different

𝑥 ∈ 𝑋 such that (𝑥, 𝑦) ∈ 𝑅.

2. for each 𝑖 ∈ {1, ..., 𝑛}, for every 𝑥 ∈ 𝑋 , ∃ at most 𝑙 different 𝑦 ∈ 𝑌 and for every 𝑦 ∈ 𝑌 , ∃
at most 𝑙′ different 𝑥 ∈ 𝑋 such that 𝑥𝑖 ̸= 𝑦𝑖 and (𝑥, 𝑦) ∈ 𝑅.

Then any quantum algorithm uses Ω
(︁√︁

𝑚·𝑚′

𝑙·𝑙′
)︁

queries to compute 𝐹 on 𝑋
⋃︀
𝑌 .

Consider the mode decision problem. Let 𝜏 ′ ∈ [1, 𝑛] be a threshold and set 𝑡 = 𝑛
𝜏 ′−1 . Let 𝐹

be a Boolean function such that 𝐹 (𝑥) = 1 if 𝑥 is an array whose modal value is greater than or
equal to 𝜏 ′ and 𝐹 (𝑦) = 0 if the modal value of 𝑦 is strictly less than 𝜏 ′.

Let 𝑌 be the set containing one array 𝐵 such that 𝐵 contains all unique elements with
frequency 𝜏 ′ − 1. Let the unique elements be denoted 𝑏1, 𝑏2, · · · , 𝑏𝑡. Let 𝑋 be the set that
contains the arrays 𝐴𝑖 for all 2 ≤ 𝑖 ≤ 𝑡 where 𝐴𝑖 is the array that is exactly the same as 𝐵
except that the first occurrence of 𝑏𝑖 is changed to 𝑎1. Notice that the modal element in any 𝐴𝑖

is 𝑏1. Define relation 𝑅 as 𝑅 = 𝑋 × 𝑌 .
For any 𝐴 ∈ 𝑋 , we can see that there is exactly one element 𝐵 ∈ 𝑌 such that (𝐴,𝐵) ∈ 𝑅

since |𝑌 | = 1. For 𝐵 ∈ 𝑌 , there is exactly 𝑡 − 1 elements 𝐴 ∈ 𝑋 such that (𝐴,𝐵) ∈ 𝑅 as
|𝑋| = 𝑡 − 1. Similarly, for any 𝐴 ∈ 𝑋 and any 𝑖 ∈ [𝑛], there is at most one element 𝐵 ∈ 𝑌
such that𝐴[𝑖] ̸= 𝐵[𝑖] and (𝐴,𝐵) ∈ 𝑅. For𝐵 ∈ 𝑌 and any 𝑗 ∈ [𝑛], there is at most one element
𝐴 ∈ 𝑋 such that 𝐴[𝑗] ̸= 𝐵[𝑗] and (𝐴,𝐵) ∈ 𝑅.

From these, we can derive that the quantum query complexity of computing 𝐹 is

Ω(
√︁

𝑡−1·1
1·1) = Ω(

√
𝑡) = Ω(

√︀
𝑛/𝜏 ′ − 1).

Now, the reduction from the mode decision problem to ProFil can be trivially done by setting
the threshold of ProFil 𝜏 as 𝜏 = 𝜏 ′/𝑛. This would imply that the quantum query lower bound
of ProFil is Ω(1/

√
𝜏) for 𝜖 = 1

𝑛 .
We know from Theorem 4 that any instance of ProFil(𝐷, 𝜏, 𝜖) can be reduced to an instance

of AmpFil(𝐷,
√
𝜏 , 𝜖/2). We obtain the following theorem using this reduction and Theorem 6.

Theorem 8. Any quantum algorithm that solves AmpFil (𝒟, 𝜖, 𝜏) requires Ω(1𝜖 +
1
𝜏) queries.

From these lower bounds, we can note that our algorithms for AmpFil and ProFil, with
complexities 𝑂̃(1

𝜖𝜏) and 𝑂̃(1
𝜖
√
𝜏
) are tight with respect to the parameters 𝜏 and 𝜖 individually.

5. Applications of ProFil and AmpFil

5.1. The 𝑘-Distinctness Problem

The ElementDistinctness problem [13, 1, 14] is being studied for a long time both in the
classical and the quantum domain. It is a special case of the 𝑘-Distinctness problem [1, 5]

10

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

with 𝑘 = 2 which too has received a fair attention.

Problem 2 (𝑘-Distinctness). Given an oracle to an 𝑛-sized 𝑚-valued array 𝐴, decide if 𝐴 has

𝑘 distinct indices with identical values.

An 𝑚-valued array means one whose entries are from {0, . . . ,𝑚 − 1}. Observe that 𝑘-
Distinctness can be reduced to ProFil with 𝜏 = 𝑘

𝑛 , assuming the ability to uniformly sample.
The best-known classical algorithm for 𝑘-Distinctness uses sorting and has a time complex-

ity of 𝑂(𝑛 log(𝑛)) with a space complexity 𝑂(𝑛). In the quantum domain, apart from 𝑘 = 2,
the 𝑘 = 3 setting has also been studied earlier [6, 7]. The focus of all these algorithms has been
primarily to reduce their query complexities. As a result, their space requirement is significant
(polynomial in the size of the list). Recently, Li et al. [15] reduced the problem of estimating the
min-entropy to 𝑘-Distinctness with a very large 𝑘, making this case additionally important.
The F∞ problem [16, 17], the problem of estimating the modal frequency, can also be reduced
to the same, along with a promise on the gap of this frequency.

Table 1

Results for the 𝑘-Distinctness problem

𝑘-Distinctness

Prior upper bound [1] Our upper bound

𝑘 ∈ {2, 3, 4} Setting 𝑟 = 𝑘, 𝑂((𝑛𝑘)
𝑘/2) queries,

𝑂(log(𝑚) + log(𝑛)) space
𝑂̃(𝑛3/2/

√
𝑘) queries,

𝑂
(︀
(log(𝑚) + log(𝑛)) log

(︀
𝑛
𝛿𝑘

)︀)︀
space

𝑘 = 𝜔(1) and

𝑘 ≥ 4
𝑂(𝑛

2

𝑘) queries,

𝑂(log(𝑚) + log(𝑛)) space for 𝑟 ≥ 𝑘

𝑘 = Ω(𝑛)
𝑂(𝑛𝑛/2) queries,

𝑂(𝑛 log(𝑚) + log(𝑛)) space

𝑂̃(𝑛) queries,

𝑂
(︀
(log(𝑚) + log(𝑛)) log

(︀
𝑛
𝛿𝑘

)︀)︀
space

The 𝑘 = 2 version is the ElementDistinctness problem, which was first solved by Buhrman
et al. [13]; their algorithm makes 𝑂(𝑛3/4 log(𝑛)) queries (with roughly the same time complex-
ity), but requires the entire array to be stored using qubits. Ambainis [1] proposed the current
best algorithm for 𝑘-Distinctness with general 𝑘. Their quantum-walk algorithm uses 𝑂̃(𝑟)
qubits and 𝑂(𝑟 + (𝑛/𝑟)𝑘/2

√
𝑟) queries (with roughly the same time complexity) for any 𝑟 ≥ 𝑘.

Later Belovs designed a learning-graph for the 𝑘-Distinctness problem, but only for constant

𝑘, and obtained a tighter bound of 𝑂(𝑛
3
4
− 1

2𝑘+2−4). However, it is not clear whether the bound
holds for non-constant 𝑘.

Thus, it appears that even though efficient algorithms may exist for small values of 𝑘, the
situation is not very pleasant for large 𝑘, especially 𝑘 = Ω(𝑛) — the learning graph idea may
not work (even if the corresponding algorithm could be implemented in a time-efficient manner)
and the quantum walk algorithm uses Ω(𝑘) space.

We propose to use ProFil to solve 𝑘-Distinctness by (a) implementing an oracle 𝑂𝐷 from
the array 𝐴 (this is straightforward) and then calling our algorithm for probability filtering
using 𝜏 = 𝑘/𝑛 (see Theorem 5), and 𝜖 = 1/𝑛 to ensure that estimates (which are always of the
form 𝑡/𝑛) are well-separated.

Lemma 9. There exists a bounded-error algorithm for 𝑘-Distinctness, for any 𝑘 ∈ [𝑛], that uses

𝑂(𝑛
3/2
√
𝑘
log
(︀

1
𝛿·𝑘
)︀
) queries and 𝑂

(︀
(log(𝑚) + log(𝑛)) log

(︀
1
𝛿·𝑘
)︀)︀

qubits.

11

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

See Table 1 for a comparison of our method with respect to the others. This algorithm has a
few attractive features. It is specifically designed to use 𝑂̃(1) qubits, and as an added benefit,
it works for any 𝑘. Further, it improves upon the algorithm proposed by Ambainis for 𝑘 ≥ 4
when we require that 𝑂̃(1) space be used, and moreover, its query complexity does not increase
with 𝑘. Remember that the query complexity of 𝑘-Distinctness (or any other problem) with
unbounded space is trivially 𝑛 but need not be so with bounded space.

For 𝑘 that is large, e.g. Ω(𝑛), the query complexity of Ambainis’ algorithm is exponential in 𝑛,
and that of ours is 𝑂(𝑛3/2). Montanaro used a reduction from the CountDecision problem [4]
to prove a lower bound of Ω(𝑛) queries for 𝑘 = Ω(𝑛) — of course, assuming unrestricted
space [16]. Our algorithm matches this lower bound but with only 𝑂̃(1) space.

5.2. The Non-linearity Estimation Problem

Non-linearity is an important cryptographic measure of a Boolean function. Non-linearity of
a function 𝑓 : {0, 1}𝑛 −→ {0, 1} is defined in terms of the largest absolute-value of its Walsh-
Hadamard coefficient [18] as 𝜂(𝑓) = 1

2 − 1
2𝑓𝑚𝑎𝑥 where 𝑓𝑚𝑎𝑥 = max𝑥 |𝑓(𝑥)| and 𝑓(𝑥) is the

Walsh-Hadamard coefficient of 𝑓 at the point 𝑥. Boolean functions with low non-linearity can
be easily approximated by linear functions.

Ab initio, the non-linearity can be estimated from an estimate of 𝑓𝑚𝑎𝑥. Recall that the output
state of the Deutsch-Jozsa circuit is

∑︀
𝑥 𝑓(𝑥) |𝑥⟩, i.e., the probability of observing |𝑥⟩ is 𝑓(𝑥)2. It

immediately follows that we can utilize the ProFil algorithm in conjunction with a binary search
on the interval (0, 1] to estimate 𝑓2𝑚𝑎𝑥, and hence, non-linearity, with additive inaccuracy. This
approach is presented as Algorithm 1 in [18]. However, this would lead to a query complexity
of 𝑂̃(1/𝜆2𝑓𝑚𝑎𝑥)

3 to estimate non-linearity to within 𝜆 additive accuracy.
Alternately, we can replace ProFil with AmpFil to estimate 𝑓𝑚𝑎𝑥 instead of 𝑓2𝑚𝑎𝑥 in the

algorithm presented in [18]. This reduces the number of queries since to estimate 𝑓𝑚𝑎𝑥 within
±𝜆; it now suffices to call AmpFil with inaccuracy 𝜆, instead of calling ProFil with inaccuracy
𝜆2. Given that the query complexity of AmpFil is 𝑂̃(1/𝜆), this leads to a quadratic improvement
in the query complexity in the form of 𝑂̃(1

𝜆𝑓𝑚𝑎𝑥
).

Lemma 10. Given an oracle to an 𝑛-bit Boolean function, an accuracy parameter 𝜆 and an error

parameter 𝛿, there exists an algorithm that returns an estimate 𝜂𝑓 such that |𝜂𝑓 − 𝜂𝑓 | ≤ 𝜆 with

probability at least 1− 𝛿 using 𝑂(1
𝜆𝑓𝑚𝑎𝑥

log
(︀
1
𝜆

)︀
log
(︁

1
𝛿𝑓𝑚𝑎𝑥

)︁
) queries to the oracle.

Bera et al. ([18]) also showed a lower bound of Ω(1/
√
𝜆) for the non-linearity estimation.

This can be further improved to Ω(1/𝜆) via a reduction from the CountDecision problem to
the non-linearity problem. The proof of the next lemma is given in Appendix H.

Lemma 11. Any quantum algorithm uses Ω(1/𝜆) queries to estimate the non-linearity of any

given Boolean function.

This shows that our non-linearity estimation algorithm based on AmpFil is close to optimal.

3Although the query complexity of this algorithm has been proved to be 𝑂̃(1/𝜆3) in [18], the query complexity can
be reduced to 𝑂̃(1/𝜆2𝑓𝑚𝑎𝑥) with a slightly tighter analysis of their Algorithm 1.

12

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

References

[1] A. Ambainis, Quantum Walk Algorithm for Element Distinctness, SIAM Journal on
Computing 37 (2007) 210–239. doi:10.1137/S0097539705447311.

[2] P. Høyer, M. Mosca, R. d. Wolf, Quantum search on bounded-error inputs, in: International
Colloquium on Automata, Languages, and Programming, Springer, 2003, pp. 291–299.

[3] A. Ambainis, Quantum lower bounds by quantum arguments, Journal of Computer and
System Sciences 64 (2002) 750–767.

[4] A. Nayak, F. Wu, Quantum query complexity of approximating the median and related
statistics, Conference Proceedings of the Annual ACM Symposium on Theory of Comput-
ing (1999) 384–393. doi:10.1145/301250.301349.

[5] A. Belovs, Learning-Graph-Based Quantum Algorithm for k-Distinctness, in: 2012 IEEE
53rd Annual Symposium on Foundations of Computer Science, IEEE, 2012, pp. 207–216.
doi:10.1109/FOCS.2012.18.

[6] A. Belovs, Applications of the adversary method in quantum query algorithms, arXiv
preprint arXiv:1402.3858 (2014).

[7] A. M. Childs, S. Jeffery, R. Kothari, F. Magniez, A time-efficient quantum walk for 3-
distinctness using nested updates, arXiv preprint arXiv:1302.7316 (2013).

[8] G. Cormode, S. Muthukrishnan, An improved data stream summary: The count-min sketch
and its applications, J. Algorithms 55 (2005) 58–75. doi:10.1016/j.jalgor.2003.12.
001.

[9] G. Valiant, P. Valiant, Estimating the unseen: an n/log (n)-sample estimator for entropy
and support size, shown optimal via new clts, in: Proceedings of the forty-third annual
ACM symposium on Theory of computing, 2011, pp. 685–694.

[10] S. Dutta, A. Goswami, Mode estimation for discrete distributions, Mathematical Methods
of Statistics 19 (2010) 374–384. doi:10.3103/S1066530710040046.

[11] T. J. Yoder, G. H. Low, I. L. Chuang, Fixed-point quantum search with an optimal number
of queries, Physical review letters 113 (2014) 210501.

[12] G. Brassard, P. Hoyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation,
Contemporary Mathematics 305 (2002) 53–74.

[13] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, R. de Wolf, Quantum
Algorithms for Element Distinctness, SIAM Journal on Computing 34 (2005) 1324–1330.
doi:10.1137/S0097539702402780.

[14] S. Aaronson, Y. Shi, Quantum lower bounds for the collision and the element distinctness
problems, Journal of the ACM 51 (2004) 595–605. doi:10.1145/1008731.1008735.

[15] T. Li, X. Wu, Quantum Query Complexity of Entropy Estimation, IEEE Transactions on
Information Theory 65 (2019) 2899–2921. doi:10.1109/TIT.2018.2883306.

[16] A. Montanaro, The quantum complexity of approximating the frequency moments, Quan-
tum Information and Computation 16 (2016) 1169–1190.

[17] M. Bun, R. Kothari, J. Thaler, The polynomial method strikes back: Tight quantum query
bounds via dual polynomials, in: Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, 2018, pp. 297–310.

[18] D. Bera, S. Tharrmashastha, Quantum and randomised algorithms for non-linearity
estimation, ACM Transactions on Quantum Computing 2 (2021). doi:10.1145/3456509.

13

http://dx.doi.org/10.1137/S0097539705447311
http://dx.doi.org/10.1145/301250.301349
http://dx.doi.org/10.1109/FOCS.2012.18
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.3103/S1066530710040046
http://dx.doi.org/10.1137/S0097539702402780
http://dx.doi.org/10.1145/1008731.1008735
http://dx.doi.org/10.1109/TIT.2018.2883306
http://dx.doi.org/10.1145/3456509

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

A. Amplitude amplification, amplitude estimation and majority

In this section, we present details on the quantum amplitude amplification subroutine and the
MAJ operator which are used as part of our algorithms.

A.1. Amplitude amplification

The amplitude amplification algorithm (AA) is a generalization of the novel Grover’s algorithm.
Given an 𝑛-qubit algorithm 𝐴 that outputs the state |𝜑⟩ =

∑︀
𝑘 𝛼𝑘 |𝑘⟩ on |0𝑛⟩ and a set of basis

states 𝐺 = {|𝑎⟩} of interest, the goal of the amplitude amplification algorithm is to amplify
the amplitude 𝛼𝑎 corresponding to the basis state |𝑎⟩ for all |𝑎⟩ ∈ 𝐺 such that the probability
that the final measurement output belongs to 𝐺 is close to 1. In the most general setting, one is
given access to the set 𝐺 via an oracle 𝑂𝐺 that marks all the states |𝑎⟩ ∈ 𝐺 in any given state
|𝜑⟩; i.e., 𝑂𝐺 acts as

𝑂𝐺

∑︁
𝑘

𝛼𝑘 |𝑘⟩ |0⟩ −→
∑︁
𝑎/∈𝐺

𝛼𝑎 |𝑎⟩ |0⟩+
∑︁
𝑎∈𝐺

𝛼𝑎 |𝑎⟩ |1⟩ .

Now, for any 𝐺, any state |𝜑⟩ =
∑︀

𝑘 𝛼𝑘 |𝑘⟩ can be written as

|𝜑⟩ =
∑︁
𝑘

𝛼𝑘 |𝑘⟩ = sin(𝜃) |𝜈⟩+ cos(𝜃) |𝜈⟩

where sin(𝜃) =
√︀∑︀

𝑎∈𝐺 |𝛼𝑎|2, |𝜈⟩ =
∑︀

𝑎∈𝐺 𝛼𝑎|𝑎⟩√∑︀
𝑎∈𝐺 |𝛼𝑎|2

and |𝜈⟩ =
∑︀

𝑎/∈𝐺 𝛼𝑎|𝑎⟩√∑︀
𝑎/∈𝐺 |𝛼𝑎|2

. Notice that the

states |𝜈⟩ and |𝜈⟩ are normalized and are orthogonal to each other. The action of the amplitude
amplification algorithm can then be given as

𝐴𝐴
(︁∑︁

𝑘

𝛼𝑘 |𝑘⟩ |0⟩
)︁
= 𝐴𝐴

(︀
sin(𝜃) |𝜈⟩+ cos(𝜃) |𝜈⟩

)︀
|0⟩ −→

√︀
(1− 𝛽) |𝜈⟩ |1⟩+

√︀
𝛽 |𝜈⟩ |0⟩

where 𝛽 satisfies |𝛽| < 𝛿 and 𝛿 is the desired error probability. This implies that on measuring
the final state of AA, the measurement outcome |𝑎⟩ belongs to 𝐺 with probability |1−𝛽| which
is at least 1− 𝛿.

A.2. Quantum Amplitude Estimation (QAE)

Consider a quantum circuit 𝐴 on 𝑛 qubits whose final state is |𝜓⟩ on input |0𝑛⟩. Let |𝑥⟩ be
some basis state (in the standard basis — this can be easily generalized to any arbitrary basis).
Given an accuracy parameter 𝜖 ∈ (0, 1), the amplitude estimation problem is to estimate the
probability 𝑝 of observing |𝑥⟩ upon measuring |𝜓⟩ in the standard basis, up to an additive
accuracy 𝜖. Brassard et al. [12] proposed a quantum amplitude estimation circuit, which we
call QAEAlgo𝐴, that acts on two registers of size 𝑛 and 𝑚 qubits and makes 2𝑚 − 1 calls to
controlled-𝐴 to output an estimate 𝑝 ∈ [0, 1] of 𝑝 that behaves as follows.

Theorem 12. The amplitude estimation algorithm returns an estimate 𝑝 that has a confidence

interval |𝑝−𝑝| ≤ 2𝜋𝑘

√
𝑝(1−𝑝)

2𝑚 +𝜋2 𝑘2

22𝑚
with probability at least

8
𝜋2 if 𝑘 = 1 and with probability

at least 1− 1
2(𝑘−1) if 𝑘 ≥ 2. It uses exactly 2𝑚 − 1 evaluations of the oracle. If 𝑝 = 0 or 1 then

𝑝 = 𝑝 with certainty.

14

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

The following corollary is obtained from the above theorem by setting 𝑘 = 1 and𝑚 = 𝑞+3.

Corollary 13. The amplitude estimation algorithm returns an estimate 𝑝 that has a confidence

interval |𝑝− 𝑝| ≤ 1
2𝑞 with probability at least

8
𝜋2 using 𝑞+3 qubits and 2𝑞+3− 1 queries. If 𝑝 = 0

or 1 then 𝑝 = 𝑝 with certainty.

Setting
1
2𝑞 = 𝜖, the amplitude estimation algorithm returns an estimate 𝑝 that has a confidence

interval |𝑝− 𝑝| ≤ 𝜖 with probability at least
8
𝜋2 using 𝑂

(︁
log
(︀
1
𝜖

)︀)︁
qubits and 𝑂

(︀
1
𝜖

)︀
queries.

We use the subscript in QAEAlgo𝐴 to remind the reader that the circuit for amplitude
estimation depends on the algorithm 𝐴 that generates the state |𝜓⟩ from |0𝑛⟩.

Now, let 𝑝𝑥 be the probability of obtaining the basis state |𝑥⟩ on measuring the state |𝜓⟩. The
amplitude estimation circuit referred to above uses an oracle, denoted 𝑂𝑥, to mark the “good
state” |𝑥⟩, and involves measuring the output of the QAEAlgo𝐴 circuit in the standard basis;
actually, it suffices to only measure the second register. We can summarise the behaviour of the
QAEAlgo𝐴 circuit (without the final measurement) in the following lemma.

Lemma 14. Given an oracle 𝑂𝑥 that marks |𝑥⟩ in some state |𝜓⟩ and the algorithm 𝐴 that acts

as 𝐴 |0𝑛⟩ = |𝜓⟩, QAEAlgo on an input state |00 . . . 0⟩ |0𝑚⟩ generates the following state.

QAEAlgo𝐴,𝑂𝑥
|00 . . . 0⟩ |0𝑚⟩ −→ 𝛽𝑥,𝑠 |𝜓⟩ |𝑝𝑥⟩+ 𝛽𝑥,𝑠 |𝜓⟩ |𝐸𝑥⟩

Here, |𝛽𝑥,𝑠|2, the probability of obtaining the good estimate, is at least
8
𝜋2 , and |𝑝𝑥⟩ is an 𝑚-

qubit normalized state of the form |𝑝𝑥⟩ = 𝛾+ |𝑝𝑥,+⟩+ 𝛾− |𝑝𝑥,−⟩ such that both sin2(𝜋
𝑝𝑥,+
2𝑚) and

sin2(𝜋
𝑝𝑥,−
2𝑚) approximate 𝑝𝑥 up to 𝑚− 3 bits of accuracy. Further, |𝐸𝑥⟩ is an 𝑚-qubit error state

(normalized) such that any basis state in |𝐸𝑥⟩ corresponds to a bad estimate, i.e., we can write

|𝐸𝑥⟩ =
∑︁

𝑡∈{0,1}𝑚
𝑡̸∈{𝑝𝑥,+,𝑝𝑥,−}

𝛾𝑡,𝑥 |𝑡⟩ in which | sin2
(︀
𝜋 𝑡
2𝑚

)︀
− 𝑝𝑥| > 1

2𝑚−3 for any such 𝑡.

In an alternate setting where the oracle𝑂𝑥 is not provided, QAEAlgo𝐴 can still be performed
if the basis state |𝑥⟩ is provided, say, in a different register. One can construct a quantum circuit,
say 𝐸𝑄, that acts on basis states as |𝑥⟩ |𝑦⟩ ↦→ (−1)𝛿𝑥,𝑦 |𝑥⟩ |𝑦⟩. Now perform QAEAlgo𝐴 in
which we replace all calls to 𝑂𝑥 by 𝐸𝑄 whose first input is set to |𝑥⟩ from the new register. We
name this circuit as EQAmpEst𝐴 that implements the following operation.

EQAmpEst𝐴
(︀
|𝑥⟩ |00 . . . 0⟩ |0𝑚⟩

)︀
−→ |𝑥⟩

(︀
𝛽𝑥,𝑠 |𝜓⟩ |𝑝𝑥⟩+ 𝛽𝑥,𝑠 |𝜓⟩ |𝐸𝑥⟩

)︀
Further, since EQAmpEst𝐴 is a quantum circuit, we could replace the state |𝑥⟩ by any superpo-
sition

∑︀
𝑥 𝛼𝑥 |𝑥⟩. We would be using EQAmpEst𝐴 in this mode in this work.

EQAmpEst𝐴
(︁∑︁

𝑥

𝛼𝑥 |𝑥⟩ |00 . . . 0⟩ |0𝑚⟩
)︁
−→
∑︁
𝑥

𝛼𝑥𝛽𝑥,𝑠 |𝑥⟩ |𝜓⟩ |𝑝𝑥⟩+
∑︁
𝑥

𝛼𝑥𝛽𝑥,𝑠 |𝑥⟩ |𝜓⟩ |𝐸𝑥⟩ .

Let 𝑝𝑥 denote the probability of observing the basis state |𝑥⟩ when the state |𝜓⟩ is mea-
sured. Notice that on measuring the first and the third registers of the output, with prob-
ability |𝛼𝑥𝛽𝑥,𝑠|2 ≥ 8

𝜋2 |𝛼𝑥|2 we would obtain as measurement outcome a pair |𝑥⟩ |𝑝𝑥⟩ where

15

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

sin2(𝜋 𝑝𝑥
2𝑚) = 𝑝𝑥 is within ± 1

2𝑚−3 of 𝑝𝑥. Observe in this setting that the subroutine essentially
estimates the probabilities 𝑝𝑥 corresponding to all the basis states |𝑥⟩ according to the distribu-
tion implicit in the superposition. This shows how amplitude estimation can be parallelized to
identify all the probabilities in a single distribution.

Like probability, one could be interested in estimating the absolute value of an amplitude
|𝛼𝑥| of a basis state |𝑥⟩ in |𝜓⟩ with an accuracy of 𝜖. Naively, one can estimate the probability
𝑝𝑥 = |𝛼𝑥|2 with 𝜖2 accuracy as 𝑝𝑥 and then return

√
𝑝𝑥. It is easy to show that

√
𝑝𝑥 is an

𝜖 estimate of |𝛼𝑥|. The query complexity of this process would scale as 1
𝜖2

. However, this
can be improved to 𝑂(1𝜖). A close inspection of the quantum amplitude estimation algorithm
reveals that the output of the algorithm is an angle 𝜃. Moreover, |𝜃 − 𝜃| ≤ 𝜖/3 implies
| sin2 𝜃 − 𝑝𝑥| = | sin2 𝜃 − sin2 𝜃| ≤ 𝜖. Nonetheless, it can be shown that |𝜃 − 𝜃| ≤ 𝜖/3 also
implies | sin 𝜃− sin 𝜃| =

⃒⃒
sin 𝜃−|𝛼𝑥|

⃒⃒
≤ 𝜖, thus also providing an 𝜖-estimate of |𝛼𝑥| with 𝑂(1𝜖)

queries. This suggests that any extension of the original amplitude amplification algorithm, like
EQAmpEst, can also be used to estimate the absolute value of the amplitude of interest.

A.3. MAJ operator

Let 𝑋1 . . . 𝑋𝑘 be Bernoulli random variables with success probability 𝑝 > 1/2. Let 𝑀𝑎𝑗 denote
their majority value (that appears more than 𝑘/2 times). Using Hoeffding’s bound4, it can be
easily proved that 𝑀𝑎𝑗 has a success probability at least 1− 𝛿, for any given 𝛿, if we choose
𝑘 ≥ 2𝑝

(𝑝−1/2)2
ln 1

𝛿 . We require a quantum formulation of the same.
Suppose we have 𝑘 copies of the quantum state |𝜓⟩ = |𝜓0⟩ |0⟩+ |𝜓1⟩ |1⟩ in which we define

“success” as observing |0⟩ (without loss of generality) and 𝑘 is chosen as above. Let 𝑝 = ‖ |𝜓0⟩ ‖2
denote the probability of success. Suppose we measure the final qubit after applying (I𝑘⊗𝑀𝐴𝐽)
in which the 𝑀𝐴𝐽 operator acts on the second registers of each copy of |𝜓⟩. Then it is easy to
show, essentially using the same analysis as above, that

(I𝑘 ⊗𝑀𝐴𝐽) |𝜓⟩⊗𝑘 |0⟩ = |Γ0⟩ |0⟩+ |Γ1⟩ |1⟩

in which ‖ |Γ0⟩ ‖2 ≥ 1− 𝛿.
The MAJ operator can be implemented without additional queries and with 𝑝𝑜𝑙𝑦(𝑘) gates and

log(𝑘) qubits.

B. Previous works related to Biased Amplitude Amplification

Hoyer et al., in [2], introduced an algorithm for the biased-oracle amplitude amplification
problem. By smartly interleaving error reduction between each amplitude amplification step,
they showed that the bounded-error search can be solved using 𝑂(

√
𝑁) queries to the marking

oracle. The algorithm works as follows: Each iteration in the algorithm consists of two phases
— the amplification phase and the error reduction phase. Say, 𝒢 is the set of ‘good’ states, and ℬ
is the set of ‘bad’ states. Let |𝜓𝑔⟩ =

1√︀
|𝒢|

∑︁
𝑥∈𝒢

|𝑥⟩ and |𝜓𝑏⟩ =
1√︀
|ℬ|

∑︁
𝑦∈ℬ

|𝑦⟩.

4Pr[
∑︀

𝑋𝑖 − 𝐸[
∑︀

𝑋𝑖] ≥ 𝑡] ≤ exp
(︁
− 2𝑡2

𝑛

)︁

16

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

Then, the initial state can be given as |𝜓0⟩ = 𝛼0 |𝜓𝑔⟩ |0⟩+𝛽0 |𝜓𝑏⟩ |0⟩, where the first register
𝑅1

0 contains the superposition, the second register𝑅2
0 is the ancilla qubit for the oracle operation,

and |𝛼0|2 is the probability of obtaining a ‘good’ state when measuring |𝜓⟩ in the standard basis.
After the amplification phase, the state evolves to

⃒⃒
𝜓′
0

⟩︀
= 𝛼′

0 |Γ0⟩ |1⟩+ 𝛽′0
⃒⃒
Γ0

⟩︀
|1⟩+ 𝜂′0 |𝜉0⟩ |0⟩,

where |Γ⟩0 is a superposition of |𝑥⟩ such that 𝑥 ∈ 𝒢 and
⃒⃒
Γ0

⟩︀
is that of |𝑥⟩ such that 𝑥 ∈ ℬ.

Next, in the error reduction step, a register 𝑅3
0 of 𝑂(𝑘) many qubits are attached to |𝜓′

0⟩
first, where 𝑘 denotes the iteration number. Then, conditioned on the state of 𝑅2

0 being |1⟩,
oracle is invoked on 𝑂(𝑘) qubits, and the majority of these qubits is computed and stored in
a new register 𝑅4

0. For the next iteration, 𝑅1
0, 𝑅

2
0 and 𝑅3

0 are considered together as the first
register 𝑅1

1 and 𝑅4
0 is considered as the second register 𝑅2

1 to get the state |𝜓1⟩ = 𝛼1 |Γ1⟩ |1⟩+
𝛽1
⃒⃒
Γ1

⟩︀
|1⟩+ 𝜂1 |𝜉1⟩ |0⟩.

For any 𝑘, the state after the 𝑘𝑡ℎ iteration can be given as |𝜓𝑘⟩ = 𝛼𝑘 |Γ𝑘⟩ |1⟩+ 𝛽𝑘
⃒⃒
Γ𝑘

⟩︀
|1⟩+

𝜂𝑘 |𝜉𝑘⟩ |0⟩. Performing this for 𝑂(
√
𝑁) iterations yields a ‘good’ state with a high probability.

Note that at the end of each iteration, the qubits in the first and second registers are highly
entangled due to computing the majority. So it is impossible to cleanly uncompute the 𝑂(𝑘)
qubits to get |0⟩. This blows up the space complexity after each iteration. Despite the algorithm
being query-optimal, i.e., 𝑂(

√
𝑁), its space complexity shoots to 𝑂(

√
𝑁).

In addition to the above discussed algorithm, Hoyer et al. presented another approach to
solve the bounded-error search problem. In this approach, a single call to the oracle 𝒪̂𝑝 in the
Grover iterator is replaced by the following sub-circuit for marking: make 𝑂(log(1/𝛿))-many
independent calls to 𝒪̂𝑝, then compute the majority over those copies, and finally use the
majority value for marking the state of interest. By taking the majority value of 𝑂(log(1/𝛿))
outputs of 𝒪̂𝑝, one can reduce the marking error of the oracle to 𝛿, for any 𝑝 > 1/2 that is at
least constant away from 1

2 . When this sub-circuit is replaced for the bounded-error oracle 𝒪̂𝑝

in Grover’s algorithm, the error accumulates as 𝑂(𝛿
√
𝑁), which can be reduced to any desired

error by tweaking 𝛿 appropriately. Naturally, the ancillæ qubits required for performing the
majority in each of the 𝑂(

√
𝑁) calls is 𝑂(log(1/𝛿)). However, not all the ancillæ qubits can

be cleaned up for reuse due to their entanglement with the workspace qubits. Therefore, the
space complexity is still 𝑂(

√
𝑁).

C. Proof of Lemma 1

Lemma 1. Suppose that we are given an algorithm 𝐴 that generates the initial state 𝐴 |0𝑛⟩ =∑︀
𝑥 𝛼𝑥 |𝑥⟩, a bounded-error oracle 𝒪̂𝑝 as defined above and an error parameter 𝛿; further, let

𝐺 denote the set of good states, and 𝐵 the set of bad states. Choose an appropriate 𝑘 =

𝑂
(︁

2𝑝
(𝑝−1/2)2

log
(︀
1
𝛿

)︀)︁
, and construct a quantum circuit 𝐴 as described in Algorithm 1. Then,

𝐴
⃒⃒⃒
0𝑛+𝑘+1

⟩
=
∑︁
𝑥∈𝐺

𝛼𝑥 |𝑥⟩
[︁
𝜂𝑔𝑥0 |. . .⟩ |0⟩+𝜂

𝑔
𝑥1 |. . .⟩ |1⟩

]︁
+
∑︁
𝑥∈𝐵

𝛼𝑥 |𝑥⟩
[︁
𝜂𝑏𝑥0 |. . .⟩ |0⟩+𝜂𝑏𝑥1 |. . .⟩ |1⟩

]︁
,

such that |𝜂𝑔𝑥0|2 ≤ 𝛿 and |𝜂𝑏𝑥1|2 ≤ 𝛿 (we have ignored the ancillæ).

Proof. We use the construction in algorithm 1 to prove this. After initializing the registers, on
applying 𝐴 on 𝑅1, we can see that the state in 𝑅1 is |𝜓⟩ =

∑︀
𝑥∈{0,1}𝑛 |𝑥⟩. Next, on apply 𝒪̂𝑝

17

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

on all the 𝑅2𝑖 registers, we obtain the state of the complete system as

|𝜓1⟩ =
∑︁

𝑥∈{0,1}𝑛
|𝑥⟩
(︂
√
𝑝 |𝑓(𝑥)⟩+

√︀
1− 𝑝

⃒⃒⃒
𝑓(𝑥)

⟩)︂⊗𝑘

|0⟩

Now, using Chernoff bounds, it is straightforward that on on computing majority over 𝑘 ≥
2𝑝

(𝑝−1/2)2
log
(︀
1
𝛿

)︀
independent states of the form

√
𝑝 |𝑓(𝑥)⟩+

√
1− 𝑝

⃒⃒⃒
𝑓(𝑥)

⟩
, the probability of

obtaining the majority as 𝑓(𝑥) is at least 1 − 𝛿. Since, for each |𝑥⟩, we perform a majority
over all the registers 𝑅2𝑖 and save it in 𝑅𝑚𝑎𝑗 , the probability obtaining 𝑓(𝑥) in 𝑅𝑚𝑎𝑗 with the
condition that 𝑅1 is 1 is at least 1− 𝛿.

D. Proof of Theorem 2

Theorem 2. Given an 𝑛-qubit algorithm 𝐴 that generates the initial state 𝐴 |0⟩ = |𝜓⟩ =∑︀
𝑥∈{0,1}𝑛 𝛼𝑥 |𝑥⟩, a bounded-error oracle 𝒪̂𝑝 as defined above and an error parameter 𝛿,

there exists an algorithm that uses 𝑂
(︁

𝑝

(𝑝− 1
2
)2
√
𝜆
log
(︀

1
𝜆𝛿

)︀)︁
queries to 𝒪̂𝑝 along with 𝑛 +

𝑂
(︁

2𝑝
(𝑝−1/2)2

log(1/𝜆𝛿)
)︁

qubits and outputs a good state with probability at least 1 − 𝛿, if one

exists and outputs “No Solution” with probability at least 1− 𝛿 if there is no good state in |𝜓⟩.

Set 𝑘 = 𝑂(2𝑝
(𝑝−1/2)2

log(1/𝛿′)) for a 𝛿′ = 𝜆4𝛿2 and construct 𝐴𝐴,𝒪̂𝑝,𝑘
. This 𝐴 (dropping the

subscripts) behaves as

𝐴 |0𝑛⟩
⃒⃒⃒
0𝑘
⟩
|0⟩ =

∑︁
𝑥

𝛼𝑥 |𝑥⟩
(︀
𝜂𝑥,0 |𝜑𝑥,0⟩ |0⟩+ 𝜂𝑥,1 |𝜑𝑥,1⟩ |1⟩

)︀
= |Ψ⟩

where |𝜂𝑥,𝑓(𝑥)|2 ≥ 1− 𝛿′ for any 𝑥; here 𝑓(𝑥) indicates the “goodness” of 𝑥.
Now, two cases can happen.
Case (i): Let 𝑓(𝑥) = 0 for all 𝑥. We analyse the situation that the algorithm does not output

“No Solution”, in other words, 𝑅𝑚𝑎𝑗 was observed as |1⟩.
Now, the output state after 𝐴 would be such that |𝜂𝑥,1|2 ≤ 𝛿′ for all 𝑥. So, the probability

of measuring |1⟩ as output is
∑︀

𝑥 |𝛼𝑥𝜂𝑥,1|2 ≤ 𝛿′
∑︀

𝑥 |𝛼𝑥|2 = 𝛿′. Can such a state, with final
qubit as |1⟩, appear with overwhelming probability after 𝑂(1/

√
𝜆) iterations of amplitude

amplification? We argue not by lower bounding the number of iterations needed to boost the
probability of such a state to almost certainty.

Let 𝜃 be the angle made by the superposition of those states of |Ψ⟩ whose last qubit is in |1⟩.
Then, we have sin2(𝜃) ≤ 𝛿′ = 𝜆4𝛿2.

For any state |𝜒⟩ if the probability of obtaining a good state is sin2(𝜃) = 𝛿1 and if we
would like to boost the probability to 𝛿2, then it easy to show that the number of iterations
needed in the amplitude amplification algorithm is 𝑗 =

⌈︁
1
2

(︀
sin−1(

√
𝛿2)/ sin

−1(
√
𝛿1)
)︀
− 1

2

⌉︁
>

1
4

(︀
sin−1(

√
𝛿2)/ sin

−1(
√
𝛿1)
)︀
. Since 𝜃 < sin−1(𝜃), we have

𝑗 >
1

4

(︀
sin−1(

√︀
𝛿2)/ sin

−1(
√︀
𝛿1)
)︀
>

1

4

(︀√︀
𝛿2/ sin

−1(
√︀
𝛿1)
)︀
.

18

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

In our case, we have 𝛿1 = 𝜆4𝛿2 and 𝛿2 = 𝛿. So, the number of iterations required is

𝑗 >
1

4

(︁√
𝛿/ sin−1(

√
𝜆4𝛿2)

)︁
=

1

4

(︁√
𝛿/ sin−1(𝜆2𝛿)

)︁
.

For any 𝛽 ≤ 0.75, it is easy to see that sin−1(𝛽) <
√
𝛽. Since, we set 𝛿 < 0.5 and since 𝜆 ≤ 1,

we have 𝜆2𝛿 ≤ 0.5 < 0.75. Hence we have,

𝑗 >
1

4

(︁√
𝛿/ sin−1(𝜆2𝛿)

)︁
>

1

4

(︁√
𝛿/
√
𝜆2𝛿
)︁
=

1

4𝜆
.

This says that the number of amplification iterations required for improving the probability
of obtaining |1⟩ from 𝜆2𝛿2 to 𝛿 is at least 1/4𝜆. But since the maximum number of iterations
performed in the amplification routine is 𝑂(1√

𝜆
), the probability of obtaining |1⟩ on measuring

the last qubit of the state after amplitude amplification is at most 𝛿 (most likely quite less).
Case (ii): Let 𝑓(𝑥) = 1 for some 𝑥. In this case, for all 𝑥 such that 𝑓(𝑥) = 1, we will

have |𝜂𝑥,1|2 ≥ 1 − 𝛿′. Then the probability of measuring the last qubit as |1⟩ is at least∑︀
𝑥:𝑓(𝑥)=1 |𝛼𝑥𝜂𝑥,1|2 ≥ 𝜆(1− 𝛿′) > 𝜆/2 (since 𝛿 < 0.5). Now, using the fixed point amplitude

amplification subroutine, in 𝑂(1√
𝜆
) iterations, we obtain a final state post amplification such

that with probability 1− 𝛿 we obtain |1⟩ on measuring the 𝑅𝑚𝑎𝑗 register.
Let the post-measurement state, after observing 𝑅𝑚𝑎𝑗 in the state |1⟩, be denoted |𝜓𝑚⟩.

We want to clarify that it is not immediately obvious that we shall observe a good state on
measuring the first register of |𝜓𝑚⟩ since the biased oracle also marks the bad states with some
probability. This requires an a additional analysis.

Claim 15. Let |𝜓𝑚⟩ be the post-measurement state obtained on measuring the last qubit as |1⟩. If

the set of good state G = {𝑥 : 𝑓(𝑥) = 1} is non-empty, then the probability of obtaining some

𝑥 ∈ G on measuring the first register of |𝜓𝑚⟩ is at least 3/4.

Proof. The state just before amplification can be given as

|Ψ⟩ =
∑︁
𝑥

𝛼𝑥 |𝑥⟩
(︀
𝜂𝑥,0 |𝜑𝑥,0⟩ |0⟩+ 𝜂𝑥,1 |𝜑𝑥,1⟩ |1⟩

)︀
where |𝜂𝑥,𝑓(𝑥)|2 ≥ 1 − 𝛿′ for any 𝑥. The probability of obtaining some good state on the
condition that the 𝑅𝑚𝑎𝑗 qubit is |1⟩ is

𝑃𝑟
[︁
|𝑔⟩𝑅1

⃒⃒⃒
|1⟩𝑅𝑚𝑎𝑗

]︁
=
𝑃𝑟
[︁
|𝑔⟩𝑅1

|1⟩𝑅𝑚𝑎𝑗

]︁
𝑃𝑟
[︁
|1⟩𝑅𝑚𝑎𝑗

]︁ =

∑︀
𝑥∈G |𝛼𝑥𝜂𝑥,1|2∑︀

𝑥∈G |𝛼𝑥𝜂𝑥,1|2 +
∑︀

𝑥/∈G |𝛼𝑥𝜂𝑥,1|2
=

𝑃𝑔

𝑃𝑔 + 𝑃𝑏
(say)

where by 𝑃𝑟
[︁
|𝑔⟩𝑅1

]︁
we denote the probability of obtaining some good state in 𝑅1. We know

that
𝑃𝑏 =

∑︁
𝑥/∈G

|𝛼𝑥𝜂𝑥,1|2 =
∑︁
𝑥/∈G

|𝛼𝑥|2|𝜂𝑥,1|2 ≤ 𝛿′
∑︁
𝑥/∈G

|𝛼𝑥|2 ≤ 𝛿′.

So, we have

𝑃𝑟
[︁
|𝑔⟩𝑅1

⃒⃒⃒
|1⟩𝑅𝑚𝑎𝑗

]︁
=

𝑃𝑔

𝑃𝑔 + 𝑃𝑏
≥ 𝑃𝑔

𝑃𝑔 + 𝛿′
=

1

1 + (𝛿′/𝑃𝑔)
.

19

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

Now,

𝛿′

𝑃𝑔
=

𝛿′∑︀
𝑥∈G |𝛼𝑥|2|𝜂𝑥,1|2

≤ 𝛿′

(1− 𝛿′)
∑︀

𝑥∈G |𝛼𝑥|2
(︀

Since |𝜂𝑥,1|2 ≥ 1− 𝛿′ for 𝑥 ∈ G
)︀

≤ 𝛿′

(1− 𝛿′)𝜆

(︀
Since |𝛼𝑥|2 ≥ 𝜆 for 𝑥 ∈ G

)︀
=

𝜆4𝛿2

(1− 𝜆4𝛿2)𝜆
=

𝜆3𝛿2

1− 𝜆4𝛿2
≤ 𝛿2

1− 𝛿2

≤ 1/4

1− (1/4)
= 1/3

(︀
Since 𝛿 ≤ 1/2

)︀
.

Using this, we get

𝑃𝑟
[︁
|𝑔⟩𝑅1

⃒⃒⃒
|1⟩𝑅𝑚𝑎𝑗

]︁
≥ 1

1 + (𝛿′/𝑃𝑔)
≥ 1

1 + (1/3)
=

3

4
.

This gives us that if 𝑅𝑚𝑎𝑗 was measured as |1⟩ then on measuring 𝑅1, with probability at least
3/4, we obtain |𝑥⟩ as measurement outcome for which 𝑓(𝑥) = 1.

E. Some Useful Subroutines

In this section we first present a few subroutines that are used in the construction of ProbFil-
BOrcl and AmpFilBOrcl oracles.

EQ𝑚: Given two computational basis states |𝑥⟩ and |𝑦⟩ each of 𝑘 qubits, EQ𝑚 checks if the
𝑚-sized prefix of 𝑥 and that of 𝑦 are equal. Mathematically, EQ𝑚|𝑥⟩ |𝑦⟩ = (−1)𝑐 |𝑥⟩ |𝑦⟩
where 𝑐 = 1 if 𝑥𝑖 = 𝑦𝑖 for all 𝑖 ∈ [𝑚], and 𝑐 = 0 otherwise.

HD𝑞: When the target qubit is |0𝑞⟩, and with a 𝑞−bit string 𝑦 in the control register, HD computes
the absolute difference of 𝑦𝑖𝑛𝑡 from 2𝑞−1 and outputs it as a string where 𝑦𝑖𝑛𝑡 is the integer
corresponding to the string 𝑦. It can be represented as HD𝑞 |𝑦⟩ |𝑏⟩ = |𝑏⊕ 𝑦⟩ |𝑦⟩ where
𝑦, 𝑏 ∈ {0, 1}𝑞 and 𝑦 is the bit string corresponding to the integer

⃒⃒
2𝑞−1 − 𝑦𝑖𝑛𝑡

⃒⃒
. Even

though the operator HD requires two registers, the second register will always be in the
state |0𝑞⟩ and shall be reused by uncomputing (using 𝐻𝐷†) after the CMP gate. For all
practical purposes, this operator can be treated as the mapping |𝑦⟩ ↦→ |𝑦⟩.

CMP: The CMP operator is defined as CMP |𝑦1⟩ |𝑦2⟩ |𝑏⟩ = |𝑦1⟩ |𝑦2⟩ |𝑏⊕ (𝑦2 ≤ 𝑦1)⟩ where 𝑦1, 𝑦2 ∈
{0, 1}𝑛 and 𝑏 ∈ {0, 1}. It simply checks if the integer corresponding to the basis state in
the first register is at most that in the second register.

Cond-MAJ: The Cond− MAJ operator is defined as
∏︀

𝑥

(︀
|𝑥⟩ ⟨𝑥| ⊗ 𝑀𝐴𝐽

)︀
where

|𝑥⟩ ⟨𝑥| ⊗ 𝑀𝐴𝐽 acts on computational basis states as 𝑀𝐴𝐽 |𝑎1⟩ · · · |𝑎𝑘⟩ |𝑏⟩ =
|𝑎1⟩ · · · |𝑎𝑘⟩ |𝑏⊕ (𝑎̃ ≥ 𝑘/2)⟩ where 𝑎̃ =

∑︀
𝑘 𝑎𝑘 and 𝑎𝑖, 𝑏 ∈ {0, 1}.

20

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

F. Reduction of ProFil to AmpFil

Here we present the proof of the fact that probability estimation is very easily reduced to
amplitude estimation.

Lemma 4. Any instance of ProFil(𝐷, 𝜏, 𝜖) can be reduced to an instance of AmpFil(𝐷,
√
𝜏 , 𝜖/2).

Proof. To show the reduction we prove that the following holds for any 𝑥:

• If 𝑝𝑥 ≥ 𝜏 , then |𝛼𝑥| ≥
√
𝜏 .

• If 𝑝𝑥 < 𝜏 − 2𝜖, then |𝛼𝑥| <
√
𝜏 − 𝜖.

Consider the case when 𝑝𝑥 ≥ 𝜏 . This gives |𝛼𝑥|2 ≥ 𝜏 which implies |𝛼𝑥| ≥
√
𝜏 proving the

first part of the reduction. Now, let 𝑝𝑥 < 𝜏 − 2𝜖. This gives that |𝛼𝑥| <
√
𝜏 − 2𝜖. Now, see that

(
√
𝜏 − 𝜖)2 = 𝜏 + 𝜖2 − 2𝜖

√
𝜏 ≥ 𝜏 − 2𝜖

√
𝜏 ≥ 𝜏 − 2𝜖

=⇒
√
𝜏 − 𝜖 ≥

√
𝜏 − 2𝜖

Using this we have, |𝛼𝑥| <
√
𝜏 − 2𝜖 ≤

√
𝜏 − 𝜖 which proves the second part of the reduction.

G. Bounded oracle for amplitude filtering

G.1. Construction of AmpFilBOrcl to mark states with large amplitude

Algorithm 4 Constructing biased-oracle AmpFilBOrcl for probability filtering

Require: Oracle 𝑂𝐷 (with parameters 𝑚, 𝑎), threshold 𝜏 , and accuracy 𝜖.
Require: Input register 𝑅1 set to some basis state |𝑥⟩ and output register 𝑅5 set to |0⟩.

1: Set 𝑟 = log(𝑚) + 𝑎, 𝜏 ′ = 1
2(1 + 𝜏 − 𝜖

8), 𝑞 = ⌈log
(︀
1
𝜖

)︀
⌉+ 5 and 𝑙 = 𝑞 + 3.

2: Set 𝜏1 =
⌊︁
2𝑙

𝜋 sin−1(𝜏 ′)
⌋︁

3: Initialize ancillæ registers 𝑅2𝑅3𝑅4 of lengths 𝑟, 𝑙 and 1, respectively, and set 𝑅3 = |𝜏1⟩.
4: Stage 1: Apply EQAmpEst (sans measurement) with 𝑅2 as the input register, 𝑅4 as the

output register and𝑂𝐷 is used as the state preparation oracle. 𝑅1 is used in𝐸𝑄 to determine
the “good state”. EQAmpEst is called with error at most 1− 8

𝜋2 and additive accuracy 1
2𝑞 .

5: Stage 2: Set 𝑅5 to 1 if the estimate of the probability, calculated using 𝑅4, is at least 𝜏 .
6: Use HD𝑙 on 𝑅3 and 𝑅4 individually.
7: Use CMP on 𝑅3 = |𝜏1⟩ and 𝑅4 as input registers and 𝑅5 as output register.
8: Use HD†𝑙 on 𝑅3 and 𝑅4 individually.

The algorithm is described in Algorithm 4. It uses the following two subroutines.

HD𝑞: When the target qubit is |0𝑞⟩, and with a 𝑞−bit string 𝑦 in the control register, HD computes
the absolute difference of 𝑦𝑖𝑛𝑡 from 2𝑞−1 and outputs it as a string where 𝑦𝑖𝑛𝑡 is the integer
corresponding to the string 𝑦. It can be represented as HD𝑞 |𝑦⟩ |𝑏⟩ = |𝑏⊕ 𝑦⟩ |𝑦⟩ where

21

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

𝑦, 𝑏 ∈ {0, 1}𝑞 and 𝑦 is the bit string corresponding to the integer
⃒⃒
2𝑞−1 − 𝑦𝑖𝑛𝑡

⃒⃒
. Even

though the operator HD requires two registers, the second register will always be in the
state |0𝑞⟩ and shall be reused by uncomputing (using 𝐻𝐷†) after the CMP gate. For all
practical purposes, this operator can be treated as the mapping |𝑦⟩ ↦→ |𝑦⟩.

CMP: The CMP operator is defined as CMP |𝑦1⟩ |𝑦2⟩ |𝑏⟩ = |𝑦1⟩ |𝑦2⟩ |𝑏⊕ (𝑦2 ≤ 𝑦1)⟩ where 𝑦1, 𝑦2 ∈
{0, 1}𝑛 and 𝑏 ∈ {0, 1}. It simply checks if the integer corresponding to the basis state in
the first register is at most that in the second register.

In Stage 1 of the algorithm, EQAmpEst estimates the absolute value of the amplitude of |𝑥⟩ in
𝑂𝐷 |0𝑟⟩ in 𝑅4, and in Stage 2, this estimate is compared with 𝜏 to set or unset 𝑅5. This makes
AmpFilBOrcl a biased oracle with error 1− 8

𝜋2 . Further, observe that EQAmpEst makes 𝑂(1/𝜖)
calls to the state preparation oracle, in this case, 𝑂𝐷 , and no one else adds to this. The overall
behaviour is summarised below.

Lemma 16. AmpFilBOrcl makes 𝑂(1/𝜖) calls to 𝑂𝐷 . Upon measuring its output on

|𝑥⟩
⃒⃒
02𝑙+𝑟+1

⟩︀
|0⟩, we observe the following with probability at least

8
𝜋2 .

AmpFilBOrcl |𝑥⟩
⃒⃒⃒
02𝑙+𝑟+1

⟩
|0⟩ =⇒

{︃
|𝑥⟩ |𝜑𝑥⟩ |0⟩ , if 𝑝𝑥 < 𝜏 − 𝜖,

|𝑥⟩ |𝜑𝑥⟩ |1⟩ , if 𝑝𝑥 ≥ 𝜏.

G.2. Analysis of AmpFilBOrcl

Lemma 16. AmpFilBOrcl makes 𝑂(1/𝜖) calls to 𝑂𝐷 . Upon measuring its output on

|𝑥⟩
⃒⃒
02𝑙+𝑟+1

⟩︀
|0⟩, we observe the following with probability at least

8
𝜋2 .

AmpFilBOrcl |𝑥⟩
⃒⃒⃒
02𝑙+𝑟+1

⟩
|0⟩ =⇒

{︃
|𝑥⟩ |𝜑𝑥⟩ |0⟩ , if 𝑝𝑥 < 𝜏 − 𝜖,

|𝑥⟩ |𝜑𝑥⟩ |1⟩ , if 𝑝𝑥 ≥ 𝜏.

Proof. We analyse the algorithm on the input state on registers 𝑅1𝑅21𝑅22𝑅3𝑅4𝑅5 as
|𝑥⟩ |0𝑟⟩

⃒⃒
0𝑙
⟩︀ ⃒⃒
0𝑙
⟩︀
|0⟩ where 𝑡 = 2𝑙 + 𝑟 + 1. We set 𝑅3 = |𝜏1⟩. On applying EQAmpEst𝑂𝐷

on 𝑅1𝑅2𝑅4 with 𝑅2 as the input register and 𝑅4 as the output register and 𝑅1 for marking the
“good” state whose amplitude we desire to estimate (using, of course, the 𝐸𝑄 oracle), the input
state transforms to

|𝜓1⟩ = |𝑥⟩ |Ψ⟩
(︁
𝛽𝑥,𝑠 |𝑎𝑥⟩+ 𝛽𝑥,𝑠 |𝐸𝑥⟩

)︁
|𝜏1⟩ |0⟩

= 𝛽𝑥,𝑠 |𝑥⟩ |Ψ⟩ |𝑎𝑥⟩ |𝜏1⟩ |0⟩+ 𝛽𝑥,𝑠 |𝑥⟩ |Ψ⟩ |𝐸𝑥⟩ |𝜏1⟩ |0⟩
= 𝛽𝑥,𝑠 |𝜓1,𝑠⟩+ 𝛽𝑥,𝑠 |𝜓1,𝑠⟩

where |𝑎𝑥⟩ is a normalized state of the form |𝑎𝑥⟩ = 𝛾+ |𝑎𝑥,+⟩+𝛾− |𝑎𝑥,−⟩ that on measurement

outputs 𝑎 ∈ {𝑎𝑥,+, 𝑎𝑥,+} which is an 𝑙-bit string that behaves as
⃒⃒⃒
sin
(︁𝑎𝜋
2𝑙

)︁
− |𝛼𝑥|

⃒⃒⃒
≤ 1

2𝑞 ,

|𝛽𝑥,𝑠|2 ≥ 8
𝜋2 and |𝛽𝑥,𝑠|2 ≤ 1− 8

𝜋2 .
We denote the set {𝑎𝑥,+, 𝑎𝑥,−} by 𝑆𝑎𝑥 . Essentially, for any 𝑥, EQAmpEst stores the correct

estimate of the absolute value of the amplitude of 𝑥 in |Ψ⟩ into 𝑅4 with probability at least 8
𝜋2 .

The correctness of stage-2 is exactly the same as that in the proof for Theorem 16.

22

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

Query Complexity : All calls to 𝑂𝐷 are made by EQAmpEst and the latter’s query com-
plexity is 𝑂(1/𝜖).

H. Lower bound for Non-linearity Estimation

Recall that the non-linearity of a Boolean function 𝑓 : {0, 1}𝑛 −→ {0, 1} is defined as

𝜂(𝑓) =
1

2
− 1

2
𝑓𝑚𝑎𝑥

where 𝑓𝑚𝑎𝑥 = max𝑥 | ^𝑓(𝑥)| and 𝑓(𝑥) is the Walsh coefficient of 𝑓 at the point 𝑥. We define
a decision problem, namely the 𝑓𝑚𝑎𝑥 decision problem, as follows: given a Boolean function
𝑓 : {0, 1}𝑛 −→ {0, 1}, a threshold 𝜏 and a parameter 𝜆, decide if 𝑓𝑚𝑎𝑥 ≥ 𝜏 or if 𝑓𝑚𝑎𝑥 < 𝜏 − 𝜆
given the promise that one of the two cases is true. It is quite straight forward that the 𝑓𝑚𝑎𝑥

problem can be directly reduced to the problem of non-linearity estimation. So, to show a lower
bound for the non-linearity estimation problem, we show a reduction from the CountDecision
problem to the 𝑓𝑚𝑎𝑥 decision problem. First consider the following lemma which will help
prove the required reduction.

Lemma 17. The query complexity of any quantum algorithm that solves CountDecision

(𝑁/4, 𝑁/4−Δ) is Ω(𝑁/Δ) for any 0 < Δ ≤ 𝑁/5.

Proof. Using Corrolary 1.2 of [4], we obtain that the query complexity is

𝑄CountDecision = Ω

(︃√︂
𝑁

Δ
+

√︃(︂
𝑁
4 −Δ

)︂(︂
𝑁 −

(︂
𝑁
4 −Δ

)︂)︂
Δ

)︃

= Ω

(︃√︂
𝑁

Δ
+

√︁
3
16𝑁

2 +Δ𝑁 −Δ2

Δ

)︃
= Ω(𝑁/Δ).

Lemma 11. Any quantum algorithm uses Ω(1/𝜆) queries to estimate the non-linearity of any

given Boolean function.

Proof. For simplicity let 𝑁 be some power of 2. Consider the CountDecision (𝑁/4, 𝑁/4−Δ)
problem for some 0 < Δ ≤ 𝑁/5. The task is to decide if the Hamming weight of the given
string 𝑥 is 𝑁/4 or 𝑁/4−Δ.

Now, for a given string 𝑥, construct a Boolean function 𝑓 (𝑥) : {0, 1}𝑛 −→ {0, 1} such that
𝑓 (𝑥)(𝑖) = 𝑥𝑖 where 𝑛 = log(𝑁). We show that the problem of deciding if the Hamming weight
of 𝑥 is 𝑁/4 or 𝑁/4−Δ can be solved by deciding if 𝑓 (𝑥)𝑚𝑎𝑥 is 1

2 or 1
2 + 2Δ

𝑁 .

23

Debajyoti Bera et al. CEUR Workshop Proceedings 1–24

Let 𝑦 be any string of Hamming weight 𝑁/4. Let 𝑓 (𝑦) be the Boolean function constructed
using 𝑦. We know that the Walsh coefficient of function 𝑓 at 𝑎 is defined as

𝑓(𝑎) =
1

2𝑛

∑︁
𝑥∈{0,1}𝑛

(−1)𝑓(𝑥)⊕𝑎·𝑥

=
1

2𝑛

[︁⃒⃒
{𝑥 ∈ {0, 1}𝑛 : 𝑓(𝑥) = 𝑎 · 𝑥}

⃒⃒
−
⃒⃒
{𝑥 ∈ {0, 1}𝑛 : 𝑓(𝑥) ̸= 𝑎 · 𝑥}

⃒⃒]︁
.

Intuitively, |𝑓(𝑎)| gives the difference in the fraction of inputs 𝑥 for which the function 𝑓
matches with the linear function 𝑎 · 𝑥 and the fraction of inputs for which the function does
not match with 𝑎 · 𝑥. From this we can compute the Walsh coefficient of 𝑓 (𝑦) at 0𝑛 to be

𝑓 (𝑦)(0𝑛) =
1

2𝑛

(︃
3𝑁

4
− 𝑁

4

)︃
=

1

2
.

Now, let 𝑎 ̸= 0𝑛 be some 𝑛-bit string. Then, 𝑎 · 𝑥 is a linear function with equal number of
0’s and 1’s in its output. See that, for any Boolean function whose Hamming weight5 is 𝑁/4,
the maximum number of inputs such that 𝑓(𝑥) = 𝑎 · 𝑥 is bounded above by 3𝑁/4 where 𝑁/2
inputs has to be such that 𝑎 ·𝑥 = 0 = 𝑓(𝑥) and𝑁/4 inputs has to be such that 𝑎 ·𝑥 = 1 = 𝑓(𝑥).
So, we have the Walsh coefficient of 𝑓 (𝑦) at any 𝑎 ̸= 0𝑛 as

𝑓 (𝑦)(𝑎) ≤ 1

2𝑛

(︃
3𝑁

4
− 𝑁

4

)︃
=

1

2
.

So, we have that 𝑓 (𝑦)𝑚𝑎𝑥 = 1
2 and it occurs at 0𝑛.

Next, let 𝑧 be a string of Hamming weight 𝑁/4 −Δ and let 𝑓 (𝑧) be the Boolean function
constructed from 𝑧. For 𝑓 (𝑧), we have that

𝑓 (𝑧)(0𝑛) =
1

2𝑛

[︂(︁3𝑁
4

+ Δ
)︁
−
(︁𝑁
4

−Δ
)︁]︂

=
1

2
+

2Δ

2𝑛
.

Again, for any Boolean function 𝑓 of Hamming weight 𝑁/4 −Δ, the maximum number of
inputs such that 𝑓(𝑥) = 𝑎 · 𝑥 is 3𝑁

4 −Δ where 𝑁/2 inputs has to be such that 𝑎 · 𝑥 = 0 = 𝑓(𝑥)
and 𝑁/4−Δ inputs has to be such that 𝑎 · 𝑥 = 1 = 𝑓(𝑥). So, we get that the Walsh coefficient
of 𝑓 (𝑧) at any 𝑎 ̸= 0𝑛 is

𝑓 (𝑧)(𝑎) ≤ 1

2𝑛

[︂(︁3𝑁
4

−Δ
)︁
−
(︁𝑁
4

+ Δ
)︁]︂

=
1

2
− 2Δ

2𝑛
.

Thus, we get that 𝑓 (𝑧)𝑚𝑎𝑥 = 1
2 + 2Δ

2𝑛 and it occurs at 0𝑛.
Consequently, any algorithm that solves the 𝑓𝑚𝑎𝑥 decision problem for the parameters

𝜏 = 1
2 +

2Δ
𝑁 and 𝜆 = Δ

𝑁 can solve the CountDecision (𝑁4 ,
𝑁
4 −Δ) problem without any query

overhead. Now, using Lemma 17, we get that any quantum algorithm that solves the 𝑓𝑚𝑎𝑥

decision problem is Ω(𝑁Δ) = Ω(1𝜆).

5By the Hamming weight of a Boolean function 𝑓 , we mean the number of 1’s in the output of 𝑓 .

24

	1 Introduction
	1.1 Summary of Results

	2 Amplitude Amplification using Biased Oracle
	3 Probability and Amplitude Filtering
	4 Lower bounds for ProFil and AmpFil
	5 Applications of ProFil and AmpFil
	5.1 The k-Distinctness Problem
	5.2 The Non-linearity Estimation Problem

	A Amplitude amplification, amplitude estimation and majority
	A.1 Amplitude amplification
	A.2 Quantum Amplitude Estimation (QAE)
	A.3 MAJ operator

	B Previous works related to Biased Amplitude Amplification
	C Proof of Lemma 1
	D Proof of Theorem 2
	E Some Useful Subroutines
	F Reduction of ProFil to AmpFil
	G Bounded oracle for amplitude filtering
	G.1 Construction of AmpFilBOrcl to mark states with large amplitude
	G.2 Analysis of AmpFilBOrcl

	H Lower bound for Non-linearity Estimation

