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Abstract
Developing and expanding on the idea by Moore and Nilsson [1], we provide a detailed description of families
of logspace uniform quantum circuits that implement cyclic shifts and permutations of qubits. This allows us
to formally prove that such operations belong to QNC0, the quantum analogue of the complexity class NC0,
which captures highly efficiently parallelizable classical computations.
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1. Introduction

A quantum algorithm is designed to take full advantage of the computational power of quantum
machines. In a quantum machine, the fundamental information units called quantum bits or qubits,
are simulated by particles whose size is at and below the scale of atoms. The state of each of such
particles is described by a wave function, which can be thought of as a probability distribution of
the classical states in which the particle can be observed. A quantum computing machine works
as predicted by the theory of quantum mechanics and therefore, in particular, a qubit can be in a
superposition of the two basis states, and two or more qubits can be entangled, i.e., the probability
of their states can be correlated. These peculiar properties of quantum bits allow for an increased
amount of information encoded. However, when observing the qubits from the macroscopic world,
this great amount of information loses its coherence and the qubits collapse in one of their classical
probable states.

A cyclic shifting operator (or rotation operator) ROT𝑘 applies a rightward (or leftward) shift of 𝑘
positions to a register of 𝑛 qubits, moving the element at position 𝑥 to position (𝑥+ 𝑘) mod 𝑛.

Cyclic shifts have various applications, including image and signal processing, where they can be
employed to perform operations such as image rolling [2] or introducing a time delay in a signal.
Cyclic shifts can also be used to design efficient data sorting algorithms [3]. Furthermore, sequences
allowing cyclic shifts are relevant in various biological contexts, including viruses [4, 5] and bacteria
[6]. Thus, the analysis of organisms with a cyclic structure can benefit from algorithms designed for
strings that allow for cyclic shifts [7].
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Algorithms for permutations serve as a filtering technique, commonly known as the counting filter,
to expedite complex combinatorial search problems. The core concept is that in many approximation
scenarios, a substring of the text that matches a given pattern, according to a specific distance
function, is also a permutation of that pattern. The counting filter technique has been applied to solve
approximate string-matching problems involving mismatches [8], differences [9], inversions [10],
and translocations [11].

In a classical model of computation, permuting a multiple system of bits, particularly cyclically
shifting it, exhibits linear time complexity because in the worst-case scenario, every element in the
array must be shifted. This specialization of cyclic rotation becomes evident when dealing with bit
strings on classical machines. While many concrete computers feature a built-in shift instruction
that moves bits left or right, achieving a cyclic shift involves more effort than a simple one-sided
shift, as it requires handling the wrap-around of the array. Employing a Boolean circuit model of
computation, every permutation can be obtained very easily by just permuting the wires of a circuit,
which can be done at no cost. It is therefore evident that permuting a multiple system of bits is not a
problem susceptible to a computational speed-up due to the adoption of a quantum circuit model
rather than a Boolean circuit model.

However, in quantum computing, permutations, especially cyclic shifts, of multiple quantum
bits are essential subroutines within quantum circuits. They enable the creation of superpositions
involving multiple permutations of quantum states, offering computational advantages in tasks
such as database searching and optimization problems [12, 13, 14]. Therefore, finding optimal
quantum-circuit implementing them is crucial to harness the synergies between circuit parallelism
and quantum superposition parallelism. This is particularly relevant given that - as we already
discussed - permutations are very relevant to problems arising in computational biology, which in
turn are among the most likely problems to benefit from quantum superpowers1 (cf. [16, 17, 15]).

While it is known that a quantum rotation operator can be implemented in 𝒪(log(𝑛))-time
through repeated parallel applications of elementary Swap operators [12], a systematic procedure for
concretely constructing the quantum operator ROT for varying register sizes 𝑛 and shift parameters
𝑘 has been lacking. Recently, in [18] Pavone and Viola addressed this gap, providing a systematic
implementation of the cyclic rotation operator in a quantum circuit model with depth 𝒪(log(𝑛)) and
size 𝒪(𝑛 log(𝑛)). Furthermore, in [1] Moore and Nilsson pointed out that any permutation can be
implemented by a constant-depth quantum circuit, since, in the dihedral group any rotation can be
generated by the product of two reflections. However, the article does not contain details about such
circuits and their construction.

In this paper, we present a detailed description of a family of quantum circuits implementing
the cyclic shifting of the states of an arbitrary finite number of quantum bits; we generalize such
a quantum circuit family to one implementing the permutation of the states of an arbitrary finite
number of quantum bits, for any permutation defined on them. We provide the pseudocodes of the
respective deterministic algorithms computing these quantum circuit families, and we show that, in
fact, such families are logspace uniform. As a consequence, we formally prove that cyclic shiftings
and, more in general, permutations are in the complexity class QNC0, as already noted by Moore
and Nilsson [1]. These authors observed that any permutation is in the class QNC, sketching the
underlying idea; however, a formal proof of this observation never appeared in the literature, to the
best of our knowledge.

1Citing [15], "quantum computers will offer large gains over current, classical computers in simulating quantum physics
and chemistry" and "quantum computing will be in speeding up or gaining better control over molecular reactions".



2. Quantum Preliminaries

Basic Notations. We denote by N and Z, the sets of natural and integer numbers, respectively.
For each 𝑛 ∈ N, and 𝑖, 𝑗 ∈ Z we write 𝑖 = 𝑗 mod 𝑛 iff 𝑗 = 𝑖 + 𝑛𝑞 for some 𝑞 ∈ Z; furthermore,
Z𝑛 denotes the quotient set {𝑖 ∈ Z | 𝑖 = 𝑗 ⇔ 𝑖 = 𝑗 mod 𝑛}. We also recall that the floor operator
⌊·⌋ computes the maximum integer smaller or equal to its argument, while the ceiling operator ⌈·⌉
computes the minimum integer larger or equal to its argument.

Quantum Computational Systems. The fundamental unit in quantum computation is the quan-

tum bit, also known as qubit. Formally, a single qubit is an element of the two-dimensional Hilbert
space over the complex numbers, equipped with an inner product, ℋ, which is referred to as the
state space. Therefore, the mathematical expression of a qubit, |𝜓⟩, is a linear combination of the two
basis states, i.e., |𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩, where 𝛼 and 𝛽, called amplitudes, are complex numbers such
that |𝛼|2 + |𝛽|2 = 1. The squared magnitudes of 𝛼 and 𝛽 represent the probabilities of measuring
the qubit in the state |0⟩ or |1⟩, respectively. A quantum measurement is the only operation through
which we can gain some knowledge on the state of a qubit; more precisely, this operation causes the
qubit to collapse to one of the two basis states, following the probability distribution described by the
squares of its amplitudes before the measure. Multiple systems of qubits are referred to as quantum

registers. A quantum register |𝜓⟩ = |𝑞0, 𝑞1, . . . , 𝑞𝑛−1⟩ of size 𝑛 is an element from the tensor product
of 𝑛 state spaces, ℋ⊗𝑛, and is thus expressed as a linear combination of the 2𝑛 states in {0, 1}𝑛.
Specifically, |𝜓⟩ =

∑︀2𝑛−1
𝑘=0 𝛼𝑘 |𝑘⟩, where the values 𝛼𝑘 represent the probability amplitudes of the

corresponding classical states |𝑘⟩ and satisfy
∑︀2𝑛−1

𝑘=0 |𝛼𝑘|2 = 1.

Quantum Operations. The allowed operations on (registers of) qubits are those permitted by
quantum mechanics. Quantum measurements are operations that cause the collapse of a quantum
system into a classical state and result in the loss of the probability amplitude wave. Quantum
measurements are needed not only to have access to the elaboration of the information stored in
qubits but also for their state preparation [19, Section 1.10].

The evolution of a quantum mechanical system is described by a unitary transformation. A unitary
operator is a bounded linear operator𝑈 on a Hilbert space that satisfies𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 , where𝑈 † is
the conjugate transpose of 𝑈 , and 𝐼 is the identity operator. In other words, a unitary transformation
is an automorphism 𝑈 of the (tensor) state space that preserves the inner product, ⟨𝑈𝑥,𝑈𝑦⟩ = ⟨𝑥, 𝑦⟩,
thus ensuring the conservation of the probability amplitudes. Formally, each unitary transformation
on an 𝑛-qubit register can be described by a 2𝑛×2𝑛 unitary matrix with complex entries. In particular,
unitary transformations are reversible, meaning that no information is lost when performing them,
and the composition of multiple unitary transformations is also a unitary transformation. Any
unitary transformation on an 𝑛-qubit register can be implemented by a sequence of 2-qubit unitary
transformations.

Quantum Circuits. A quantum algorithm on an 𝑛-dimensional input register consists of quantum
unitary transformations and measurements.

Quantum algorithms can be formalized in various models, each with distinct advantages and
challenges: the adiabatic model [20], the topological model [21], and the measurement-based model

[22].
This paper adopts the quantum circuits model. Computational circuits are represented as directed

acyclic graphs, where nodes denote gates operating on information carried by edges. Unlike classical



circuits, quantum circuits must be reversible (excluding measurement gates), ensuring the number
of input edges matches the number of output edges. Consequently, quantum circuits cannot join
(fan-in) multiple wires or copy/split (fan-out) information due to the No-Cloning Theorem [23].
Thus, the graph representation features parallel wires (qubits) passing through gates. To address the
No-Cloning Theorem’s limitations, ancillæ qubits are often included in quantum circuits.

Real quantum machines have a finite set of native gates, typically at-most-ternary gates. Therefore,
constructing circuits with a minimal number of native gates is crucial not only for speed and efficiency
but also to reduce coherent quantum error caused by gate miscalibration and to maximize qubit lifespan.
Qubits have a limited coherence time, after which they lose information.

Circuit-Based Quantum Computational Classes. There are two major measures of computa-
tional complexity for circuit models. One is the total number of basis gates, referred to as the size of
the circuit. The other is the depth of the directed acyclic graph that represents the circuit. Clearly,
basis gates have a depth of Θ(1).

A complexity class can be thought of as a collection of computational problems that share common
features regarding the computational resources needed to solve them. Perhaps the most well-known
complexity classes in classical computation models are P and NP. These classes are defined in terms
of the elementary operations that the best-performing Turing Machine needs to execute to solve
the target problem. Boolean circuits, on the other hand, are non-uniform models of computation,
meaning that inputs of different lengths are processed by different circuits, in contrast to uniform
models such as Turing Machines. A similar distinction arises between Quantum Turing Machines [24]
and Quantum Circuits.

Complexity classes defined in terms of Boolean circuits include NC, AC, and P/poly. The class NC
captures computations that can be efficiently performed on highly parallel computers. A compu-
tational task has an efficient parallel algorithm if instances of size 𝑛 can be solved using a parallel
computer with 𝑛𝒪(𝑛) processors in time log𝒪(1)(𝑛) (see [25] for details).

In the case of a family of quantum circuits, we can give a more concrete idea of what logspace
uniform means. We do this in the style of [26, Definition 6.5] (see also [24]). To this end, we need to
fix the representation of the quantum circuits.

Definition 2.1. A circuit family {𝐶𝑛} is a collection of circuits such that for each 𝑛 ∈ N the circuit
𝐶𝑛 has 𝑛 inputs. A computational problem is solved by a circuit family {𝐶𝑛} if, for every 𝑛 ∈ N, the
circuit 𝐶𝑛 solves the instances of the problem of size 𝑛.

Definition 2.2. A circuit family {𝐶𝑛} is logspace uniform if there exists a logarithmic space deter-
ministic Turing Machine mapping 1𝑛 to the description of 𝐶𝑛, for all 𝑛 ∈ N.

Remark 2.3. Let 𝑁 be the size of 𝐶𝑛. Since 𝐶𝑛 is an acyclic graph, we can assume to represent it
by its 𝑁 ×𝑁 adjacency matrix and by an array of size 𝑁 that encodes the labels of each gate (i.e. a
label that identifies each vertex of the acyclic graph as an input qubit or one of the basis gate to be
applied). Assuming such a representation, a family of quantum circuits {𝐶𝑛} is logspace uniform if,
and only if, the following functions can be computed in 𝒪(log(𝑛)) space: (1) the function SIZE (𝑛),
returning the size of the circuit 𝐶𝑛; (2) the function LABEL (𝑛, 𝑖), returning the label of the 𝑖th gate of
𝐶𝑛 (corresponding to the 𝑖th entry of the labels array); and (3) the function EDGE (𝑛, 𝑖, 𝑗) returning 1
whenever there is a direct wire (edge) from the 𝑖th gate to the 𝑗th one, and returning 0 otherwise.

Definition 2.4 ([1]). A computational problem is in QNC𝑖 if there exists a constant 𝑐 > 0 such that it
can be solved by a logspace uniform family of quantum circuits (whose basis gate are at-most-binary)
{𝐶𝑛}, where 𝐶𝑛 has size 𝒪(𝑛𝑐) and depth 𝒪(log𝑖(𝑛)). We set QNC=

⋃︀
𝑖≥0QNC

𝑖.



We conclude this section by highlighting the relationship between space-bounded Turing Machines
and depth-bounded Boolean circuits in classical computation. Space-bounded computations can
be efficiently simulated by bounded-depth circuits, and vice versa, through depth-first exploration
(see [27, 28] for details). However, such a relationship is not established for quantum computations.
While space-bounded computations on Quantum Turing Machines can be efficiently simulated
by bounded-depth quantum circuits, the reverse is not known and is considered highly unlikely.
Beyond theoretical considerations (see [24]), practical quantum computations are constrained by
short coherence times, making highly parallelized quantum circuits more feasible than Quantum
Turing Machines.

3. Quantum Circuits implementing Rotations and Permutations

In this section, we show how to construct a logspace uniform family of constant-depth and linear-size
quantum circuits for rotations and, more generally, for permutations. Before going into the details of
our solution, some knowledge about rotations and permutations is necessary.

3.1. Rotations and Permutations of Qubits

Formally, a rightward rotation (or rightward cyclic shift) is a quantum operator ROT+𝑘 that applies
a rightward shift of 𝑘 positions to a register of size 𝑛 so that the element at position 𝑥 is moved to
position (𝑥 + 𝑘) mod 𝑛. In other words, the elements whose position exceeds the size 𝑛 of the
register are moved, in a circular fashion, to the first positions of the register. Formally, the operator
ROT+𝑘 applies the following permutation

|𝑞0, 𝑞1, . . . , 𝑞𝑛−1⟩ ↦−→ |𝑞𝑛−𝑘, 𝑞𝑛−𝑘+1, . . . , 𝑞𝑛−1, 𝑞0, 𝑞1, . . . , 𝑞𝑛−𝑘−1⟩ .

We call the parameter 𝑘 the magnitude of the rotation.
A leftward rotation (or leftward cyclic shift) ROT−𝑘 applies a leftward shift of 𝑘 positions to a register

of size 𝑛 so that the element at position 𝑥 is moved to position (𝑥−𝑘) mod 𝑛. Formally, the operator
ROT−𝑘 applies the following permutation

|𝑞0, 𝑞1, . . . , 𝑞𝑛−1⟩ ↦−→ |𝑞𝑘, 𝑞𝑘+1, . . . , 𝑞𝑛−1, 𝑞0, 𝑞1, . . . , 𝑞𝑘−1⟩ .

Example 3.1. Let |𝜓⟩ = |𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7⟩ be a quantum register of 8 qubits. Right rotating
|𝜓⟩ of 5 positions results in the quantum register ROT+5 |𝜓⟩ = |𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞0, 𝑞1, 𝑞2⟩, while left
rotating |𝜓⟩ of 5 positions results in the quantum register ROT−5 |𝜓⟩ = |𝑞5, 𝑞6, 𝑞7, 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4⟩

Unless we explicitly declare that this is not the case, in this paper we use the term rotation and the
symbol ROT𝑘 by referring to the rightward version of the quantum operator. However, it is immediate
to verify that

ROT−𝑘 |𝑞⟩ = ROT+𝑛−𝑘 |𝑞⟩ ,

for every register of size 𝑛 and every 0 ≤ 𝑘 < 𝑛. Thus, all the results stated for the rightward
rotations hold true for the leftward rotations, too, and the needed modifications in the algorithmic
techniques are trivial.

Remark 3.2. Let us consider the 𝑛-qubit register |𝑞⟩ =
⨁︀𝑛−1

𝑖=0 |𝑞𝑖⟩ =
∑︀2𝑛−1

𝑗=0 𝑘𝑗 |𝑗⟩. Applying a

rotation of magnitude 𝑘, we obtain = ROT𝑘 |𝑞⟩ =
⨁︀𝑛−𝑘−1

𝑖=𝑛−𝑘 |𝑞𝑖⟩ =
∑︀2𝑛−1

ℎ=0 ℓℎ |ℎ⟩, where ℓℎ = 𝑘𝑗
for each ℎ, 𝑗 ∈ {0, . . . , 2𝑛 − 1} such that the qubit representation of ℎ is a rotation of the qubit
representation of 𝑗 by 𝑘 positions.



For every 𝑛 ∈ N, a permutation 𝜋 of 𝑛 elements is a bijection from a set 𝑆 of cardinality |𝑆| = 𝑛
into itself. The set of all permutations of a set with 𝑛 elements is denoted by 𝑆𝑛 and forms a group
(the symmetric group) with the composition operation. The composition of two permutations 𝜎 and
𝜏 is the permutation 𝜋 = 𝜎𝜏 such that 𝜋(𝑖) = 𝜎 (𝜏(𝑖)). In general, the composition of permutations
is not commutative.

There are several ways to represent a permutation, the one that we use in this paper - and perhaps
the most common - is the cycle representation, which we describe in the following definition.

Definition 3.3 (Cyclic permutation). For a set 𝑆 of cardinality |𝑆| = 𝑛 and for 𝑚 ≤ 𝑛, a cyclic

permutation of length 𝑚 (or an 𝑚-cycle) 𝜎 ∈ 𝑆𝑛 is a permutation for which there exists a sequence
(𝑛0, 𝑛1, . . . , 𝑛𝑚−1) of pairwise distinct elements of 𝑆 such that

• 𝜎(𝑛0) = 𝑛1, 𝜎(𝑛1) = 𝑛2, . . . , 𝜎(𝑛𝑚−1) = 𝑛0, i.e. it cyclically permutes all the elements from
the sequence;

• 𝜎(𝑠) = 𝑠, for all 𝑠 ∈ 𝑆 ∖ {𝑛0, 𝑛1, . . . , 𝑛𝑚−1}, i.e. it fixes the elements that are not in the
sequence.

The sequence (𝑛0, 𝑛1, . . . , 𝑛𝑚−1) =
(︀
𝑛0, 𝜎(𝑛0), 𝜎

2(𝑛0), . . . , 𝜎
𝑚−1(𝑛0)

)︀
is the cycle representa-

tion of the 𝑚-cycle 𝜎, and is unique up to cyclic shifting. The identity is the trivial cyclic permutation
which fixes all the elements of 𝑆. The composition of two disjoint cyclic permutations is commutative.

Example 3.4. Let 𝑆 = {a, b, c, d, e, f, g, h} be a set of elements of cardinality |𝑆| = 8. The permuta-
tion 𝜎 = {a, g, b, c, e, f, d, h} is a cyclic permutation of length 4, since the sequence (c, b, g, d) is a
sequence of pairwise distinct elements of 𝑆 such that 𝜎(c) = b, 𝜎(b) = g, 𝜎(g) = d and 𝜎(d) = c.
In addition 𝜎(a) = a, 𝜎(e) = e, 𝜎(f) = f and 𝜎(h) = h.

We now present a foundational result in permutation theory, often referred to as a folklore theorem

Theorem 3.5 (Folklore). Every permutation of finitely many elements can be written as the composition

of two or more disjoint cyclic permutations. Such a decomposition is unique up to different orders of the

cycles.

Remark 3.6. Given a different representation of a permutation 𝜎, it is possible to find its decomposi-
tion into cycles in polynomial time [29, 30].

Let 𝜋 ∈ 𝑆𝑛 be a permutation of 𝑛 elements and let 𝜋 = 𝜎1 · · ·𝜎ℓ be the decomposition of 𝜎 into
disjoint cycles. then the cycle representation of 𝜋 is the array (𝑡1, . . . , 𝑡ℓ), where 𝑡𝑖 is the sequence
representing 𝜎𝑖 for every 𝑖 ∈ {1, . . . , ℓ}.

Example 3.7. Let 𝑆 = {a, b, c, d, e, f, g, h} be a set of elements of cardinality |𝑆| = 8. The permuta-
tion 𝜎 = {d, f, h, a, g, e, b, c} can be represented by the following decomposition in disjoint cycles
((a, d), (b, f, e, g), (c, h)), which is the cycle representation of 𝜎.

Example 3.8. Let 𝑆 = {a, b, c, d, e, f, g, h} be a set of elements of cardinality |𝑆| = 8. The permuta-
tion 𝜎 = {h, c, a, b, e, f, d, g} can be represented by the following decomposition in disjoint cycles
((a, h, g, d, b, c), (e), (f)), which is the cycle representation of 𝜎.

Remark 3.9. Any rotation, and more generally, any permutation of the states of the qubits within a
register, can be realized through the application of a unitary transformation.2. This implies that the
reordering of qubit states, whether it be a simple rotation or a more complex permutation, can be
effectuated by an appropriate unitary matrix, ensuring the transformation adheres to the principles
of quantum mechanics.
2We recall that a permutation can be formalized through a unitary matrix with entries in {0, 1}



3.2. Quantum Circuits implementing Rotations

In classical circuital models of computation, the wires carrying the information on the state of a bit
can be permuted as desired without any computational cost; the same does not hold true in quantum
circuits. In [1], Moore and Nilsson observed that any permutation of the states of a finite set of qubits
can be achieved with a constant-depth quantum circuit.

In the remainder of the current section, we will develop their idea and give a constructive proof of
this fact, providing both the detailed description of such a circuit and the pseudocode of a logarithmic-
space and polynomial-time algorithm constructing such a circuit for any cardinality 𝑛 of the set of
qubits and any permutation of 𝑛 elements. As a consequence of this, we will observe that permuting
the states of the constituent qubits from a quantum register is in the computational class QNC0.3

We start by focusing on the implementation of the rotation of the states of a quantum register by a
given magnitude.

Let us consider a 𝑛-qubit register |𝑞⟩ =
⨁︀𝑛−1

𝑖=0 |𝑞𝑖⟩ to be rotated by 𝑘 positions. Let us arrange the
constituent qubits as the vertices of a regular polygon with 𝑛 sides from an Euclidean two-dimensional
space. Enumerate such vertices by the indices of the corresponding qubits, i.e., 0, 1, . . . , 𝑛 − 1 or,
equivalently, 𝑖 ∈ Z𝑛. In such a formulation, a rotation of 0, 1, . . . , 𝑛− 1 by 𝑘 positions (to the right)
corresponds to a rotation of the polygon about its centre of symmetry, 𝐶 .

It is well-known that every rotation of a regular polygon about its centre of symmetry by an angle
𝜃 can be obtained as the composition of two reflections across two axes such that they intersect in the
centre of the polygon and form an angle equal to 𝜃

2 . We remark that even if the observation above is
behind our construction, it is not necessary to know it to see the correctness of our algorithm, which
will be proved directly.

For every 𝑖 ∈ Z𝑛, we have that the angle formed by points 𝑖, 𝐶 , and 𝑖 + 1 equals 2𝜋
𝑛 radians;

therefore, a rotation of the qubits by 𝑘 positions corresponds to a rotation of the polygon by 𝑘 2𝜋
𝑛

radians about 𝐶 . We have therefore to perform two reflections across two axes ℓ1 and ℓ2 such that
they pass through 𝐶 and form an angle of 𝑘 𝜋

𝑛 radians. We choose ℓ1 and ℓ2 based on 𝑛 and 𝑘. Let us
first assume that 𝑛 is even. Then ℓ1 is chosen as the line passing through 0 and 𝐶 , which contains the
vertex 𝑛

2 . A reflection across ℓ1 has the effect of swapping the pairs (𝑖, 𝑛− 𝑖) for 𝑖 = 1, . . . , 𝑛2 − 1,
while the vertices 0 and 𝑛

2 stay fixed. Let us call 𝑞0𝑖 the initial state of the 𝑖th qubit 𝑞𝑖, and let 𝑞1𝑖 and
𝑞2𝑖 the states of the 𝑖th qubit after the first and after the second reflection, respectively.

Then, we have that

𝑞0𝑖 = 𝑞1𝑛−𝑖 for 𝑖 = 1, . . . ,
𝑛

2
− 1,

𝑛

2
+ 1, . . . , 𝑛− 1,

𝑞00 = 𝑞10 , and

𝑞0𝑛
2
= 𝑞1𝑛

2
.

The definition of ℓ2 depends on whether 𝑘 is even or odd. If 𝑘 is even, then ℓ2 is the line through
𝑘
2 and 𝐶 , which contains 𝑛

2 + 𝑘
2 ; else, if 𝑘 is odd, ℓ2 is the line through the centre 𝐶 and the midpoint

of 𝑘−1
2 and 𝑘+1

2 , which happens to contain the midpoint of 𝑛
2 + 𝑘+1

2 . The reflection across ℓ2 has
the effect of swapping the pairs (𝑘2 − 𝑗, 𝑘2 + 𝑗) for 𝑗 = 1, . . . , 𝑛2 − 1 whenever 𝑘 is even, and has the
effect of swapping the pairs (𝑘+1

2 − 𝑗, 𝑘−1
2 + 𝑗) for 𝑗 = 1, . . . , 𝑛2 − 1 whenever 𝑘 is odd. In either

case, we have that after this second reflection

𝑞1𝑖 = 𝑞2𝑘−𝑖 for 𝑖 = 0, . . . , 𝑛− 1

3The authors of [1] pointed out that permuting the states of finitely many qubits is in QNC.



ALGORITHM 1: Algorithm constructing a quantum circuit for the rotation of a register of size 𝑛
by 𝑘 positions.

Input: 𝑛, 𝑘
1 Initialize 𝑛 input wires (qubits) |𝑞0⟩ , . . . , |𝑞𝑛−1⟩;
2 for 𝑖 = 1 to ⌈𝑛

2 ⌉ − 1 do
3 Swap |𝑞𝑖, 𝑞𝑛−𝑖⟩
4 for 𝑗 = 1 to ⌈𝑛

2 ⌉ − 1 do
5 Swap

⃒⃒⃒
𝑞⌈ 𝑘

2 ⌉−𝑗 , 𝑞⌊ 𝑘
2 ⌋+𝑗

⟩

(observe that for even 𝑘, 𝑞1𝑘
2

and 𝑞1𝑛
2
+ 𝑘

2

stay fixed).

Let us now assume that 𝑛 is odd. Then ℓ1 is defined as the line passing through 0 and 𝐶 , which
contains the midpoint between 𝑛−1

2 and 𝑛+1
2 . A reflection across ℓ1 has the effect of swapping the

pairs (𝑖, 𝑛− 𝑖) for 𝑖 = 1, . . . , 𝑛− 1. The result of this first rotation is

𝑞0𝑖 = 𝑞1𝑛−𝑖 for 𝑖 = 1, . . . ,
𝑛− 1

2
,
𝑛+ 1

2
, . . . , 𝑛− 1, and

𝑞00 = 𝑞10.

To define ℓ2 for 𝑛 odd, we have, once more, to take into account the parity of 𝑘. If 𝑘 is even, then
ℓ2 is the line through 𝑘

2 and 𝐶 , which contains the midpoint between 𝑛−1
2 + 𝑘

2 and 𝑛+1
2 + 𝑘

2 ; else,
if 𝑘 is odd, ℓ2 is the line through the centre 𝐶 and the midpoint of 𝑘−1

2 and 𝑘+1
2 , which contains

𝑛
2 + 𝑘

2 . The reflection across ℓ2 has the effect of swapping the pairs (𝑘2 − 𝑗, 𝑘2 + 𝑗) for 𝑗 = 1, . . . , 𝑛−1
2

whenever 𝑘 is even, and has the effect of swapping the pairs (𝑘+1
2 − 𝑗, 𝑘−1

2 + 𝑗) for 𝑗 = 1, . . . , 𝑛−1
2

whenever 𝑘 is odd. In either case, we have that after this second reflection

𝑞1𝑖 = 𝑞2𝑘−𝑖 for 𝑖 = 0, . . . , 𝑛− 1

(observe that for even 𝑘, the state of 𝑞 𝑘
2

stays fixed, while, for odd 𝑘, the state of 𝑞 𝑘
2
+𝑛

2
stays fixed).

Algorithm 1, which runs in linear time, takes as input a pair (𝑛, 𝑘) of nonnegative integers and
constructs a constant-depth and linear-size quantum circuit that performs the rotation of any 𝑛-qubit
register by 𝑘 positions.

It is immediate to see that Algorithm 1 has time-complexity 𝒪(𝑛), that is, it has linear-time
complexity.

On input (𝑛, 𝑘), Algorithm 1 constructs a circuit with 𝑛 wires (qubits). In lines 2-3, are defined
⌈𝑛2 ⌉ swaps that involve disjoint pairs of qubits and can, therefore, be applied in parallel, we will refer
to the swaps defined in lines 2-3 as the first layer of swaps of the circuit; similarly, we will refer to the
swaps defined in lines 2-3 as the second layer of swaps of the circuit. Figures 1 and 2 illustrate a few
examples of circuits built by Algorithm 1. Observe that the first layer depends only on the first input
parameter 𝑛.

Remark 3.10. Algorithm 1 works for 𝑛 ≥ 3. Clearly, if the register has only 2 qubits then any
rotation either does nothing or simply swaps the states of the two qubits, in which case it is enough
to employ an elementary swap gate. In the remainder, we assume to apply Algorithm 1 to registers
with at least 3 qubits.



|𝑞4⟩
|𝑞5⟩
|𝑞6⟩
|𝑞7⟩
|𝑞0⟩
|𝑞1⟩
|𝑞2⟩
|𝑞3⟩

|𝑞0⟩
|𝑞1⟩
|𝑞2⟩
|𝑞3⟩
|𝑞4⟩
|𝑞5⟩
|𝑞6⟩
|𝑞7⟩

layer 1 layer 2

|𝑞3⟩
|𝑞4⟩
|𝑞5⟩
|𝑞6⟩
|𝑞7⟩
|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

|𝑞0⟩
|𝑞1⟩
|𝑞2⟩
|𝑞3⟩
|𝑞4⟩
|𝑞5⟩
|𝑞6⟩
|𝑞7⟩

layer 1 layer 2

Figure 1: The circuits taking in input a register of 8 qubits and operating a rotation of 4 and 5 positions,
respectively.

The following Lemma 3.11 represents a significant result regarding the depth and size characteristics
of the circuit constructed by Algorithm 1.

Lemma 3.11. The circuit constructed by Algorithm 1 has constant depth (more precisely, the depth

equals 6) and linear size. If we run the circuit on a quantum machine so that the CNOT gate is a native

one, we get that the depth equals 6 and the size is bounded by 3(𝑛− 1).

Proof. The swap gates built in lines 2-3 involve disjoint pairs of qubits, therefore they can be applied
in parallel, and form the first layer of parallel swap gates of the circuit. Similarly, the swap gates
built in lines 4-5 form the second layer of parallel swap gates. Each layer of the circuit has at most
𝑛−1
2 gates, therefore we have size bounded by 𝑛 − 1, that is 𝒪(𝑛). Observe that a swap can be

implemented by 3 CNOTs (see Section 2). Therefore, if the CNOT elementary gate is a native gate for
our quantum machine we get a depth equal to 6 and a size bounded by 3(𝑛− 1).

The following Proposition 3.12 instead demonstrates the correctness of Algorithm 1.

Proposition 3.12. Algorithm 1 on input (𝑛, 𝑘) constructs a quantum circuit such that, when applied

to a register |𝑞⟩ =
⨂︀𝑛−1

𝑖=0 |𝑞𝑖⟩, returns

⨂︀𝑛−1
𝑖=0, |𝑞𝑖−𝑘 mod 𝑛⟩ = ROT𝑘 |𝑞⟩. That is, Algorithm 1 on input

(𝑛, 𝑘) constructs a quantum gate performing the rotation by 𝑘 positions, ROT𝑘.

Proof. The first layer of swaps of the circuit, i.e. that constructed in lines 2 and 3 of Algorithm 1, has
the effect of swapping the states of 𝑞𝑖 and 𝑞𝑛−𝑖 for every 𝑖 = 1, . . . , ⌈𝑛2 ⌉ − 1. Therefore, if

⃒⃒
𝑞0𝑖
⟩︀

is the

𝑖th qubit of |𝑞⟩, and
⃒⃒⃒
𝑞1𝑗

⟩
is the 𝑗th qubit of |𝑞⟩ after the application of the first layer, we have that

𝑞0𝑖 = 𝑞1𝑛−𝑖 mod 𝑛 for 𝑖 = 0, . . . , 𝑛−1. The second layer of swaps of the circuit, i.e. that constructed in
lines 4 and 5 of Algorithm 1, has the effect of swapping the states of 𝑞𝑖 and 𝑞𝑘−𝑖 for 𝑖 ∈ {0, . . . , 𝑛−1}
in all cases but that of even 𝑘 and that of odd 𝑘 and odd 𝑛, in which cases 𝑞 𝑘

2
and 𝑞 𝑘

2
+𝑛

2
, respectively

are fixed. However, since 𝑘 − 𝑘
2 = 𝑘

2 , we have that 𝑞1𝑗 = 𝑞2𝑘−𝑗 mod 𝑛, where
⃒⃒
𝑞2ℎ
⟩︀

denotes the ℎth
qubit of |𝑞⟩ after the application of the second and last layer of swaps of the circuit. Summing up, we
have the circuit built by Algorithm 1 acting on

⃒⃒
𝑞0𝑖
⟩︀
, for 𝑖 = 0, . . . , 𝑛− 1 as follows

𝑞0𝑖 = 𝑞1𝑛−𝑖 = 𝑞2𝑘−𝑛+𝑖 mod 𝑛 = 𝑞2𝑖+𝑘 mod 𝑛,

that is the circuit operates a rotation by 𝑘 positions.



|𝑞2⟩
|𝑞3⟩
|𝑞4⟩
|𝑞0⟩
|𝑞1⟩

|𝑞0⟩
|𝑞1⟩
|𝑞2⟩
|𝑞3⟩
|𝑞4⟩

layer 1 layer 2

|𝑞3⟩
|𝑞4⟩
|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

|𝑞0⟩
|𝑞1⟩
|𝑞2⟩
|𝑞3⟩
|𝑞4⟩

layer 1 layer 2

Figure 2: The circuits taking in input a register of 5 qubits and operating a rotation of 3 and 4 positions,
respectively.

We conclude this section with the main result anticipated in the introduction, which establishes
the complexity class of the cyclic shift problem for quantum registers.

Corollary 3.13. The problem of cyclically shifting the states of a quantum register by any amount of

positions is in QNC
0
.

Proof. Since Proposition 3.12 holds, to prove the corollary it is enough to observe that the functions
SIZE (𝑛), LABEL (𝑛, 𝑖), EDGE (𝑛, 𝑖, 𝑗) - corresponding to the circuits constructed by Algorithm 1 - can
be computed in logarithmic space (refer to Remark 2.3), by a slight modification of Algorithm 1.

3.3. Quantum Circuits implementing Permutations

In this Section, we extend our previous result on cyclic shifts to the more general case of arbitrary
permutations of a quantum register. This generalization involves defining an algorithm to construct
quantum circuits that can perform any given permutation of the states of a quantum register. The
main result of this section is encapsulated in the following Proposition 3.14.

Proposition 3.14. Any permutation 𝜋 of the states of 𝑛 qubits can be performed by a quantum circuit

𝐶𝑛,𝜋 having constant depth and linear size. Furthermore, there exists a polynomial-time algorithm

that, on input (𝑛, 𝜋)4
, constructs 𝐶𝑛,𝜋 in polynomial time. Thus, the problem of permuting the states of

finitely many qubits is in QNC
0
.

Proof. It is immediate to see that the application of an 𝑚-cycle 𝜎 ∈ 𝑆𝑛, for 𝑚 > 2, to a quan-
tum register

⨂︀𝑛−1
𝑗=0 |𝑞𝑖⟩ is equivalent to the rotation of magnitude 1 of the states of the qubits

𝑞𝜎[0], 𝑞𝜎[1], . . . , 𝑞𝜎[𝑚−1], where (𝜎[0], 𝜎[1], . . . , 𝜎[𝑚 − 1]) is the array corresponding to the cycle
representation of 𝜎. Therefore, the application of 𝜎 can be implemented by applying the quantum
circuit for rotating 𝑚 qubits by 1 position (constructed by algorithm 1 on input (𝑚, 1)) to the qubits
𝑞𝜎[0], 𝑞𝜎[1], . . . , 𝑞𝜎[𝑚−1] (rather than 𝑞0, 𝑞1, . . . , 𝑞𝑚). Clearly, such a circuit has a constant depth and a
linear size. Specifically, the depth equals 6 and the size equals 6(𝑚+ 1), being the gate CNOT a native
one. For 𝑚 = 2, an 𝑚-cycle is simply a state transposition achieved through a swap gate.

Now, let 𝜋 be a permutation of 𝑛 elements that can be decomposed into cycles as 𝜋 = 𝜎1 · · ·𝜎ℓ.
Since a constant-depth and linear-size quantum circuit can implement each cycle 𝜎ℎ and since the
cycles are disjoint, we can run them in parallel getting a larger constant-depth and linear-size quantum
circuit 𝐶𝑛,𝜋 . More precisely, by denoting 𝑚ℎ the length of the cycle 𝜎ℎ, the circuit 𝐶𝑛,𝜋 has still
depth equal to 6 and size bounded by 6((𝑚1 + 1) + · · ·+ (𝑚ℓ + 1)) = 6(𝑛+ ℓ) = 𝒪(𝑛).

4The permutation 𝜋 is represented by its cycle-representation array.



ALGORITHM 2: The algorithm constructing a quantum circuit for applying a permutation 𝜋 ∈ 𝑆𝑛 to
a register of size 𝑛 by 𝑘.

Input: 𝑛, 𝜋 = [𝜋[1, 0], . . . , 𝜋[1,𝑚1 − 1], 𝜋[2, 0], . . . , 𝜋[ℓ, 0], . . . , 𝜋[ℓ,𝑚ℓ − 1]]
1 Initialize 𝑛 input wires (qubits) |𝑞0⟩ , . . . , |𝑞𝑛−1⟩;
2 for ℎ = 1 to ℓ do
3 if 𝑚ℎ = 2 then
4 Swap

⃒⃒
𝑞𝜋[ℎ,0], 𝑞𝜋[ℎ,1]

⟩︀
5 else
6 for 𝑖 = 1 to ⌈𝑚ℎ

2 ⌉ − 1 do
7 Swap

⃒⃒
𝑞𝜋[ℎ,𝑖], 𝑞𝜋[ℎ,𝑚ℎ−𝑖]

⟩︀
8 for 𝑗 = 1 to ⌈𝑚ℎ

2 ⌉ − 1 do
9 Swap

⃒⃒
𝑞𝜋[ℎ,𝑚ℎ+1−𝑗], 𝑞𝜋[ℎ,𝑗]

⟩︀

To prove the second part of the statement, it is enough to see that Algorithm 2 constructs the
circuit 𝐶𝑛,𝜋 described in the paragraph above. We remark that a gate of the form Swap |𝑞𝑖, 𝑞𝑖⟩ is
interpreted as a gate that swaps the state of a qubit with its own, and therefore this does not change
the state of system 5.

The algorithm consists of a for loop that is nested with two independent for loops and it takes at
most

∑︀ℓ
ℎ=1 2

(︀
⌈𝑚ℎ

2 ⌉ − 1
)︀
≤ 𝑛 = 𝒪(𝑛) steps. To complete the proof, it is enough to observe that

the functions SIZE (𝑛), LABEL (𝑛, 𝑖), EDGE (𝑛, 𝑖, 𝑗) - corresponding to the circuits constructed by
Algorithm 2 - can be computed in logarithmic space (refer to Remark 2.3), by a slight modification of
Algorithm 2.

4. Conclusion and Future Works

In this paper, we presented a comprehensive framework for constructing logspace uniform families
of constant-depth and linear-size quantum circuits capable of performing rotations and permutations
of qubit states. We have formally demonstrated that these operations are within the complexity class
QNC0, ensuring their efficient parallelizability on quantum computers.

Our work builds upon foundational concepts in quantum circuit design, providing explicit algo-
rithms and detailed constructions that ensure practical implementability. By extending the principles
of cyclic shifts to general permutations, we have shown that even complex reordering operations can
be achieved with minimal computational overhead, thus reinforcing the versatility and robustness of
the quantum circuit model for various computational tasks.

The systematic construction of these circuits, independent of specific rotations or permutations,
offers a significant advantage. It allows these circuits to be hardwired to a control quantum register,
enabling the implementation of superpositions of rotations or permutations. This capability can be
leveraged in advanced quantum algorithms, enhancing their efficiency and broadening their applica-
bility in fields such as quantum cryptography, error correction, and complex system simulations.

There are several promising directions for future research stemming from our results. One avenue
is the exploration of optimized implementations of these quantum circuits on current and near-term
quantum hardware, focusing on minimizing gate errors and decoherence. Additionally, investigating
the integration of these circuits with quantum algorithms for specific applications, such as large-scale
data sorting and molecular simulations, could yield further insights into their practical utility.

5It is possible to have a refined version of the algorithm that recognizes such applications of the swap gate to the same
qubit and does nothing.
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